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Abstract

Multi-instance (MI) learning is a variant of inductive machine learning where each learning
example contains a bag of instances instead of a single feature vector. The term commonly refers
to the supervised setting, where each bag is associated with a label. This type of representation is
a natural fit for a number of real-world learning scenarios, including drug activity prediction and
image classification, hence many multi-instance learning algorithms have been proposed. Any MI
learning method must relate instances to bag-level class labels, but many types of relationships
between instances and class labels are possible. Although all early work in MI learning assumes
a specific MI concept class known to be appropriate for a drug activity prediction domain, this
“standard MI assumption” is not guaranteed to hold in other domains. Much of the recent work
in MI learning has concentrated on a relaxed view of the MI problem, where the standard MI
assumption is dropped, and alternative assumptions are considered instead. However, often it is
not clearly stated what particular assumption is used and how it relates to other assumptions
that have been proposed. In this paper, we aim to clarify the use of alternative MI assumptions
by reviewing the work done in this area.

1 Introduction

Multi-instance (MI) learning (Dietterich et al., 1997) (also known as “multiple-instance learning”)
is a variant of inductive machine learning that has received a considerable amount of attention
due to both its theoretical interest and its applicability to real-world problems such as drug
activity prediction and image classification.

MI learning, as it is commonly defined, belongs to the supervised learning paradigm, which
aims to solve classification and regression problems by using algorithms to build models from
data based on a set of labeled examples. The majority of the work in MI learning is concerned
with binary classification problems, where each example has a classification label that assigns it
into one of two categories — “positive” or “negative”. The goal is to “learn” a model based on
the training examples that is effective in predicting the classification labels of future examples.
All training examples have been (often manually) assigned a class label, which is why the term
supervised learning is used.

Where MI learning differs from the traditional scenario is in the nature of the learning
examples. In the traditional supervised learning scenario, each example is represented by a fixed-
length vector of features. However, in MI learning each example is represented by a multiset (or
bag, as computer scientists often call it) of feature vectors. In other words, each example contains
one or more feature vectors. The feature vectors are referred to as instances. Classification labels
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are only provided for entire bags, and the task is to learn a model that predicts the classification
labels for unseen future bags1.

In early MI research, a strong assumption was made regarding the relationship between
instances inside the bags and the label of the bag. This assumption is generally referred to
as the standard MI assumption. Under this assumption, each instance has a hidden class label
which identifies it as either a positive or a negative instance, and a bag is considered to be positive
if and only if it contains at least one positive instance. This is generally believed to be true for the
musk drug activity prediction problem, where a molecule will have the desired drug effect if and
only if one or more of its conformations binds to the target binding site (Dietterich et al., 1997).
However, in other problem domains this assumption may not apply, and different or more general
assumptions may be needed. A significant amount of the more recent research in MI is concerned
with cases where the standard view of MI learning is relaxed, and alternative assumptions are
used instead.

Unfortunately, it is often not clear what particular assumptions are used and how they relate
to other assumptions from the literature. This is perhaps at least partially due to the fact that the
use of the term “MI learning” has evolved from the original statement by Dietterich et al. (1997).
Dietterich et al. included the standard MI assumption in their original definition of MI learning,
but many authors now include alternative assumptions within the MI learning framework (see,
for example, Xu (2003), Chen et al. (2006) and Dong (2006)). To compound the issue, some
authors use alternative MI assumptions without explicitly describing the assumptions used. In
this paper we aim to shed some light on existing MI assumptions and relationships by reviewing
the MI assumptions that can be found in the literature. This paper is not intended as a review
of algorithms for MI learning that implement the standard MI assumption.

2 Background

This section gives an overview of machine learning, with emphasis on supervised learning and
the multi-instance learning scenario. Multi-instance learning is defined, and the motivations for
it are explained.

2.1 Machine Learning

Every day, we as humans discover new facts about our world. We interact with the environment
around us, and receive feedback through our empirical faculties — our senses. We are able to
recognize trends and can begin to anticipate the consequences of our actions. The process that
allows us to do this is called learning. It is ubiquitous and most of us take it for granted.

Learning is a task that is normally associated with humans (and intelligent non-human
animals), hence the problem of creating machines that can learn falls within the umbrella of
artificial intelligence. While the creation of truly “intelligent” machines still seems to be a long way
off, machine learning as a practical discipline is a success story of modern artificial intelligence.
Many algorithms have been discovered that allow machines to make inferences from observed
data, effectively “learning” non-trivial facts and behaviours.

Under the guise of data mining, these algorithms have many commercial applications. Machines
are far more efficient and reliable than humans at processing large amounts of data. For this
reason, learning algorithms can offer huge cost-saving and efficiency benefits to businesses, and
have successful applications in many domains from medicine to marketing.

1In many cases, the instances are assumed to have hidden class labels that are in some way related to
the labels for the bags. Depending on the problem domain, the prediction of the instance labels can also
be an important task in its own right.
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2.2 Supervised Learning

Supervised learning is the branch of machine learning that is concerned with algorithms that can
learn concepts from labeled examples. As an input, the algorithm requires a set of example cases,
each of which has been given a label corresponding to some important property of the example.
The task of the algorithm is to build a model that will generate accurate predictions of the labels
of future examples.

Let us illustrate this with a simple example. Suppose that we are amateur botanists, and we
wish to learn to distinguish between instances of the various species of the iris genus of flowering
plants. An expert has given us a batch of examples of some of the species of the genus. Once we
have seen a few examples of each, we can attempt to infer the defining characteristics of each
species. Once we have discovered the pattern, we can become proficient at labeling arbitrary iris
plants.

Having introduced the subject and its terminology via a simple example, we may now formally
define the standard supervised machine learning scenario. An instance is a vector of N features
concatenated with a class label, of the form {x | g(x)}, where x= {x1, x2, . . . , xN} is the feature
vector and g(x) is the label of the instance. Features and class labels are typically either elements
of the real numbers (numeric attributes) or domain-specific sets of names (nominal attributes).

The task is to find g(x), based on a given labeled set of instances, where the labels have been
assigned based on g(x). When the class is a nominal attribute, this process is called classification.
When the class is a numeric attribute, the process is called regression.

The underlying classification process g(x) is known in machine learning terminology as a
concept. g(x) may be either a function or a non-deterministic process. Given a set of training
examples to learn from, a supervised machine learning algorithm outputs a model that is intended
to be a best-guess approximation to g(x). Such a model is known as a concept description.

This paper is about a variation of standard (single-instance) supervised learning called multi-
instance learning.

2.3 Multi-Instance Learning

Multi-instance learning, as defined by Dietterich et al. (1997), is a variation on the standard
supervised machine learning scenario. In MI learning, each example consists of a multiset (bag)
of instances. Each bag has a class label, but the instances themselves are not explicitly labeled.
The learning problem is to build a model based on given example bags that can accurately
predict the class labels of future bags. The difference between standard supervised learning and
multi-instance learning is illustrated in Figure 1.

An example will once again help to illuminate the concept. Chevaleyre & Zucker (2001) refer
to this example as the simple jailer problem. Imagine that there is a locked door, and we have N
keychains, each containing a bunch of keys. If a keychain (i.e. bag) contains a key (i.e. instance)
that can unlock the door, that keychain is considered to be useful. The learning problem is to
build a model that can predict whether a given keychain is useful or not.

2.3.1 Definition of Multi-Instance Learning
We now present a formal definition of the MI problem. This formalization is a refinement of
those used by Weidmann et al. (2003) and Gärtner et al. (2002). In this paper we follow the
trend established by the majority of the work in this field (a notable exception being Zhou &
Zhang (2006)) and assume a binary class attribute Ω = {+,−}. Let χ be the instance space. Then
an MI concept is a function νMI : Nχ→ Ω. The task in MI learning is to learn this function, based
on a number of example elements of the function.

Here, Nχ refers to the set of all functions from χ to N, which is isomorphic to the set of all
multi-subsets of χ, viewing the output of f(x) ∈ Nχ as the number of occurrences of x in the
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Figure 1 (a) The traditional supervised machine learning scenario. (b) Multi-instance learning. Figure
based on a similar diagram by (Dietterich et al., 1997).

multiset. Such functions are known as multiplicity functions, and are a direct generalization of
indicator functions for ordinary sets.

Note that this differs slightly from the formulation used by Weidmann et al., who define an MI
concept as a function νMI : 2χ→ Ω. Here, 2χ, the set of indicator functions over χ, is isomorphic
to the power set of χ, but this does not take into account the fact that duplicate instances
are allowed in a bag. Our alternative definition of an MI concept explicitly defines the problem
examples as multisets rather than just sets. This is important for some generalized MI concepts.

2.4 The Standard MI Assumption

A large percentage of the work on MI learning, including all early work and notably including
Dietterich et al. (1997) and Maron & Lozano-Pérez (1997), makes a particular assumption
regarding the relationship between the instances within a bag and the class label of the bag.
Dietterich et al. considered this assumption to be so fundamentally important that they included
it as part of their definition of multiple-instance learning. We will follow Weidmann et al. (2003),
and refer to this assumption as the standard MI assumption.

