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Abstract
Understanding the diffusion of information in so-
cial networks and social media requires model-
ing the text diffusion process. In this work, we
develop the HawkesTopic model (HTM) for ana-
lyzing text-based cascades, such as “retweeting a
post” or “publishing a follow-up blog post.” HT-
M combines Hawkes processes and topic mod-
eling to simultaneously reason about the infor-
mation diffusion pathways and the topics char-
acterizing the observed textual information. We
show how to jointly infer them with a mean-field
variational inference algorithm and validate our
approach on both synthetic and real-world data
sets, including a news media dataset for model-
ing information diffusion, and an ArXiv publi-
cation dataset for modeling scientific influence.
The results show that HTM is significantly more
accurate than several baselines for both tasks.

1. Introduction
There has been an increasing interest in understanding the
processes and dynamics of information diffusion through
networks and modeling the influence across the nodes of
the underlying networks. Such processes play a fundamen-
tal role in a variety of domains, such as evaluating the ef-
fects of networks in marketing (Domingos & Richardson,
2001; Kempe et al., 2003; Leskovec et al., 2007; Wang
et al., 2010), monitoring the spread of news, opinions, and
scientific ideas via citation networks (Adar et al., 2004;
Gruhl et al., 2004; Leskovec et al., 2005), and detecting
the spread of erroneous information (Dong et al., 2009).
Most prior work focuses on modeling the diffusion of infor-
mation by solely exploiting the observed timestamps when
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different nodes in the network post (i.e., publicize) infor-
mation. In such scenarios diffusion is modeled either using
cascade models, for example, NetInf (Gomez-Rodriguez
et al., 2012) and NetRate (Gomez-Rodriguez et al., 2011),
or point process models such as MMHP (Yang & Zha,
2013) and LowRankSparse (Zhou et al., 2013). These tech-
niques do not leverage textual information and focus main-
ly on context-agnostic tasks such as product purchasing.

However, text-based cascades are abundant in a variety of
social platforms, ranging from well-established social net-
working websites such as Facebook, Google+, and Twitter,
to increasingly popular social media websites such as Red-
dit, Pinterest, and Tumblr. Moreover, a growing number of
platforms such as GDELT and EventRegistry1 extract and
analyze textual information from diverse news data sources
which often borrow content from each other or influence
each other (Dong et al., 2010).

Text is, in many cases, the medium by which information
is propagated, making it particularly salient for inferring
information diffusion. Models that are based on observed
timestamps have been shown to become more effective at
discovering topic-dependent transmission rates or diffusion
processes when combined with the textual information as-
sociated with the information propagation (Du et al., 2013;
Wang et al., 2014). Nevertheless, this line of work assumes
that either the topics associated with the diffusion process
are specified in advance or that the influence paths are fully
observed. It is easy to see that due to these assumptions,
the aforementioned models are not applicable in many sce-
narios, such as discovering influence relationships between
news data sources or users of social media, and detecting
information diffusion paths.

In this paper, we focus on the problem of inferring the dif-
fusion of information together with the topics characteriz-
ing the information. We assume that only the textual infor-
mation and timestamp of posted information is known. We

1See gdeltproject.org and eventregistry.org.
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do not require prior knowledge of either the structure of the
network nor the topics, as in previous approaches. We in-
troduce a novel framework that combines topic models and
the Hawkes process (Liniger, 2009) under a unified model
referred to as the HawkesTopic model (HTM). HTM uses
the Marked Multivariate Hawkes Process (Liniger, 2009)
to model the diffusion of information and simultaneously
discover the hidden topics in the textual information.

Specifically, our model captures the posting of information
from different nodes of the hidden network as events of a
Hawkes process. The mutually exciting nature (Yang &
Zha, 2013) of a Hawkes process, i.e., the fact that an event
can trigger future events, is a natural fit for modeling the
propagation of information in domains such as the ones
mentioned above. To address the limitation that the themat-
ic content of the available textual information is unknown,
HTM builds upon the Correlated Topic Model (CTM) (Blei
& Lafferty, 2006a) and unifies it with a Hawkes process to
discover the underlying influence across information post-
ings, and thus, the hidden influence network. We derive
a joint variational inference algorithm based on the mean-
field approximation to discover both the diffusion path of
information and its thematic content.

2. HawkesTopic Model
We consider text content cascades among a set of nodes
V = {1, 2, . . . , |V |}. Each node v can represent a news
domain propagating news stories, a researcher publishing
scientific papers or a user in a social network (e.g., Face-
book). The nodes can influence each other via a hidden
diffusion networkG. We observe a sequence of posting ac-
tivities D = {ai|i = 1, 2, . . . , |D|}, e.g., a series of news
article or research paper publications, or a series of user
postings on Facebook. We denote each posting activity as
a tuple ai = (ti, vi, Xi). This means that node vi posts
document Xi at time ti. Documents {X1, . . . , X|D|} are
represented as a bag-of-words with vocabulary size W .

Given this input, our goal is to infer the hidden diffusion
network G and the topics characterizing the observed tex-
tual information. We adopt a model that jointly reasons
about the posting time and the content of documents to: (1)
accurately infer the hidden diffusion network structure; and
(2) track the thematic content of documents as they prop-
agate through the diffusion network. Next, we discuss the
two components of our HawkesTopic model in detail. The
notation of our model is summarized in Table 1.

2.1. Modeling the posting time
The first component of our framework models the node
posting times via the Multivariate Hawkes Process (MH-
P) (Liniger, 2009). Document modeling is described in
Section 2.2. In the MHP model, each node v is associat-
ed with a point process Nv(t), where Nv(t) is the num-

Table 1. Notation used in this paper.
Notation Definition
V Set of nodes
E Set of events
te Posting time of event e
ve Node who carries out event e
Xe Document of event e

Pe = (Pe,0, {Pe,e′}e′∈E) Parent indicator of event e
ηe Topics parameters of documentXe

β = β1:K Collection of all topics
λv(t) Intensity process of node v
µv Base intensity of node v

κe(t, v) Impulse response of event e
A = {Au,w} Node influence matrix

ber of posting activities of node v in the time interval [0, t]
(assuming the process starts at time 0). Following the tra-
ditional notation of point processes, we define each post-
ing activity ai = (ti, vi, Xi) as an event ei = (ti, vi)
of the process associated with node vi. We use E =
{e1, . . . , e|D|} to denote all events. Figure 1 provides an
example of the MHP model. The sources correspond to t-
wo users v1 and v2 that publish alternatively on the same
subject. Here, e2,1 is a response to e1,1 published by v1,
and e1,2 is v2’s response to v1’s document e2,1.

In the MHP model, the occurrence of an event can lead
to a chain of future events. For example, a seminal paper
may start a new field of study generating a large amount of
follow-up work. The mutually exciting property makes the
MHP model a perfect fit for cascades of posting activities
and can be captured effectively via the intensity process
λv(t|H) defined as:

λv(t|H) = lim
∆t→0

E[Nv(t+ ∆t)−Nv(t)|Ht)]

∆t

where Ht is the history of all events before time t. In-
tuitively, λv(t|H)∆t corresponds to the expected number
of events for node v occurring in a small time interval
[t, t + ∆t]. For MHP, the intensity process λv(t|H) takes
the form:

λv(t) = µv +
∑
e:te<t

κe(t, v),

where µv is the base intensity of the process, while each
previous event e adds a nonnegative impulse response
κe(t, v) to the intensity, increasing the likelihood of future
events. We decompose the impulse response κe(t, v) into
two factors that capture both the influence between nodes
and the temporal aspect of diffusion:

κe(t, v) = Ave,vf∆(t− te) .

Here, A = {Au,w} is a non-negative matrix modeling the
strength of influence between nodes. Au,w is the expected
number of events that a single event at node u can trigger in
the process of node w. NonzeroAu,w entries correspond to
edges (u,w) in the diffusion network. The larger Au,w, the
stronger the influence node u has on node w. Also, f∆(·) is
the probability density function for the delay distribution.
It captures how long it takes for an event at one node to
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Figure 1. Graphical representation of HawkesTopic model.

influence other nodes (i.e., trigger events at other nodes)
and how long this influence will last.

A Hawkes process can be treated as a clustered Poisson
process (Simma, 2010) where each event triggers a homo-
geneous Poisson process with intensity κe(t, v). The pro-
cess Nv(t) of node v is a superposition of a homogeneous
Poisson process Pv with intensity µv , as base process, and
the Poisson processes triggered by previous events.