The standard MI assumption states that each instance has a hidden class label c ∈ Ω = {+,−}.
Under this assumption, an example is positive if and only if one or more of its instances are
positive. Thus, the bag-level class label is determined by the disjunction of the instance-level
class labels.

Formally, let X = {X1, X2, . . . , Xn} ∈ Nχ be a bag containing n instances from feature space
χ. Each instance has a class label determined by some process g : χ→ Ω. Let νS : Nχ→ Ω be a
standard MI concept, and equate “+” with the logical constant ‘’True”, and “−” with the logical
constant ‘’False”. Then:

νS(X)⇔ (g(X1) ∨ g(X2) ∨ . . . ∨ g(Xn)) (1)

It should be noted that the standard MI assumption is asymmetric: if the positive and negative
labels are reversed, the assumption has a different meaning. Therefore, when we apply this
assumption, we need to be clear which label should be the positive one.
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The standard MI assumption was adopted because it is believed to be appropriate for the
musk problem domain. In the musk problem, it is assumed that a molecule (represented by a
bag of instances) will emit a musky smell if and only if one of its conformations (represented by
an individual instance) binds to a certain target site, hence the standard MI assumption applies
(Dietterich et al., 1997).

A number of learning algorithms for MI classification under the standard MI assumption have
been proposed in the literature. Dietterich et al. (1997) presented several algorithms for learning
axis-parallel rectangles to identify the positive region of instance space. A bag is classified as
positive if it has at least one instance in this region. Maron & Lozano-Pérez (1997) defined
diverse density, a measure of the likelihood that a point in instance space is a positive target
concept, and used a gradient search to find the point that is most likely to define the target
concept. A refinement of this algorithm, EM-DD, was proposed by Zhang & Goldman (2001).

Several single-instance learning methods have been “upgraded” to the multi-instance scenario
under the standard MI assumption, including support vector machines (Andrews et al., 2002),
neural networks (Ramon & De Raedt, 2000) decision trees (Blockeel et al., 2005), (Chevaleyre &
Zucker, 2001), decision rules (Chevaleyre & Zucker, 2001), and weak learners for boosting (Auer
& Ortner, 2004). Zhou & Xu (2007) showed that multi-instance learning under the standard MI
assumption can be viewed as a semi-supervised learning problem with the additional constraint
that positive bags must contain at least one positive instance. They adapted semi-supervised
support vector machines to the standard MI scenario by encoding this “positive constraint” in
the objective function of the SVM.

2.5 Alternative Assumptions

Due (at least in part) to the inclusion of the standard MI assumption in Dietterich et al.’s (1997)
definition of MI learning, it was initially adopted ubiquitously by the fledgeling MI learning
community. In more recent years, there has been a trend towards the relaxation of this strict
view of MI learning (Xu, 2003).

When the standard MI assumption is relaxed, other interactions between instances and the
class labels of bags are possible. We refer to such interactions as MI assumptions, since we must
assume that such a relationship between bags and class labels occurs when we use a learning
algorithm to build a predictive model. In order to make learning computationally feasible, it is
generally necessary to reduce the hypothesis space by making use of some MI assumption.

While many recent authors have (implicitly or explicitly) abandoned the standard assumption,
it is often not precisely stated which new assumptions have been used (Xu, 2003). Moreover, the
literature is not in agreement on whether the relaxed version of the MI problem belongs within the
umbrella of MI learning, or is a separate problem. Some authors, notably Weidmann et al. (2003)
and Scott et al. (2005), refer to the relaxed MI scenario as generalized MI, while others, such as Xu
(2003), Chen et al. (2006), Dong (2006) and Foulds (2008), include alternative MI assumptions
within the multi-instance framework. In particular, Xu explicitly extends the definition of MI
learning to include other assumptions.

We contend that the term “multi-instance learning” should contrast directly with “single-
instance learning”, and connotes any type of learning where several instances can be included
within a single learning example, regardless of the assumptions used. Hence, we follow Xu, and
use the term to refer to the relaxed version of MI learning as well as the standard MI scenario.
We shall reserve the term “generalized MI learning” to refer to MI assumptions that are strictly
more general than the standard assumption, such as those proposed by Weidmann et al. and
Scott et al.
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2.6 Motivations for Alternative MI Assumptions

Although the standard MI assumption is widely believed to be appropriate for the musk drug
activity prediction problem, the multi-instance representation can be applied to a number of
other problem domains where the standard MI assumption may not be directly applicable. In
these domains, algorithms that rely upon alternative MI assumptions may be more appropriate.

A prominent example of this is the task of learning visual concepts from databases of labeled
images. This learning problem arises in several computer vision tasks including object detection
or recognition, image categorization and content-based image retrieval. Although standard
supervised learning could be applied directly to learn from global features of images, the task
of learning visual concepts lends itself well to an MI representation because the target concepts
typically only occupy part of the space of an image. Therefore, it makes sense to split the image
into smaller regions (segments) (Burl et al., 1998).

Based on this approach, an image can be represented as a bag of segments, which are
represented by instances. Segments can simply be equal-sized blocks, or more sophisticated
segmentation methods can be used. Each instance in a bag contains features extracted from
the corresponding segment, such as colour, texture and shape information. Features describing
relative relationships to adjacent segments can also be used (Maron & Ratan, 1998). Multi-
instance learning has been frequently applied to visual concept learning tasks — see, for example,
Maron & Ratan (1998), Andrews et al. (2002), Zhang et al. (2002), Chen & Wang (2004), Chen
et al. (2006) and Qi et al. (2007).

Methods using the standard MI assumption have been applied to visual concept learning tasks
with some success. The standard assumption is a good heuristic for many such tasks, but not all
visual concepts can be represented under that assumption. First, for the purposes of comparison
let us briefly consider a task where the standard MI assumption may be applicable. Maron &
Ratan (1998) identified the task of identifying natural scenes of waterfalls as such a problem.
Here, if image segments (instances) containing a waterfall can be identified, images containing
that instance-level concept can be identified under the standard MI assumption: an image contains
a waterfall if and only if it contains at least one waterfall segment.

We will now describe a learning task where the standard MI assumption is not sufficient
to represent the desired concept. Consider the task of categorizing images of natural scenes of
beaches, oceans and deserts. Since the standard MI assumption requires a binary classification
task, one would generally approach this by learning one-against-the-rest models for each class.
However, there is no single item contained in a segment of a beach scene that defines it as
belonging to the beach category, as opposed to the other two alternatives. Unlike the waterfall
scenario, where the existence of at least one segment with a specific property is a necessary and
sufficient condition for a positive class label, we cannot identify a part of a scene that directly
corresponds to a beach or non-beach scenario. Thus the standard MI assumption cannot apply. We
would still like to use the multi-instance representation in order to capture localized information
from the image, but we need to assume a non-standard relationship between instances and bag-
level class labels.

Let us now consider a generalized MI model that would allow us to represent this type of
concept. For the sake of simplicity, we can define ocean scenes as images with water instances
(segments), and no sand instances, desert scenes as images with sand instances and no water
instances, and beach scenes as images with both sand and water segments. Then the beach concept
can be defined to be

νbeach(X)⇔ (∃x ∈Xsand(x)) ∧ (∃x ∈Xwater(x)) .

Such a concept can be represented under alternative MI assumptions such as presence-based
MI (Weidmann et al., 2003) and the GMIL assumption (Scott et al., 2005) (described in Sections
3.1.1 and 3.2, respectively).
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A similar scenario arises in text categorization, where the task is to assign semantic labels
to text documents. A document can be represented as an MI bag: instances are obtained by
splitting the document into smaller passages. Features such as word occurrence frequencies can
be extracted from each passage to form instances. This MI approach to text categorization has
been applied by Andrews et al. (2002) and Ray & Craven (2005).

Like visual concept learning, text categorization can potentially benefit from an MI represen-
tation because it allows localized information to be used. In both of these problem scenarios, the
MI representation is used to describe an object by a set of parts, each of which is a feature vector
(instance). Chevaleyre & Zucker (2001) refer to this type of problem as a Multiple Part Problem
(MPP). As they observe, although the multi-instance representation is useful for describing MPP
learning examples, the standard MI assumption is not guaranteed to hold.

Other problem domains where the relaxation of the standard MI assumption is appropriate
include robot localization via landmark matching, activity prediction for drugs that bind at
multiple sites simultaneously, and identifying thioredoxin-fold proteins. For a thorough account
of these scenarios, the reader is referred to Scott et al. (2005).

A further motivation for the investigation of MI approaches based on alternative assumptions is
the empirical success that such methods have enjoyed on benchmark problems, including the musk
datasets where the standard MI assumption was originally claimed to be necessary (Dietterich
et al., 1997). A number of authors have reported very competitive results on these datasets using
methods that do not strictly respect the standard MI assumption (deliberately or otherwise),
including Gärtner et al. (2002), Wang & Zucker (2000), Frank & Xu (2003), Chen et al. (2006)
and Dong (2006).