Viewing the Hawkes process from this perspective has t-
wo advantages. First, it provides a method to generate the
events of different processes in a breadth first order (Sim-
ma, 2010). The main idea is to first generate all events
corresponding to the base process of each node, referring
to them as events at level zero and then generate events at
level ` from processes triggered by events at level ` − 1.
This process is repeated until all processes triggered by
events at level L are empty. This construction dictates an
explicit parent relationship denoted by an indicator vector
Pe = (Pe,0, {Pe,e′}e′∈E) for each event e. If event e is
generated from the process triggered by previous event e′,
we say that e′ is the parent of e and denote it by Pe,e′ = 1.
In short, we say that event e′ triggers event e. Otherwise,
if event e is generated from the base process, we say that
it has no parent and denote it as Pe,0 = 1. Equivalent-
ly, we say that node ve carries out event e spontaneously.
The colored arrows in Figure 1 depict the parent relation-
ship. In this example, events e1,1 and e2,2 have no parent,
while event e1,1 is the parent of event e2,1, which itself is
the parent of event e1,2. The parent relationship is essential
to model the evolution of the content information, since
our model should capture the intuition that the documen-
t associated with an event is supposed to be similar to the
document of its parent.

2.2. Modeling the documents
One approach for reasoning about the information of docu-
ments is to generalize the MHP to the Marked Multivariate
Hawkes Process (MMHP) (Liniger, 2009) by treating the
words of documents associated events as the marks asso-
ciated with those events. In the MMHP model, events are
extended to triples e = (te, ve, xe) where the mark value
xe is an additional label characterizing the content.

However, this naive approach suffers from two major draw-
backs: (1) using words as marks leads to noisy representa-
tions due to polysemy and synonyms; more importantly,

(2) in the traditional MMHP model, the mark value de-
pends only on the time of the event and is not affected by
what triggers the event (Liniger, 2009). This assumption is
acknowledged in (Yang & Zha, 2013). The documents as
marks associated with the events are just drawn indepen-
dently from the same language model without considering
what is the source of the influence. In other word, if a user
posts something influenced by the post of her friend, then
the content of the user’s post is independent of the con-
tent of her friend’s post. We can see that this assumption
is unrealistic in many real-word scenarios including social
or online news media, as posts of users that influence each
other (e.g., they are friends) should exhibit dependencies.

Topics as Marks: To overcome the first disadvantage, we
propose using the topics of the event documents as marks
in our HawkesTopic model. Topics, as an abstraction of
the actual words, provide a less noisy and more succinct
representation of the documents’ content.

Assuming a fixed set of topics β = β1:K for all docu-
ments, we use a topic vector ηe to denote the topics in
document Xe associated with event e. We assume that
the actual words of the document are generated similar
to the Correlated Topic Model (CTM) (Blei & Lafferty,
2006a). The generative process for a document Xe with
Ne words is as follows: Let π(·) be the softmax function
πk(ηe) =

exp(ηe,k)∑
j exp(ηe,j) and β1:K be the discrete distribu-

tions over words characterizing each of the K topics.
• For n = 1 . . . , Ne:

1. Draw topic assignment ze,n ∼ Discrete(π(ηe)).
2. Draw word xe,n ∼ Discrete(βze,n).

We choose the logistic normal distribution for variable ze,n
as it provides more flexibility than the multinomial distri-
bution in the LDA model. The logistic normal distribu-
tion does not constrain the document-topic parameters to
the probability simplex, making it a better representation
for modeling the dynamics of topic diffusion.

Diffusion of Topics: To overcome the second disadvan-
tage, i.e., modeling the dependencies across marks of
events that influence each other, our HTM model explic-
itly reasons about the diffusion of topics across events that
influence each other. We distinguish between two types
of events: (i) those occurring spontaneously and (ii) those
triggered by previous events. For example, in Figure 1
events e1,1, e2,2 belong to the first type, while the remain-
ing events belong to the second type. We assume each n-
ode has a prior of interests in different topics. For example,
one Facebook user may be interested in sports and politics
while the other in music and movies. The content of docu-
ments corresponding to spontaneous events are determined
by the topic prior of the node. If an event is triggered by
another event, its document should be similar to the docu-
ment of the triggering event. This suggests that the content
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of a user’s post, influenced by her friend’s previous post,
should have similar content to her friend’s post.

We use the parent relationship generated in event time mod-
eling to realize the above intuition. Let αv be the param-
eter describing the topic prior for node v. The topics of
spontaneously posted documents for node v are generat-
ed from a Gaussian distribution with mean αv , i.e., ηe ∼
N(αv, σ

2I). The topics of triggered events ηe are also gen-
erated from a Gaussian distribution, but with mean param-
eter ηparent[e], i.e., ηe ∼ N(ηparent[e], σ

2I), where parent[e]
is the event triggering event e. To promote simplicity, our
model uses an isometric Gaussian distribution. In exam-
ple of Figure 1, the topics distribution η1,1 is drawn from
a Gaussian distribution with mean α1. Similarly, the top-
ics distribution η2,2 is drawn from a Gaussian distribution
with mean α2. On the other hand, the topics associated
with event e2,1 are influenced by event e1,1 as that is the
one triggering it. More specifically, we draw η2,1 from a
Gaussian distribution with mean η1,1.

2.3. Summary and Discussion

We summarize the generative process of our model and dis-
cuss how it compares against existing models. The notation
of our model is summarized in Table 1. The generative pro-
cess of our model is:

1. Generate all the events and the event times via the
Multivariate Hawkes Process, as in Section 2.1.

2. For each topic k: draw βk ∼ Dir(α).
3. For each event e of node v:

(a) If e is a spontaneous event: ηe ∼ N(αv, σ
2I).

Otherwise ηe ∼ N(ηparent[e], σ
2I).

(b) Generate document length Ne ∼ Possion(λ).
(c) For each word n:

ze,n ∼ Discrete(π(ηe)), xe,n ∼ Discrete(βze,n).

Our model generalizes several existing models. If we ig-
nore the event documents, our model is equivalent to the
traditional MHP model. To the other extreme, if we only
consider the documents associated with spontaneous events
of node v, our model reduces to the CTM (see Section 1)
with hyperparameter (αv, σ

2I). HTM further models the
contents of triggered events using the diffusion of topics.
We also considered other alternatives for modeling the dif-
fusion of documents. For example, it can be modeled via
controlling the parameters that determine the generation of
topics as in the Dynamic Topic Model (Blei & Lafferty,
2006b).

We choose the current approach as it is more robust in the
presence of limited influence information. As each event
may only trigger a limited number of events, there is not
enough information to recover the influence paths if doc-
ument diffusion is modeled via the topic hyperparameters.
Otherwise, the influence can be also modeled on the word
level (Dietz et al., 2007). Our approach yields a simpler

model since documents are utilized to recover the influence
pathways.

3. Inference
Exact inference for the HawkesTopic model is clearly in-
tractable. Thus, we derive a joint variational inference al-
gorithm based on the mean-field approximation. We apply
the full mean-field approximation for the posteriors distri-
bution P (η, z,P |E,α,β,A,µ) as

Q(η, z,P ) =
∏
e∈E

[
q(ηe|η̂e)q(Pe|re)

Ne∏
n=1

q(ze,n|φe,n)

]
.

Since the Correlated Topic Model is a building block in
our HawkesTopic model, our model is not conjugate. We
adopt the Laplace Variational Inference method in (Wang
& Blei, 2013) to handle the non-conjugate variable q(η).
The variational distribution for ηe is assumed to be a Gaus-
sian distribution with its mean as the parameter to infer,
ηe ∼ N(η̂e, σ̂

2I). The choice of using the same simple
covariance matrix is to limit the complexity of our mod-
el. The variational distributions for the remaining variables
are: ze,n ∼ Discrete(φe,n) and Pe ∼ Discrete(re).

Under the standard variational theory, the inference task be-
comes minimizing the KL divergence between Q(η, z,P )
and P (η, z,P |E,α,β,A,µ). This is equivalent to max-
imizing a lower bound L(Q) on the log marginal like-
lihood. The full expression of the complete likelihood
P (E,η, z,P |α,β,A,µ) and the lower bound L(Q) are
included in the supplementary material due to space con-
straints.

We only present the update for the variational distribution
of the parent relationship q(P ) as it is unique in our mod-
el and depends on both time and content information. The
update for other variational distributions and model param-
eters are included in the supplementary material.

Let f∆(∆t) be the pdf for the delay distribution and
fN (x|µ,Σ) be the pdf for the Gaussian distribution with
mean µ and covariance matrix Σ. The derivative of L(Q)
with respect to re gives the following update equations:

re,0 ∝ µvefN (η̂e|αve , σ̂2I)

re,e′ ∝ Ave′ ,vefN (η̂e|η̂e′ , σ̂2I)f∆(te − te′).