As we have seen, different problem domains require different MI assumptions. Although the
standard MI assumption is often an effective heuristic, the existence of a natural MI representation
for learning examples in a given domain does not imply that this assumption will apply in that
domain. Data mining practitioners need to take this into consideration, and select algorithms
that are known to depend only on assumptions that are likely to be true for the problem at
hand. We therefore consider the relaxed MI scenario to be worthy of continued research, with
the caveat that authors make explicit their assumptions whenever the standard MI assumption
is disregarded.

2.7 MI Assumptions vs MI Concept Classes

Each MI assumption defines a relationship between instances in a bag and bag-level class labels. If
we know that a certain MI assumption is applicable for a certain problem domain (i.e. the relevant
relationship between instances and bag-level class labels does in fact hold in that domain), then
we may assert that the assumption is true for that domain. We would then consider using the
MI learning algorithms that make use of that assumption.

Hence, the assumption view of MI learning (exemplified by Xu (2003)) is useful from a practical
machine learning perspective. From a theoretical machine learning perspective, though, it can be
useful to consider concepts instead of assumptions. For an MI assumption A, if we assert that
A is true for a given domain, we assert that the concept space for that domain is c(A), where
c(A) denotes the set of MI concepts allowable under A. We say that c(A) is the corresponding
MI concept class of A, and A is the corresponding MI assumption of c(A).

Thus, for example, if we assert that the standard MI assumption is true for the problem domain
of detecting molecules that emit a musky odor, we assert that the concept space of that domain
is the set of concepts following the form specified by Equation 1. Clearly, the assumption and
concept views of MI learning are equivalent.
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Figure 2 Relationships between MI assumptions. Arrows indicate increasing generality.

3 Alternative MI Assumptions, Concepts and Models

In this section we review the MI assumptions/concept classes that have been proposed, and
briefly discuss the algorithms that have been developed to learn models of MI data under these
assumptions. The relationships between the various MI assumptions are shown in Figure 2.

3.1 Weidmann’s Concept Hierarchy for Instance-Based Generalized MI Learning

Weidmann et al. (2003) formulated a hierarchy of generalized instance-based assumptions for
multi-instance learning. The hierarchy consists of the standard MI assumption and three types
of generalized MI assumptions, each more general than the last.

To illustrate the three types of generalized MI assumptions, we will follow Weidmann (2003)
and use an extended version of Chevaleyre & Zucker’s (2001) simple jailer problem (discussed
earlier in Section 2.3). Recall that in the simple jailer problem, each bag is a keychain containing
several keys, and a bag is considered to be useful (i.e. positive) if one or more of its keys can
unlock a specific door.

3.1.1 Presence-based MI Assumption
In presence-based MI learning, the assumption is that a bag is positive if and only if there exist
one or more instances in the bag that belong to a set of required instance-level concepts (i.e. have
the required hidden instance-level class labels). This can be visualized as a version of the jailer
problem where there are multiple locks on the door. To unlock the door, we need at least one key
that can open each type of lock on the door.

Formally, let vPB : Nχ→ Ω be a presence-based MI concept, let Ĉ ⊆ C be the set of required
instance-level concepts, and let ∆ : Nχ × C→N be the function that outputs the count of the
number of occurrences of a concept in the bag. Then:

vPB(X)⇔∀c ∈ Ĉ : ∆(X, c)≥ 1

It should be noted that the standard MI assumption is a special case of presence-based MI,
where |Ĉ|= 1, i.e. there is just one required concept.

3.1.2 Threshold-based MI Assumption
The threshold-based MI assumption states that a bag is positive if and only if there are at least a
certain number of instances in the bag that belong to each of the required concepts. Each concept
can have a different threshold. In terms of the jailer problem, this is similar to the presence-based
MI jailer problem except that multiple copies of each type of lock are allowed, and keys are
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Figure 3 Weidmann’s hierarchy of instance-based MI concepts.

consumed during the unlocking process. If there are n copies of a certain lock, then we need at
least n keys of the appropriate type to unlock it. This is reminiscent of the Microsoft puzzle game
Chip’s Challenge2.

To state the threshold-based assumption formally, let us use the same lexicon as before, and
let vTB : Nχ→ Ω be a threshold based MI concept. Then we have:

vTB(X)⇔∀ci ∈ Ĉ : ∆(X, ci)≥ ti

where ti ∈ N is the lower threshold for concept i.

3.1.3 Count-based MI Assumption
Under the count-based MI assumption, there is a maximum and a minimum number of instances
from each of the required concepts that must be observed in order for a bag to be positive.
Imagine this as the threshold-based jailer problem, except that there is also a stingy jailer who
despises wastefulness, and will not allow anybody to open the door if they have too many keys
of any particular type.

Formally, let vCB : Nχ→ Ω be a count-based MI concept. Then

vTB(X)⇔∀ci ∈ Ĉ : ti ≤∆(X, ci)≤ zi

where ti ∈ N is a lower threshold for concept i, and zi ∈ N is an upper threshold for concept i.

3.1.4 The Concept Hierarchy
Weidmann et al. (2003) showed that these assumptions form a hierarchy of generality, where
standard MI ⊂ presence-based ⊂ threshold-based ⊂ count-based (see Figure 3 for an illustration).

Therefore, in theory at least, a strong MI learner designed to work under a general assumption
should still be able to solve an MI problem where one of the less general assumptions applies. For
instance, a strong algorithm designed to use the count-based assumption should work well on a
dataset where the generative model is presence-based.

2Microsoft Game Studios (1990).
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3.1.5 Algorithms and Models
The Two-Level Classification (TLC) algorithm (Weidmann et al., 2003) is designed to learn the
type of MI concepts that are described in Weidmann’s concept hierarchy, where it is assumed
that bag-level class labels are determined by the counts of each instance-level concept in a bag.

TLC learns in a two-step process. The first step learns instance-level concepts using a decision
tree. The tree is built on all of the instances in all of the bags in the training data, with class
labels of the instances set to the labels of the parent bags. Each node in the tree is considered to
represent a candidate concept. Then each bag is converted into a single-instance representation,
with an attribute for every node in the tree (i.e. each candidate concept), the value of which is
set to the number of instances that reach that node in the decision tree.

The second step learns bag-level concepts, based on the candidate instance-level concepts
discovered in the first step. A single-instance learning algorithm is applied to the transformed
data. The same mapping is performed at classification time, and the bag-level predictions are
made by the single-instance learner. A further (optional) refinement to the algorithm is to use
attribute selection to try to eliminate the attributes that do not contribute to the instance-level
classification problem learned by the decision tree.

The Constructive Clustering Ensemble (CCE) method (Zhou & Zhang, 2007) also uses a
propositionalization method that may be appropriate for some Weidmann type concepts. The
algorithm uses a clustering method to cluster the instances in the training bags into d clusters.
Bags are mapped into a boolean feature space where each attribute corresponds to a cluster, and
the value of an attribute is set to 1 if and only if that bag has an instance in that cluster. A
single-instance model is built on the resulting dataset. The algorithm is repeated for multiple
values of d, and classification predictions are made via a majority vote of the resulting ensemble
of single-instance classifiers.

Given that the feature space constructed by CCE represents the presence or absence of
instances with certain properties, it appears that this algorithm may be best suited for learning
presence-based MI concepts. However, the algorithm could be easily extended to learn count-based
concepts if the transformed feature space was modified to include the number of occurrences of
the instance-level concepts, as in the earlier TLC algorithm. It should also be noted that Zhou
& Zhang’s (2007) results indicate that the algorithm is less accurate when learning on presence-
based MI data than TLC (with attribute selection enabled).

3.2 The GMIL Assumption

Scott et al. (2005)3 introduced a new MI assumption based on theoretical results from geometric
pattern recognition. We will refer to this assumption as the GMIL assumption. In this model,
there is a set of target points C = {c1, c2, . . . , ck}. A bag is positive if and only if it contains
instances sufficiently close to at least r points, out of the k target points.

Scott et al. extend this model to also include a set of repulsion points C̄ = {c̄1, c̄2, . . . , c̄k′}. In
the extended model, a positive bag may only contain instances that are close to at most s of the
repulsion points.

The model can be understood with reference to the ranked half-Hausdorff metric using the
weighted infinity norm. The Hausdorff metric (see, for example, Edgar (1990)) provides a measure
of distance between two bags of points, and is commonly used in computer vision applications.
The sets of target points and repulsion points can be viewed as “ideal bags”, where positive bags
are within a ranked half-Hausdorff distance of some threshold γ from the ideal positive bag, and
at least a ranked half-Hausdorff distance of γ′ away from the ideal negative bag.

The Hausdorff distance between bags P and Q is defined to be the largest distance from either
a point in P to its closest point in Q, or from a point in Q to its closest point in P , whichever
is larger, under some norm. However, this is not robust against noise, so the ranked Hausdorff

3Originally published in 2003 as a technical report at the University of Nebraska, Lincoln.
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metric is used: instead of using the largest distance, the sth largest distance is used. Scott et
al. compute the distance from the bag to the model (i.e. the half -Hausdorff metric), but not
vice-versa, as it is assumed that the model is accurate and does not contain extraneous points.

Scott et al. used the weighted infinity norm as the instance-level distance measure required
to compute the Hausdorff distance. The infinity norm defines the length of a vector as ‖x‖∞ =
max(|x1|, |x2|, . . . , |xn|), the largest absolute value of its components. Thus the set of points
with a distance of at most d from a point p under the infinity norm are the points within
a hypercube of width 2d and centre at point p. The weighted infinity norm allows scaling of
the vector components, such as for normalization. The hypercubes from the infinity norm are
hyperrectangles or “boxes” when the weighted infinity norm is used.

The ranked half-Hausdorff metric using the weighted infinity norm can be stated formally as

max
q∈Q

s
{

min
p∈P
{‖p− q‖∞}

}
,

where maxs is the sth max, P is a bag, Q is the set of target points, and “−” denotes standard
vector subtraction. Let a bag P be positive if and only if the above equation evaluates to at most
γ. Then a target concept is a set of k = |Q| axis-parallel target boxes, and a bag is positive if and
only if it contains points within at least r = k − s+ 1 of the k target boxes.

To also include a set Q̄ of k′ axis-parallel repulsion boxes, we must also check that the following
formula evaluates to at least γ′, which is another constant:

min
q∈Q̄

s′
{

min
p∈P
{‖p− q‖∞}

}
.

Under this extended model, for a bag to be positive, it must also contain points within at most
s′ − 1 of the k′ repulsion boxes.

In terms of Weidmann’s hierarchy, Scott et al.’s MI formulation, without repulsion points, is
the same as presence-based MI learning when boxes are viewed as instance-level concepts and the
minimum threshold r is equal to the number of target points k. When r 6= k, Scott et al.’s model
is more general than the presence-based MI model. Weidmann’s threshold and count-based MI
concepts generalize presence-based MI concepts in a different fashion to Scott et al.’s model, and
neither is strictly more general than the other.

Count-based MI concepts can model repulsion points by setting the maximum count for
some instance-level concepts to zero. However, count-based and threshold-based concepts cannot
model the case where only r out of k concepts must be present for a bag to be positive. The
GMIL assumption cannot represent problems where the number of instances belonging to specific
concepts must be within a given range (as in threshold and count-based MI), as only concept
presence rather than concept counts are included in the model.

3.2.1 Algorithms and Models
Scott et al. (2005) proposed the GMIL-1 algorithm to learn GMIL concepts. The algorithm
explicitly enumerates all possible axis-parallel boxes. It creates a single-instance feature space
with boolean attributes for each box, signifying whether a bag contains an instance within that
box. To reduce the dimensionality of this space, boxes that cover the same instances are grouped
together, and only one representative box for each group is used. The training bags are mapped
into the feature space, and the single-instance algorithm Winnow (Littlestone, 1987) is trained
on the transformed dataset.

The task of enumerating all axis-parallel boxes is exponential in the number of dimensions,
which makes GMIL-1 very inefficient. GMIL-2 (Tao & Scott, 2004) is an attempt to improve
the computational and memory efficiency of the algorithm. The algorithm is roughly the same
as GMIL-1, but it selects groups of boxes in a different way. First, GMIL-2 reduces the number
of instances to consider by selecting a subset of representative instances, Ψ. Then it constructs
groups by considering the boxes represented by the bounding box of each possible subset of Ψ.
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A breadth-first search approach is used to attempt to efficiently find the sets of groups that are
geometrically valid, i.e. all instances within the bounding box of the group are contained within
the group.

Although GMIL-2 is far more efficient than GMIL-1, it still suffers from limited scalability (Tao
et al., 2004a). In a further attempt to improve the algorithm’s computational complexity, Tao
et al. (2004a) presented a kernel-based reformulation of the GMIL learning problem. The kernel,
k∧, allows a support vector machine to be applied directly to the problem. As the computation
of k∧ belongs to the complexity class #P-complete and thus suffers from severe scalability issues
that quickly make the problem intractable as the problem size increases, the authors presented a
fully-polynomial randomized approximation scheme (FRAPS) for it.

3.3 The Count-Based GMIL Assumption

As mentioned earlier, neither the GMIL assumption nor the Count-based MI assumption is strictly
more general than the other — some MI concepts can be represented by one assumption and not
the other, and vice-versa. Tao et al. (2004b) proposed an MI assumption that is more general than
both of the assumptions, which we will refer to as the Count-Based GMIL assumption. Under
this assumption, a bag is positive if and only if it satisfies at least r of a set of k concepts, and at
most s of a set of k′ “repulsion” concepts. A concept ci is satisfied by a bag B if the number of
points in the region of instance space associated with ci is between a certain specified minimum
value, ti, and a maximum value, zi.

3.3.1 Algorithms and Models
Tao et al. proposed an extended version of the k∧ kernel, called kmin, which allows a support
vector machine to solve the MI learning problem under the Count-Based GMIL Assumption.
Unlike the k∧ kernel, the feature space associated with the kmin kernel includes information
related to the number of instances within the box that describes the concept concerned.

3.4 The DD-SVM / MILES Assumption

The DD-SVM (Chen & Wang, 2004) algorithm and its successor MILES (Chen et al., 2006) also
use a generalized MI assumption where bag-level class labels are determined based on the distance
from each of a set of target points. Although the authors of DD-SVM and MILES note that their
algorithms do not follow the standard MI assumption, they do not explicitly describe their new
assumptions independently from the descriptions of the algorithms. This section attempts to
isolate the common assumptions between these algorithms and thus describe the types of MI
concepts that the algorithms attempt to learn.

The DD-SVM / MILES assumption is related to Scott et al.’s (2005) GMIL assumption, in
that distance from a set of target points is used to determine bag labels. However, “distance” is
defined differently, and the r-of-k threshold is not used. As in the GMIL assumption, the target
points can be related to either positive or negative concepts. The DD-SVM and MILES methods
each include a distance-related measure of similarity between a target point and a bag, and it
is assumed that bag-level class labels are in some way determined by these similarity values. In
DD-SVM, the similarity function is

s(x, Bi) = min
j
‖Bij − x‖w ,

where Bij are the instances in the bag Bi, x is a target point and w is a weight vector
determining the importance of each feature. In MILES, a Gaussian function is used instead:

s(x, Bi) = max
j

exp
(
− ‖xij − x‖

2

σ2

)
, (2)
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where σ is a scaling factor, which is a parameter to the algorithm. The relationship between
the ”similarities” to target points and bag-level class labels is dependent on the single-instance
base learner that is applied to the data after transformation based on the similarity scores. In the
original statement of DD-SVM and MILES, a support vector machine is used. If a linear kernel
is used for the SVM, class labels are determined by a weighted linear threshold defined on the
similarity values, i.e. DD-SVM / MILES concepts are of the form

vD/M (X)⇔
∑
k∈T

wks(k, X) + b≥ 0 ,

where T is the set of target points, wk is the weight associated with target point k and b is a
bias parameter. If a target point has a positive weight, it can be viewed as being positive — bags
with points close to that target point are more likely to be positive; and similarly for negative
target points, i.e. points with negative weight.

However, alternative single-instance base learners are possible for both DD-SVM and MILES.
If we view the algorithms as “wrapper” methods where arbitrary base learners are possible, the
assumption is merely that bag-level labels can be determined in some way from the similarities
to the set of target points.

3.4.1 Algorithms and Models
Multiple-Instance Learning via Embedded Instance Selection (MILES) (Chen et al., 2006) embeds
bags into a single-instance feature space based on similarity scores obtained from Equation 2,
and applies the 1-norm support vector machine algorithm to the transformed dataset.

MILES uses the instances in the training bags as candidates for target points. A feature-space
mapping is defined, where each attribute represents the closeness of an instance to a candidate
target point (i.e. training instance). Each training bag is mapped into this space (with class labels
appended), and a single-instance base learner is built on the transformed dataset. At testing time,
bags are similarly mapped into the instance-based feature space, and classification predictions
are made by the single-instance base learner.

The diverse density support vector machine (DD-SVM) algorithm (Chen & Wang, 2004) is
a predecessor to MILES that is conceptually very similar to the later method. Chen et al.’s
(2006) experimental results show that MILES is much more efficient than DD-SVM in terms
of computational complexity, while maintaining similar or better classification accuracy and
increased robustness to label noise, hence we do not discuss DD-SVM in detail here.

3.5 The BARTMIP Assumption

The BARTMIP algorithm (Zhang & Zhou, in press) is closely related to MILES, and thus
implicitly relies on a related MI assumption. While MILES assumes that bag labels are related
to the instance-level distances from a set of target points, the BARTMIP method assumes that
bag labels are related to distances from target bags.