Intuitively, we combine three aspects in our join-
t HawkesTopic model to decide the parent relationship for
each event: (i) Ave′ ,ve captures the influence between n-
odes, (ii) fN (η̂e|η̂e′ , σ̂2I) considers the similarity between
event documents, and (iii) f∆(te − te′) models the prox-
imity of events in time. In contrast, the traditional MHP
model uses only the time proximity and node influences to
determine an event’s parent.
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(a) Performance of text modeling (b) Performance of network inference

Figure 2. Results on synthetic datasets.

4. Empirical Evaluation
We present an empirical evaluation of the HawkesTopic
model (HTM). The main questions we seek to address are:
(1) how effective HTM is at inferring diffusion network-
s and (2) how well HTM can detect the topics associated
with the event documents and their diffusion.

We empirically study these questions using both real and
synthetic datasets. First, we apply HTM on synthetically
generated data. Since the true diffusion network and topic-
s are controlled, this set of experiments serves as proof of
concept for the variational inference algorithm introduced
in Section 3. Then, we provide an extensive evaluation
of HTM on diverse real-world datasets and compare its
performance against several baselines showing that HTM
achieves superior performance in both tasks.

4.1. Synthetic Data
We first evaluate HTM on synthetic datasets and focus
mainly on our variational inference algorithm.

Data generation: We generate a collection of datasets fol-
lowing the generative model assumed by HTM with a cir-
cular diffusion network G consisting of five nodes. We set
the number of topics K to five. The specification of the
node topic priors, the node influence matrix and other pa-
rameters are provided in the supplementary material. We
vary the observation window length from 1000 to 4000. For
each length, we generate five different datasets and report
the mean and standard deviation for the evaluation mea-
sures below.

Results: First, we compare the true values of the topic
distribution parameters ηe and node topic prior parame-
ters αv with their inferred equivalents η̂e and α̂v respec-
tively. The total absolute error (TAE) for the two param-
eters is computed as: TAE(π(ηe)) =

∑
e∈E |π(ηe) −

π(η̂e)|1,TAE(π(αv)) =
∑
v∈V |π(αv) − π(α̂v)|1. The

corresponding errors are shown in Figure 2(a) together
with the performance of the Correlated Topic Model (CT-
M) (Blei & Lafferty, 2006a). Our HTM exhibits improved
performance yielding an error-reduction of up to 85% for
αv and up to 25% for ηe. The TAE corresponding to η in-

creases for larger window length as the number of observed
events increases, while the error of α is rather stable as it
is independent of the number of events.

Next, we evaluate HTM at inferring the structure of the
underlying diffusion network. We measure the accuracy
of the inferred network using two metrics: (i) the percent-
age of correctly identified parent relations for the observed
events, and (ii) the sum of absolute differences between the
true node influence matrix A and the estimated matrix Â.
The results are shown in Figure 2(b). We compare HT-
M against a Hawkes process model that does not consider
the available textual information. Our HTM yields an in-
creased accuracy of around 19% at identifying the event
parent relationships and a decreased error of up to 28% for
inferring the overall influence matrix. The decreasing er-
ror trend for the latter is due to the increased number of
observed events for larger window length.

4.2. Real Data
We further evaluate HTM on two diverse real-world
datasets. The first dataset corresponds to articles from
news media over a time window of four months extracted
from EventRegistry,2 an online aggregator of news articles,
while the second corresponds to papers published in ArXiv
over a period of 12 years. We apply HTM on these seeking
to: (i) identify the hidden topics associated with the doc-
uments in each dataset and (ii) infer the hidden diffusion
network of opinions and ideas respectively.

EventRegistry Dataset: We collected news articles from
EventRegistry by crawling all articles with keyword “Ebo-
la” from 2014/07/01 to 2014/11/01. The dataset contains
9180 articles from 330 distinct news media sites. News me-
dia sites are treated as nodes in the diffusion network, and
published articles as events in our model. We preprocessed
the articles to remove stop words and words that appear less
than ten times. Since the true diffusion network is not avail-
able, we use the the available copying information across
news media, i.e., identical news articles published in multi-
ple sites, to approximate the true diffusion network. More

2eventregistry.org
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(a) EventRegistry (b) Arxiv
Figure 3. Inferred diffusion network from the EventRegistry and Arxiv datasets. The colors of nodes represent the out-degree of the
source. (the darker the color, the higher the out-degree) The edge width represents the strength of influence.

precisely, if one article appears in multiple media sites, we
consider the site that publishes the article first as the true
source and add an edge to all sites who publish the article
at a later time point. We use the three largest connected
components in the induced graph as three separate datasets
in our experiments. To extract the delay distribution for the
Hawkes processes in our model, we fit an empirical delay
distribution based on the delay times observed for duplicate
articles.