Distances between bags of points can be computed via the Hausdorff distance (see Section
3.2). Zhang and Zhou use three different variants of the Hausdorff distance to define bag-level
distances: the maximal, minimal and average Hausdorff distances.

The (maximal) Hausdorff distance between two sets of points (or bags) A and B is the largest
Euclidean distance between a point in A and its closest point in B, or vice versa. Formally, the
Hausdorff distance is defined as

Hmax(A, B) = max{h(A, B), h(B, A)} ,

where
h(A, B) = max

a∈A
min
b∈B
‖a− b‖ .
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The minimal Hausdorff Distance was proposed by Wang & Zucker (2000) in the context of a
simple nearest-neighbour MI learning algorithm that is discussed in more detail in Section 3.11.
In this variant, the h function is replaced by a function h1, where

h1(A, B) = min
a∈A

min
b∈B
‖a− b‖ .

Note that the minimal Hausdorff distance is simply the shortest distance between a point in
A and a point in B. It can be stated as

Hmin(A, B) = min
a∈A,b∈B

‖a− b‖ .

Zhang and Zhou additionally proposed the average Hausdorff distance, which is defined to be
the average distance between a point in one bag and its closest point in the other bag:

Havg(A, B) =
∑
a∈A minb∈B ‖a− b‖+

∑
b∈B mina∈A ‖b− a‖

|A|+ |B|
.

The choice of distance measure determines the set of MI concepts that can be represented.
Clearly, alternative bag-level distance measures could potentially be used if appropriate for a
specific problem domain.

3.6 Algorithms and Models

The BARTMIP algorithm performs an initial bag-level clustering step on the training bags using
the k-medoids algorithm adapted to MI learning by using a Hausdorff distance variant for its
distance function. As well as grouping the bags into k clusters, the clustering algorithm also
outputs the medoid4 of each cluster.

The training bags are then mapped to a k-dimensional single-instance feature space, where
the ith attribute corresponds to the distance of the bag to the ith medoid, under the same bag-
level distance measure that was used in the clustering step. The class labels of the original bags
are appended to the transformed instances, and a single-instance base learner is applied to the
resulting feature space. At classification time, the mapping is performed to the test bags and
predictions are made by the single-instance base learner. Note that this method is identical to
MILES, except for the different feature-space transformation used.

3.7 The Collective Assumption

Under the standard MI assumption, only a few special instances (those with a “positive” label) can
have any influence on the class label. In contrast, the collective assumption is an MI assumption
where all instances in a bag contribute equally to the bag’s label (Xu, 2003) .

The collective assumption, designed as a general alternative to the standard MI assumption,
was not precisely defined by Xu (2003). However, all algorithms in (Xu, 2003) that were designed
to use this assumption actually depend on the same specific generative model. We will therefore
use the term collective assumption to refer to this specific model.

The collective assumption is motivated by a view of the nature of multi-instance bags that is
based on probability theory. Under this view, a bag is not a finite collection of fixed elements (as is
generally assumed), but instead is a sample of an underlying population specific to that particular
bag. Here, a bag can be modeled as a probability distribution Pr(X|b) over the instance space,
where the observed instances were generated by random sampling from that distribution.

Instances are assumed to be assigned class labels according to some (typically unknown)
probability function (or nondeterministic probabilistic process) g(x) = Pr(Y |x). Under the
collective assumption, the bag-level class probability function is determined by the expected
4The medoid of a cluster is the element whose average distance to the other elements is minimal. In a
geometric space, this is equivalent to choosing the element that is closest to the center of the cluster.
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class value of the population of that bag. Let c be a class label ∈ Y = {0, 1}, and let b be a bag.
Then

Pr(c|b) = EX [Pr(c|x)|b] =
∫
X

Pr(c|x)Pr(x|b) dx .

To compute this exactly, we must know Pr(x|b), the probability distribution for the bag.
However, this is generally not known in practice so the sample provided by the instances in the
bag is used instead:

Pr(c|b) =
1
nb

nb∑
i=1

Pr(c|xi) ,

where nb is the number of instances in the bag. In the limit, as the sample size approaches
infinity, the sample version of the equation will approach the population version.

3.7.1 Algorithms and Models
Xu (2003) developed statistical algorithms for learning this kind of probabilistic concept, the most
notable of which are versions of logistic regression and boosting, upgraded to solve MI learning
problems under the collective MI assumption (see also (Xu & Frank, 2004)).

Frank & Xu (2003) also investigated a simple heuristic algorithm called MIWrapper for
applying single-instance learners under the collective assumption. The first step of the MIWrapper
algorithm is to collect all of the instances from all of the bags, and label each of them with the
label of the bag that they came from. This effectively creates a propositional (i.e. single-instance)
dataset. The algorithm then weights all of the instances so that each bag has equal total weight. A
single-instance learner is applied to this propositional dataset. At classification time, the single-
instance learner predicts class probabilities for all of the instances in the bag for which the
classification is to be predicted. The output is merely the average (arithmetic or geometric) of
the predicted instance-level class probabilities. Using the arithmetic mean at prediction time,
the method applies the “sample” version of the collective assumption formula when making
predictions.

3.8 MI Assumptions Using Instance Weights

In the collective assumption, each instance receives equal weight when computing bag-level class
probabilities. Foulds (2008) introduced two MI assumptions based on the notion of instance
weights that determine the level of influence that instances have on bag-level class labels. The
weighted collective MI assumption is an extended version of the collective assumption that
incorporates a weight function over instance space as well as a probability function, while the
weighted linear threshold MI assumption is based on linear classification models from single-
instance learning. Although the two assumptions are quite different in form, and each facilitates
different concept description models and algorithms, it can be shown that the weighted linear
threshold assumption is equivalent to an extended version of the weighted collective assumption
in terms of the MI concepts that can be represented (Foulds, 2008).

3.8.1 The Weighted Collective Assumption
While under the collective assumption it is assumed that instances contribute equally and
independently to bag-level class labels, the weighted collective assumption asserts that each
instance contributes independently but not necessarily equally to the class label of the bag. This
is achieved by incorporating a weight function into the collective assumption:

Pr(c|b) =
1∑nb

i=1 w(xi)

nb∑
i=1

w(xi)pr(c|xi) , (3)
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where w(x) : χ→ R+ is a weight function from instance space to the positive real numbers
(not including zero) that determines the level of influence that an instance has on the bag-level
class label.

The weighted collective assumption, as stated in Equation 3, is a probabilistic model.
Sometimes, however, a deterministic classifier may be more appropriate. It is also possible to
state a deterministic version of the assumption in the standard fashion, where bags are labeled
with the “most likely” class according to the probability function described in Equation 3. In the
case of binary classification, this corresponds to:

νdw(B)⇔ t≥ 0, t=
1∑nb

i=1 w(xi)

nb∑
i=1

w(xi)pr(+|xi)− 0.5 .

Here, t is the decision variable, the sign of which determines the classification outcome. This MI
assumption is more powerful than the collective assumption because it allows some instances to be
ignored when determining bag-level class labels. The collective assumption gives all instances in a
bag the same weight, which means that every instance must be taken into account, and irrelevant
instances may bias the class probability estimates in some problem domains. For instance, the
collective assumption cannot model the standard MI assumption, where only a few (positive)
examples affect the class labels of bags. Under the weighted collective assumption, the standard
MI assumption can be very closely approximated by giving positive instances a large weight and
setting all other weights to values close to zero.

3.8.2 The Weighted Linear Threshold MI Assumption
The weighted linear threshold MI assumption is so named because the accumulated (signed)
weights for a bag are compared against a threshold to obtain a classification. A weight function
wwlt(x) : χ→ R+ and a classification function cwlt(x) : χ→{+1,−1} are defined over instance
space. Instances belonging to the positive class (cwlt(x) = +1) influence their parent bag towards
a positive class label, and instances belonging to the negative class (cwlt(x) =−1) influence their
bag towards a negative class label. The weight of an instance determines the strength of that
instance’s influence on bag-level class labels.

Formally, let νwlt : Nχ→ Ω = {+,−} be a weighted linear threshold MI concept. Then νwlt is
of the form

νwlt(X)⇔ t≥ 0, t=
∑
i

wwlt(xi)cwlt(xi) + b .

Here, b is a bias variable, which determines the location of the decision boundary. This
formulation of weight-based MI learning is inspired by linear classification in single instance
learning. Recall the classification equation for a linear classifier:

ν(m)⇔ t≥ 0, t=
∑
i

wimi + b .

In the weighted linear threshold model, instances are treated analogously to attributes in the
case of linear classification. The class cwlt(x) of an instance corresponds to an attribute value mi.
Instance weights wwlt(x) in the MI assumption correspond directly to attribute weights wi in a
linear classifier. The bias parameter b performs an identical function to the parameter b in the
linear classification model.

It can be shown that the weighted linear threshold assumption is at least as powerful as the
deterministic version of the weighted collective assumption (in terms of the set of representable
concepts). An arbitrary deterministic weighted collective concept can be converted into a weighted
linear threshold concept using the following formula (Foulds, 2008):
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νdw(B)⇔ t≥ 0, t=
(∑

i

wdw(xi)cdw(xi) + 0
)

,

where

cdw(x) =

{
+1 pr(+|x)− 0.5> 0

−1 otherwise ,
, and wdw(x) = |w(x)(pr(+|x)− 0.5)| .

The converse is also true with one restriction: any weighted linear threshold concept where
b= 0 can be represented as a deterministic weighted collective concept. This restriction can be
eliminated; by introducing a bias parameter bedw into the formulation, the extended deterministic
weighted collective assumption becomes equivalent to the weighted linear threshold assumption:

νedw(B)⇔ t≥ 0, t=
1∑nb

j=1 w(xj)

nb∑
i=1

w(xi)pr(+|xi)− bedw .

3.8.3 Algorithms and Models
Implementing the weighted collective assumption requires a method for learning instance weights.
Foulds (2008) investigated an Iterative Framework for Learning Instance Weights (IFLIW), a
heuristic algorithm for learning weighted collective assumption concepts. The algorithm is an
extension of the MIWrapper approach from Section 3.7.1. IFLIW uses MIWrapper to learn the
class probability function pr(c|x) via the simple propositionalization method described in Section
3.7.1 and a single-instance base learner. The challenge, however, is to estimate the weight function.
An iterative method is applied, where instance weights of the training data are updated according
to an update function, and the MIWrapper model is rebuilt using the new weights. The update
function that is used is:

x.weight= x.weight× exp(infogain(pr(c|x), pr(c))) ,

where x.weight is the weight of instance x, infogain is the information gain of pr(c|x), the class
probability distribution for the instance x predicted by the single-instance base classifier, relative
to pr(c), the prior class probabilities computed from the class frequencies in the training data.
The iteration continues until a stopping criterion is met. The weight function is then estimated
using a regression model built on the training instance weights.

It is also possible to learn a model based on the weighted linear threshold assumption. The
MILES method from Section 3.4 can be modified so that it learns weighted linear threshold
concepts when a linear classifier is used as the base learner (Foulds, 2008). This is achieved by
using an alternative similarity measure between a bag and a target point.

Recall that the similarity measure s(x, B) used in MILES (Equation 2) includes a max
operator, which effectively selects only the closest instance in the bag B when determining the
similarity value. This is based on Maron’s (1998) most likely cause estimator from the diverse
density framework. The models learnt by MILES (with a linear classifier as the base learner) can
be understood as being similar to weighted linear threshold concepts, except that the use of the
max operator in the similarity measure means that instance weights are bag-dependent, as only
the closest instance in the bag to each target point contributes to the bag-level classification.
By simply replacing the max operator with a sum operator, the bag-dependence is removed,
resulting in a true weight function over instance space. The resulting similarity measure, called
Yet Another Radial Distance-based Similarity measure (YARDS) (Foulds, 2008), is defined as
follows:

sy(x, B) =
∑
j

exp
(
− ‖Bj − x‖

2

σ2

)
.
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Hence, by replacing the similarity measure s(x, B) in the MILES algorithm with the YARDS
similarity measure sy(x, B), MILES can be adapted to learn weighted linear threshold concepts.
The YARDS method can represent weighted linear threshold concepts where the weight function
is the sum of a set of Gaussian-like influence functions, and makes the further assumption that
the peak (or trough) of each of the Gaussian-like functions is at the location of an instance from
one of the training bags.

3.9 Metadata-Based Assumptions

A simple approach to MI learning is to perform propositionalization by replacing each bag with
a feature vector consisting of metadata features derived in some way from the instances in that
bag. A single-instance learning algorithm can then be applied directly to the transformed version
of the dataset. At classification time, new bags are mapped into the metadata feature space,
and predictions are made by outputting the prediction of the single-instance learner for the
transformed version of the bag. Xu (2003) refers to methods of this kind as metadata approaches.

When this type of method is used, the implicit assumption is merely that the classification
labels of the learning examples are directly related to the metadata. We will therefore refer to
this type of MI assumption as a metadata assumption.

3.9.1 Algorithms and Models
The MILES, YARDS, BARTMIP, TLC and CCE algorithms discussed above all use feature-
space transformations, where bags are mapped to single-instance feature vectors, and single-
instance algorithms are applied to the resulting datasets. These methods can therefore be viewed
as metadata approaches. However, the feature spaces used by these methods are intended to
represent more sophisticated MI concepts, and are perhaps better understood with respect to
the underlying MI assumptions that the feature-space transformations are designed to encode.
In contrast, we will now describe a method that uses simple summary statistics as metadata.

Using this approach, multi-instance learning problems are converted into single-instance
problems by replacing each bag with a feature vector consisting of summary statistics derived from
the instances in that bag. This method originates from a similar approach to propositionalization
for relational data known as RELAGGS (Krogel & Wrobel, 2002). We will follow Dong (2006),
and refer to the approach based on summary statistics as Simple MI.

Dong described three versions of Simple MI, each of which differs only in the type of summary
statistics used for the single-instance feature space. The first two methods merely average the
values of the instances in a bag for each dimension, using either the arithmetic or the geometric
mean. Formally, the two methods can be defined as follows: if b is a bag with instances from feature
space χ= (x1, x2, . . . , xn), then b is mapped to (x̄1, x̄2, . . . , x̄n), where x̄ is the arithmetic (or
geometric) mean of the instances in the bag.

The third option is called the “minimax” method. Here, the minimum and maxi-
mum values of each variable are recorded for each bag. This method is equivalent to
Gärtner et al.’s (2002) minimax kernel, used as a kernel in a standard support vec-
tor machine algorithm. Using the same notation as before, each bag b is mapped to
(min x1,min x2, . . . ,min xn,max x1,max x2, . . . ,max xn). The new feature space contains 2n
dimensions.

The main advantage of Simple MI is that it is extremely fast. The computation of the feature-
space transformation is trivial, and the single-instance base learner only has to learn from as many
instances as there are bags in the training set, regardless of how many instances are contained
inside the bags. Of course, this simple model is not able to represent some types of problems.
However, Dong found that Simple MI (with appropriate base learners) performs surprisingly
well on many datasets, even outperforming all of the special-purpose MI algorithms that were
investigated in some cases.
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A more sophisticated metadata approach is used by the MICCLLR algorithm (El-Manzalawy
& Honavar, 2007), which performs propositionalization by replacing each bag by a feature vector
containing statistics computed based on the class conditional log-likelihood ratios of the attribute
values of the instances in the bags. These statistics are computed using the relative frequencies of
attribute values and class labels in a flattened version of the MI dataset (using the same method
as in the MIWrapper algorithm from Section 3.7), under the assumption that attribute values
are conditionally independent given the class value. As the authors note, Gärtner et al.’s kernel
(or equivalently, the minimax Simple MI method) may not be able to represent binary data well,
unlike MICCLLR; however the former method does not rely upon the conditional independence
assumptions used by the latter.

MI learning algorithms can also be said to rely on a metadata assumption if they are equivalent
to a metadata approach for some feature space transformation, even when the algorithm does
not explicitly perform the transformation. Learning algorithms of this type include the Relic
multi-instance decision tree learner (Ruffo, 2000) and Gärtner et al.’s (2002) KMI multi-instance
kernel method. Relic is an information gain-based decision tree learner that has been upgraded to
handle MI data by defining a test-selection criterion for MI bags. Although Relic does actually not
perform propositionalization, Xu (2003) showed how, in the case of data with numeric attributes,
Relic is equivalent to the minimax version of Simple MI with a decision tree base learner, and
hence effectively relies upon the same MI assumption.

Gärtner et al. (2002) presented multi-instance kernels that can be used to apply a standard
SVM algorithm directly to multi-instance data. As well as the aforementioned minimax kernel,
they also proposed the MI kernel KMI , a variant of the set kernel (Gärtner, 2000). The kernel is
defined as

kMI(X, Y ) =
∑

x∈X,y∈Y
kpI (x, y) ,

where kpI is an arbitrary instance-level SVM kernel kI , raised to the pth power. As products
of kernels are kernels, kpI is also a kernel. Gärtner et al. showed that for a sufficiently large p,
any standard MI concept is separable (and thus representable by an SVM using that kernel)
assuming that the underlying instance-level concept is separable. It follows from this result that
MI concepts that respect the standard MI assumption (with separable instance-level concepts)
can be learnt by this method. However, this method does not actually make any use of the
standard MI assumption, and can in fact be shown to use a metadata assumption.