ArXiv Dataset: We also use the ArXiv high-energy
physics theory citation network data from Stanford’s S-
NAP.3 The dataset includes all papers published in ArX-
iv high-energy physics theory section from 1992 to 2003.
We treat each author as a node and each publication as an
event. For each paper, we use its abstract instead of the ful-
l paper as the document associated with the event. We use
the articles of top 50/100/200 authors in terms of number of
publications as our datasets. The citation network is used
as ground truth to evaluate the quality of the inferred diffu-
sion network. Similarly to EventRegistry, we fit an empir-
ical delay distribution for the Hawkes processes based on
the observed citation delays.

Algorithms: We compare the topic modeling and network
inference capabilities of the following algorithms:

• HTM: Our HawkesTopic model. We set the number
of topics K to 50, except that we use K = 100 for
the ArXiv dataset with 200 authors as it contains more
documents. We normalize the observation interval to a
time window of length 5000 and fix the base intensity
for all Hawkes processes to 0.02. The variance σ̂2 for
topic diffusion is set to 0.5.
• LDA: Latent Dirichlet allocation with collapsed Gibb-

s sampling. The hyper-parameter α for the document
topic distributions is set to 0.1 and the hyper-parameter

3snap.stanford.edu/data/cit-HepTh.html

for the topic word distributions is set to 0.02. The num-
ber of topics is set as in HTM. This is a baseline against
the topic modeling component of HTM.
• CTM: Correlated topic model with variational infer-

ence. CTM serves as another baseline for the topic
modeling of HTM.
• Hawkes: Network inference based on Hawkes process-

es considering only time using the same empirical de-
lay distribution as in HTM and setting the base intensity
same as in HTM. This is a baseline against the diffusion
network inference component of HTM.
• Hawkes-LDA: Hawkes-LDA is a two-step approach

that first infers the topics of each document with L-
DA and then uses those as marks for each event in the
Hawkes processes. We compare this algorithm with
HTM in terms of network inference accuracy.
• Hawkes-CTM: Similar to Hawkes-LDA with CTM

being used instead.

Hawkes-LDA and Hawkes-CTM are the equivalent point
process version of the TopicCascade algorithm (Du et al.,
2013), a state-of-the-art baseline for inferring the diffusion
network with textual information (Section 5).

Evaluation Metrics: We compare HTM to baseline meth-
ods both with respect to the quality of the discovered topics
as well as the accuracy of the inferred diffusion network.
To measure the quality of the discovered topics, we use the
document completion likelihood (Wallach et al., 2009) via
sampling for all algorithms. We use the area under the ROC
curve (AUC) to evaluate the accuracy of network inference
for all algorithms.

Results: The results for the three EventRegistry datasets
with respect to the topic modeling performance and net-
work inference performance are shown in Table 2 and Ta-
ble 3. We see that our HTM outperforms the baseline al-
gorithms in both text modeling and network inference for
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Table 2. EventRegistry: text modeling result (log document com-
pletion likelihood)

LDA CTM HTM
Cmp. 1 -42945.60 -42458.89 -42325.16
Cmp. 2 -22558.75 -22181.76 -22164.05
Cmp. 3 -17574.70 -17574.30 -17571.56

Table 3. EventRegistry: network inference result (AUC)
Hawkes Hawkes-LDA Hawkes-CTM HTM

Cmp. 1 0.622 0.669 0.673 0.697
Cmp. 2 0.670 0.704 0.716 0.730
Cmp. 3 0.666 0.665 0.669 0.700

all three. While the improvement is marginal, our algo-
rithm consistently performs better compared to baselines.
We conjecture that the low AUC near 0.7 for all algorithm-
s is due to the noisy ground truth network. Moreover, as
promptness is essential for news sites, time information
plays a more important role in this diffusion scenario. This
explains the fact that HTM has similar performance with
only near 10% improvement over Hawkes.