Using the fact that the dot product is distributive over scalar multiplication, it is not hard to
show that KMI can be rewritten as

kMI(X, Y ) =
∑

x∈X,y∈Y
φI(x) · φI(y) =

( ∑
x∈X

φI(X)
)
·
(∑
y∈Y

φI(Y )
)

,

where φI(x) is the feature space transformation implicit in the kernel kpI . Thus, an SVM using
the KMI kernel is equivalent to propositionalizing via mapping each bag X to

∑
x∈X φI(X), and

applying a standard SVM using a linear kernel to the resulting dataset.
Later, Cheung & Kwok (2006) proposed a regularization framework for MI learning via SVMs

using a loss function that encodes a trade-off between Gärtner et al.’s KMI model and an SVM
algorithm based on the standard MI assumption that is due to Andrews et al. (2002). The trade-
off is accomplished via a weight parameter λ in the loss function. The implicit assumption of this
method is that bag-level class labels are determined by some combination of the KMI metadata
assumption and the standard MI assumption.

3.10 The MIGraph Assumption

Zhou et al. (2009) proposed algorithms that depend upon the assumption that the spatial
relationships between instances in bags are important contributors to bag labels. Consider the
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ε-graph of a bag, which has nodes for each instance, and edges exist between nodes if and only if
the distance between their associated instances (under some metric) is less than a fixed threshold
ε. The edges are weighted according to the affinity of the two nodes — Zhou et al. set the weights
to be the normalized reciprocal of the (non-zero) distance between them. The assumption, which
we will call the MIgraph assumption, is that bag labels are in some way determined by the
properties of the ε-graph.

3.10.1 Algorithms and Models
The MIGraph and miGraph algorithms (Zhou et al., 2009) apply support vector machines to
multi-instance data by using graph kernels on the ε-graphs of the bags. Although any graph
kernel could be used, Zhou et al. define two new kernels based on Gärtner et al.’s MI kernel. The
MIGraph and miGraph methods differ only in the kernels used. MIGraph uses the kernel kG,
defined as

kG(X, Y ) =
∑

x∈X,y∈Y
knode(x, y) +

∑
ex∈E(X),ey∈E(Y )

kedge(ex, ey) ,

where E(I) is the edge set of bag I, and knode and kedge are positive semidefinite kernels defined
on nodes and edges, respectively. Zhou et al. use the Gaussian RBF kernel for knode. For the kedge
kernel, they define a kernel with the property that edges are similar if their ending nodes have
similar degree, taking the edge weights into account. Note that the node portion of the kernel kG
is the same as Gärtner et al.’s MI kernel.

As the computational complexity of kG is dominated by the number of edges in X and Y if
the graphs are not sparse, it can be computationally expensive to compute the kernel function.
To counter this, Zhou et al. introduce the miGraph algorithm, where the kg kernel is used:

kg(X, Y ) =

∑
x∈X,y∈Y WXxWY yknode(x, y)∑

x∈X WXx

∑
y∈Y WY y

,

where WIi is the reciprocal of the number of instances from bag I in an ε-ball around instance
i (including itself). In (Zhou et al., 2009), the WIis are computed using the Gaussian distance,
consistently with the Gaussian RBF kernel used for knode. The authors describe kg as a soft
version of a clique-based graph kernel; it behaves identically to a clique-based kernel when all
instances are clustered into cliques.

3.11 Nearest Neighbour Assumptions

In traditional single-instance learning, the k-nearest neighbour algorithm is a simple classification
method where examples are labeled according to the majority class of the k-closest training
examples. Here, “closest” is easily defined using a distance metric such as the Euclidean distance.

In multi-instance learning, it is not as immediately obvious how distances between bags should
be computed. Wang & Zucker (2000) used the maximal and minimal Hausdorff distance for this
purpose (see Section 3.5 for more information on this distance). Zhou et al. (2009) note that the
graph edit distance (Neuhaus & Bunke, 2007), as computed on the ε-graphs of the bags, could
be used as a metric for k-nearest neighbours.

In nearest-neighbour approaches a specific kind of relationship between bags and class labels is
not directly assumed. Instead, the implicit assumption is that bags that are “similar” according
to the distance measure used are likely to have the same class label. This is closely related to the
BARTMIP assumption (Section 3.5). Note that there is no clear relationship between the nearest
neighbour assumption (at least when using variants of the Hausdorff distance) and the standard
MI assumption.
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3.11.1 Algorithms and Models
Wang and Zucker proposed two variants of the standard k-nearest neighbour algorithm. In these
methods, neighbours are computed in the normal way via the (maximal or minimal) Hausdorff
distance; the difference is in the method for selecting the label of an example given a set of
neighbours.

These methods were motivated by the authors’ observation that predicting the majority class
of the neighbours does not always give the optimal classification result. Their Bayesian-KNN
algorithm uses a Bayesian method for predicting the most likely class given a set of neighbours,
while the Citation-KNN algorithm is based on the notions of references and citers from the field
of library and information science — when making a classification decision, not only are nearest
neighbours (references) of an example considered, but also bags that consider the example to be
a nearest neighbour (citers).

The experimental results presented by Wang and Zucker indicate that these methods are very
competitive with other algorithms on the musk benchmark datasets. However, a comparison
with the standard k-NN majority voting method is not provided. It should also be noted that
the Bayesian and Citation alternatives to majority voting are not at all dependent on the multi-
instance nature of the data, and are hence equally applicable in a single-instance scenario. Finally,
Wang and Zucker used parameter values selected on the test data when comparing their methods
to other algorithms, so their comparative results may be optimistic.

4 MI Learning in Other Supervised Settings

Although the majority of the research on MI learning has been devoted to classification problems,
some work has been done on other supervised MI learning scenarios. The most notable of these
are multi-instance multi-label learning (Zhou & Zhang, 2006) and multi-instance regression (Ray
& Page, 2001; Amar et al., 2001). Similarly to MI classification, any learning approach in these
scenarios must depend upon an implicit assumption regarding the nature of the relationship
between instances and bag labels; we therefore discuss these assumptions in this section.

Other interesting learning scenarios using MI representations include multi-instance clustering
(Zhang & Zhou, in press; Kriegel et al., 2006), learning instance-level classifiers from bags labeled
with a percentage of positive instances (Kück & de Freitas, 2005), and predicting the salience of
instances in an MI regression setting (Wagstaff & Lane, 2007). None of these scenarios involves
bag-level predictions, however, so we do not consider them in this paper.

4.1 Multi-Instance Multi-Label Learning

In traditional supervised learning, multi-class learning problems contain more than two clas-
sification categories, but each learning example belongs to exactly one of these categories. An
extension to this is multi-label learning, where the categories are not mutually exclusive, so that
each example may belong to several class categories (Schapire & Singer, 2000).

Zhou & Zhang (2006) formalized multi-instance multi-label learning (MIML), where each
multi-instance bag may be associated with multiple class labels. In their formulation, the task in
MIML is to learn a function of the form fMIML : 2χ→ 2Y , where χ is the instance space, and
Y is the set of class categories. Given that multi-instance examples are really bags (multisets)
rather than sets, we modify this definition to be fMIML : Nχ→ 2Y (see Section 2.3.1 for more
information on this notation).

As Zhou and Zhang observe, multi-instance learning and multi-label learning are both natural
generalizations of traditional single-instance learning, and MIML is a generalization of both
of these. In MIML, it is clear that the standard MI assumption is not directly applicable,
as that assumption is dependent on the learning task being a binary classification problem.
Other assumptions regarding the relationships between the instances and the bag-level labels are
required for MIML.
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Zhou and Zhang proposed two solution frameworks for applying single-instance learners to
solve MIML problems. Although they did not discuss the types of concepts that these frameworks
are appropriate for, we will attempt to unify them under a more general algorithm template, and
thus expose the MIML assumptions used by both methods.

Before discussing these solution frameworks, it is instructive to first consider a method for
converting multi-label problems to single-label problems, used by both of Zhou and Zhang’s
MIML approaches. The method is referred to by Tsoumakas & Katakis (2007) as Problem
Transformation method PT4. In this method, the multi-label problem is converted into a set
of binary classification problems — one for each of the labels. For each label, a dataset is created
where the multi-label training examples that are associated with that label are tagged as positive
in the new dataset, and are otherwise tagged as negative. Multi-label predictions are made by
building a single-label classifier on each of the new datasets, and outputting the union of the
positive predictions made by these classifiers.

The first solution framework proposed by Zhou and Zhang (Solution 1 ) is to use multi-instance
learning as a bridge between MIML and single-instance learning. The MIML problem is converted
to a set of MI problems using PT4. Zhou and Zhang were interested specifically in methods that
use traditional single-instance algorithms to solve MIML problems, and hence their formulation
of Solution 1 insists on the use of an MI method that can be solved using a single-instance
algorithm. Thus an MI method that applies a single-instance algorithm, such as MI Boosting
(Xu & Frank, 2004), is then applied to the resulting MI problems.

However, it is clear that any arbitrary MI learning algorithm could in fact be applied. We will
refer to this relaxed version of the Solution 1 framework as MIML PT4. Here, the assumption is
that the MI concept corresponding to each label can be learned under the assumption used by
the MI base learner. For example, when the MI base learner is Xu & Frank’s (2004) MI boosting
algorithm, the implicit assumption is that the concept associated with each of the labels is a
collective assumption MI concept. We shall call this general MIML assumption the MIML PT4
Assumption.

Zhou and Zhang’s other solution framework (Solution 2 ) uses multi-label learning as the bridge
between MIML and traditional single-instance learning. First, a propositionalization method is
used to map the MI bags into a single-instance feature space, retaining the multiple labels,
resulting in a single-instance multi-label dataset. This new learning problem is transformed into
a set of traditional single-instance single-label datasets by applying PT4, and hence is solved by
building single-instance models on the resulting datasets.

However, if we view the propositionalization step in Solution 2 as the application of a
“wrapper”-type MI algorithm, Solution 2 can in fact also considered to be within the MIML PT4
framework. This is because the order of the transformations is not important — the result is
the same whether we apply PT4 and then use the wrapper method to propositionalize the data
(MIML PT4), or propositionalize first and then apply PT4 (Solution 2). Hence, the MIML PT4
assumption applies to Solution 2 algorithms — it is assumed that the MI assumption used by
the propositionalization algorithm applies to each of the MI concepts associated with the MIML
labels.

4.1.1 Algorithms and Models

Zhou & Zhang’s (2006) MimlBoost algorithm uses MI Boosting (Xu & Frank, 2004) as the
multi-instance base learner for Solution 1, while their MimlSvm algorithm uses the constructive
clustering propositionalization method (Zhou & Zhang, 2007) and an SVM base learner to
implement Solution 2.



A Review of Multi-Instance Learning Assumptions 23

4.2 Multi-Instance Regression

At the ICML conference in 2001, Ray & Page (2001) and Amar et al. (2001)5 independently
formulated multiple instance regression, where bags are associated with real-valued labels instead
of the usual binary class labels. The task is again to predict these labels. Similarly to MI
classification, MI regression is motivated by the drug activity prediction problem. The authors
of both papers observe that many drug developers prefer predictions of activity levels of drugs,
instead of active / inactive classification predictions. Application areas identified by later authors
include aerosol optical depth prediction for climate research (Wang et al., 2008) and crop yield
modeling (Wagstaff & Lane, 2007).

Ray and Page assume that the data is generated by a linear model with Gaussian noise
on the real-valued labels. Critically, they further assume that for each bag, there is one instance
(referred to as the primary instance) that is responsible for the label. Similarly to the standard MI
assumption in classification problems, this further assumption is useful for modeling ambiguity,
where the instances in a bag represent different views or different states of an object, and it
is unknown which of the instances is responsible for the class label. We thus refer to it as the
standard MI regression assumption.

Amar et al. proposed the direct application of the Citation-KNN algorithm (Wang & Zucker,
2000) and traditional k-NN (using the minimal Hausdorff distance) to data with real-valued
labels. These methods depend on the same assumption as the nearest neighbour MI classification
methods; namely that bags that are similar according to the bag-level distance measure will have
similar labels.

The later MI regression algorithms proposed by Wang et al. (2008) use the assumption that
each bag is generated by some random noise around a point in instance space, which they refer
to as a prime instance6. Bag labels are assumed to be generated from the prime instances via
some function (with added noise).

Zhang & Zhou (in press) observed that their BARTMIP algorithm (see Section 3.5), which
maps bags into a single-instance feature space, can be directly applied to multi-instance regression
when a single-instance regression base learner is used — the method works the same way
regardless of whether labels are discrete or real-valued. This method could in fact be applied to
any other metadata algorithm, such as MILES or Simple MI. Under this approach, the metadata
assumption used by the corresponding MI classification algorithm is applied in the regression
setting.

4.2.1 Algorithms and Models
Under Ray and Page’s assumptions, an ideal MI regression model is a hyperplane Y = Xb such
that

b = arg min
b

n∑
i=1

L(yi, Xip, b) ,

where n is the number of bags, yi is the real-valued label of bag i, Xip is the primary instance
of the ith bag, and L is a loss function. Ray and Page use L(yi, Xij , b) = (yi −Xijb)2, similarly
to traditional multiple regression. However, the primary instances Xip are not known at training
time, so Ray and Page propose that the “best fit” hyperplane be used instead:

b = arg min
b

n∑
i=1

min
j
L(yi, Xij , b), 1≤ j ≤ |Xi| .

5See also the later journal article (Dooly et al., 2002).
6Not to be confused with Ray & Page’s (2001) primary instances, which are elements of a bag and are
not assumed to “cause” the other instances.
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They state that the decision problem for the existence of such a hyperplane can be shown
to be NP -complete via a reduction from the 3SAT problem. They therefore instead present
an approximation algorithm. Their algorithm is an Expectation Maximization (EM) approach,
which iteratively improves an initial guess at a hypothesis. In the expectation step, an instance
is selected from each bag, namely the one that has the least L-error with respect to the current
guess at the hypothesis hyperplane. In the maximization step, ordinary multiple regression is
performed to find a hyperplane that best fits the selected instances. These steps are repeated
until convergence. As Ray and Page observe, this algorithm can easily be modified to incorporate
alternative L-error functions and alternative (possibly non-linear) hypotheses. The algorithm is
however dependent upon the standard MI regression assumption.

Cheung & Kwok (2006) presented a support vector regression approach for MI regression under
the standard MI regression assumption. To make computation feasible, their method relies on
the simplifying assumption that the primary instance is the one with the highest output value
according to the SVM.

Amar et al. (2001) adapted the diverse density algorithm (see Section 2.4) to MI regression
data by using a real-valued version of Maron’s (1998) most likely cause model, and Zhang &
Goldman (2001) used a similar method to apply EM-DD (see also Section 2.4) to real-valued
data. Here, the assumption is that the closest instance to a certain “target point” is responsible
for a bag’s label, which is compatible with the standard MI regression assumption. Bag labels
are determined from the distance between the target point and the closest point in the bag by a
Gaussian function with a peak at the target point.

Wang et al. (2008) proposed MI regression algorithms that are similar to the Simple MI and
MIWrapper algorithms described in Sections 3.9 and 3.7, respectively. The GlobalPruning-MIR
and BalancedPruning-MIR algorithms are expectation-maximization versions of an MIWrapper-
like approach that discards those instances that are most likely to be noisy in each iteration. It
should be noted that these methods are very similar to the IFLIW algorithm from Section 3.8.3,
except that sampling is used instead of weighting in the former methods, in order to remove the
effects of noisy or unimportant instances.

5 Conclusions

The multi-instance representation is more expressive than the traditional feature-vector model,
and is a natural way to describe learning examples in a diverse array of real-world scenarios.
Learning from sets of multi-instance examples is a difficult problem because there are many ways
that instances can interact with bag-level class labels, and consequently the hypothesis space is
very large. This difficulty can (and must) be mitigated by assuming that MI concepts are of some
specific form.

The standard MI assumption, namely that bags have a positive class label if and only if at least
one instance in the bag is positive, is widely believed to be applicable to drug activity prediction
problems such as identifying molecules that emit a musky odor. While this assumption is also a
good heuristic for some other problem domains, this does not imply that it will always hold, thus
alternative assumptions can be required.

We have reviewed MI assumptions from the literature that have been used for the supervised
learning scenarios of classification, regression and multi-label learning with multi-instance data.
We have discussed alternatives to the standard MI assumption that have been explicitly
introduced by the authors, and also attempted to clarify MI assumptions implicitly used by
algorithms where authors do not state them explicitly. We have found that some of the most
popular and widely cited MI approaches actually disregard the standard MI assumption. This
indicates that this assumption may not be as crucial for the musk problem as was initially
hypothesized by Dietterich et al. (1997) — several approaches that depart from the standard MI
assumption have been shown empirically to be very competitive on the musk data.
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The expressivity of the multi-instance representation is a strong motivation for continued
work in this area. As MI learning continues to be applied to a wider selection of practical
machine learning problems, the use of appropriate MI assumptions for the problems at hand
becomes increasingly important. We therefore anticipate that future research into algorithms
and assumptions for the relaxed MI learning problem will prove fruitful.

We do, however, believe that it is important to explicitly state assumptions employed by an
algorithm whenever the standard MI assumption is not used. Researchers and practitioners need
to be aware that different MI problem domains may require different MI assumptions, and the
standard MI assumption is not always applicable. It is important to verify that the MI assumption
employed by an algorithm is at least plausible for the problem at hand.

A task that is of particular interest is to find more effective and generally applicable algorithms
for learning visual concepts, such as for image classification and content-based image retrieval.
The MI representation allows for concept descriptions that are defined upon the interaction of
instance-level concepts, which is a very natural way to describe visual concepts. Different visual
concepts are likely to require vastly different interactions between instances and bag-level class
labels — for example, the banana concept is likely to be very different to the beach concept —
so there is significant scope for work on alternative MI assumptions in this domain.
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