In Figure 3(a), we visualize the diffusion network for the
third component. From the graph, we can clearly see that
some news sites, like local news papers or local editions of
Reuters, are the early bird in reporting stories. For example,
the three red nodes, “sunherald.com”, “miamiherald.com”
and “billingsgazette.com” correspond to local news papers
while “in.reuters.com” corresponds to the Indian edition of
Reuters. On the other hand, bigger news agencies, such as
“reuters.com” are strongly influenced by other sites. This
is to be expected, as it is common for news agencies to
gather reports from local papers and redistribute them to
other news portals.4

The results for the ArXiv datasets are shown in Table 4 and
Table 5. HTM consistently performs better than CTM and
LDA in text modeling. This indicates that HTM discovers
topics of higher quality by utilizing the cascade of infor-
mation. In terms of network inference, our HTM model
achieves more than 40% improvement in the accuracy com-
pared to the Hawkes process by incorporating the textual
information associated with each event. This result vali-
dates our claims that in many domains, timing information
alone is not sufficient to infer the diffusion network. More-
over, our method outperforms the strong baselines Hawkes-
LDA and Hawkes-CTM, suggesting that joint modeling of
topics and information cascades is necessary and the infor-
mation of diffusion pathways and the content information
can benefit from each other vastly. The performance drops
as the number of nodes increases since the dataset for top
100 authors has a limited number of publications. We be-
lieve that the reason is the increasing sparsity which makes
the inference problem harder. Additionally, we carry out
experiments on different observation time lengths on the
ArXiv dataset with the top 50 authors. Namely, we train

4en.wikipedia.org/wiki/News agency#Commercial services

Table 4. Arxiv: text modeling result (log document completion
likelihood)

LDA CTM HTM
Top 50 -11074.36 -10769.11 -10708.96
Top 100 -15711.53 -15477.24 -15252.47
Top 200 -27757.71 -27629.87 -27443.41

Table 5. Arxiv: network inference result (AUC)
Hawkes Hawkes-LDA Hawkes-CTM HTM

Top 50 0.594 0.656 0.645 0.807
Top 100 0.588 0.589 0.614 0.687
Top 200 0.618 0.630 0.629 0.659

our models using the papers published in the first three, six,
and nine years, and the complete data set. The AUC of net-
work inference accuracy is shown in Table 6. The results
show that our model is capable of inferring the diffusion
network accurately with only limited observations.

Figure 3(b) shows the hidden network among the top 50
authors. From the figure, we can see that the diffusion
network has a core-peripheral structure. Influential au-
thors such as Edward Witten, Michael R. Douglas, Joseph
Polchinski almost form a clique in middle left of Figure 3.
The common characteristics of these authors is that they do
not publish the most, however, on average, each of their pa-
per receives the largest number of citations. For example,
Edward Witten has published 397 papers but has received
more than 40000 citations. As another example, Joseph
Polchinski has received near 9000 citations with only 190
publications. They serve as the core of the influence net-
work, suggesting they may be the innovators in their corre-
sponding fields. Influenced by the core authors, researchers
such as Christopher Pope and Arkady Tseylin with inter-
mediate number of both in-coming and out-going edges,
further pass the influence to other authors. Overall, their
works also receive a lot of citations, however, they pub-
lish more papers than the core authors with less average
citations for each paper. For example, Christopher Pope
received 6898 citation with 563 papers. This suggests that
they can be considered as the mediator in the diffusion net-
works. Most of other authors, lying in the outside part in
Figure 3, have few out-going edges, suggesting them per-
form more as the receiver of the new scientific ideas.

Besides inferring the influence relationship between au-
thors, our model is also able to discover the research top-
ics of the authors accurately. We list the inferred top-three
topics for two authors together with the top-three words in
each topic in Table 4.2. For HTM, we simply select the
topics with largest value in α̂v . For LDA and CTM model,
we average over the topics of the papers published by the
author. We compare the learnt topics to the research inter-
ests listed by the authors in their website. One of Andrei
Linde’s major research areas is the study of inflation.5 Only
our HTM model discovers it among the top-three topics of

5physics.stanford.edu/people/faculty/andrei-linde
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Table 7. Inferred topics for authors Andrei Linde and Arkady Tseytlin under LDA, CTM and our HTM model.
Author LDA CTM HTM

Andrei Linde
black, hole, holes black, holes, entropy black, holes, hole
supersymmetry,
supersymmetric, solutions

supersymmetric,
supersymmetry, superspace

universe, inflation, may

linde@physics.stanford.edu universe, cosmological,
cosmology

metrics, holonomy, spaces supersymmetry,
supersymmetric, breaking

Arkady Tseytlin
magnetic, field,
conformal

solutions, solution, x string, theory, type

type, iib, theory action, effective,
background

action, actions, duality

a.tseytlin@ic.ac.uk action, superstring,
actions

type, iib, iia bound, configurations,
states

Table 6. Arxiv with different observation time length.
1992-1995 1992-1998 1992-2001 1992-2004

AUC 0.614 0.747 0.789 0.807

the authors. LDA and CTM fail completely in discovering
this topic. Arkady Tseylin reports string theory as his main
research area in his webpage.6 HTM successfully lists the
string theory topic first, while CTM and LDA both leave
this topic out of the top-three topics of the author. Our mod-
el accurately detects the topics because it can distinguish
between spontaneous and triggered events. It infers authors
preferences based only on spontaneous publications, while
baseline models infer those using all publications.

5. Related Work
The prior work related to the techniques proposed in this
paper can be placed mainly in three categories; we describe
each of them in turn:

Diffusion Network Inference: There has been a signifi-
cant amount of work on inferring the information diffusion
network where either cascade models (Gomez-Rodriguez
et al., 2012; 2011; Praneeth & Sujay, 2012) or point pro-
cesses (Yang & Zha, 2013; Zhou et al., 2013) are used.
Both approaches infer the diffusion networks utilizing on-
ly the observed time when nodes post or publicize the in-
formation. Finally, recent work has considered inferring
heterogeneous diffusion networks (Du et al., 2012). While
effective for context agnostic tasks (e.g., product adoption),
these techniques fail to capture the complex context inter-
dependencies.

Text-Content Cascades: While most of the previous work
utilizes only the timing information to infer the diffusion
networks, a different line of work has considered analyzing
the available textual information and use text-based cas-
cades (Dietz et al., 2007; Foulds & Smyth, 2013; Du et al.,
2013). However, the work by Dietz et al. and Foulds et al.
assumes that the influence paths are known and Du et al. as-
sume that the topics characterizing the information are giv-
en in advance. Our proposed approach is different in that it
does not make any restricting assumption on knowing the
underlying diffusion network or the information topics in

6www.imperial.ac.uk/people/a.tseytlin

advance, thus being applicable in domains like news medi-
a where the underlying influence network is unknown and
the contents vary significantly over time.

Diffusion Networks and Text-Content Cascades: Final-
ly, a recent line of work focuses on joint modeling of d-
iffusion networks and text-based cascades (Yang & Zha,
2013; Liu et al., 2010). Liu et al. extend the basic text-
based cascades model in (Dietz et al., 2007) such that the
diffusion paths also need to be inferred. However, the pro-
posed approach is agnostic to time. The most relevant mod-
el to HTM is the MMHP model proposed in (Yang & Zha,
2013). Nevertheless, HTM is fundamentally different in
the following aspects: (1) MMHP utilizes the textual infor-
mation to cluster activations into different cascades, while,
HTM leverages text to improve the prediction of a single
cascade, and vice-versa, by modeling the evolution of tex-
tual information and event times jointly. (2) MMHP uses
a simple language model and assumes that documents are
drawn independently without considering the source of the
influence. Instead, HTM models the evolution of textual in-
formation with CTM through the cascade of topics, which
is essential in text diffusion processes. To our knowledge,
there are only two papers that combine Hawkes process-
es and topic modeling (Li et al., 2014; Guo et al., 2015).
Li et al. use the model to identify and label search tasks,
while Guo et al. focus on studying conversational influ-
ence. In contrast, we combine the above for modeling text-
based cascades.

6. Conclusion
In this paper, we studied the problem of analyz-
ing text-based cascades and introduced a novel model,
HawkesTopic, that combines Hawkes processes with cor-
related topic models to jointly infer the topics of avail-
able textual information and the information diffusion path-
ways. Since the inference task at hand is not tractable, we
introduced a new variational inference algorithm. Our new
model exploits the diffusion of topics to infer more accu-
rate diffusion network. Our experimental results show that
our techniques exhibit significant accuracy improvements
when inferring the hidden structure of the diffusion net-
work and are capable of discovering higher quality topics
than several state-of-the-art baselines.
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