
Speeding Up and Boosting Diverse Density Learning

James R. Foulds and Eibe Frank

Department of Computer Science, University of Waikato, New Zealand
{jf47,eibe}@cs.waikato.ac.nz

Abstract. In multi-instance learning, each example is described by a bag of in-
stances instead of a single feature vector. In this paper, we revisit the idea of
performing multi-instance classification based on a point-and-scaling concept by
searching for the point in instance space with the highest diverse density. This is
a computationally expensive process, and we describe several heuristics designed
to improve runtime. Our results show that simple variants of existing algorithms
can be used to find diverse density maxima more efficiently. We also show how
significant increases in accuracy can be obtained by applying a boosting algo-
rithm with a modified version of the diverse density algorithm as the weak learner.

1 Introduction

Multi-instance (MI) learning [7] is a variation of traditional supervised learning with
applications in areas such as drug activity prediction [7], content-based image retrieval
[26], stock market prediction [13] and text categorization [1].

In standard supervised learning, each example is represented by a single feature
vector. In MI learning, examples are collections of feature vectors, called bags. The
feature vectors within the bags are known as instances. Each instance is a vector of
(typically real-valued) attribute values. Each bag has a class label, but labels are not
given for the instances. The task is to learn a model from a set of training bags to
predict the class labels of unseen future bags.

The original motivating application for MI learning was the musk drug activity pre-
diction problem [7]. The task is to predict whether a given molecule will bind to a target
“binding site” on another molecule, and hence emit a “musky” odor. A molecule may
take on several different conformations (shapes) by rotating its internal bonds. If a sin-
gle conformation can bind to the target binding site, the molecule is considered to be
active. This is a difficult learning problem because it is not always clear which confor-
mation is responsible for activity. Dietterich et al. represented each molecule as a bag
containing the different conformations that the molecule can adopt.

Much of the work on MI learning, including all early work and notably including [7]
and [14], makes a specific assumption regarding the relationship between the instances
within a bag and its class label. We will follow [21], and refer to this assumption as the
standard MI assumption. It states that each instance has a hidden class label c ∈ Ω =
{+,−}. Here, ‘+’ is the positive class, and ‘−’ is the negative class. The set of class
labels for bags is also Ω. Under this assumption, a bag is positive if and only if at least
one of its instances is positive. (i.e. belong to the ‘+’ class). Thus, the bag-level class
label is determined by the disjunction of the instance-level class labels.

A number of algorithms for MI learning can be found in the literature. Dietterich
et al. [7] presented the first algorithms for MI learning, which use axis-parallel hyper-
rectangles (APR) to solve the musk problem. The algorithms build a single APR that
identifies the “positive” region of instance space. At classification time, any bag that
contains an instance within the APR is labeled as positive, as per the standard MI as-
sumption.

A different method for tackling MI learning problems is to transform the data so that
unmodified single-instance learner can be applied, e.g. by computing summary statistics
as in the relational learning system RELAGGS [12], or by labelling each instance with
its bag’s label and combining predictions [16].

A common approach to MI learning is to “upgrade” standard supervised algorithms
to handle the MI scenario by modifying their internals. Such algorithms include k-
nearest neighbours [20], support vector machines [1, 11], decision trees and rules [6],
logistic regression [24] and boosting [2, 24, 19]. In [3], a different approach is used:
a standard boosting algorithm is applied in conjunction with an MI base learner—a
special-purpose one that induces hyper-balls or hyper-rectangles. We pursue the same
basic approach in this paper, and show that boosting can be applied successfully in con-
junction with a modified version of an existing, established MI algorithm, the diverse
density method proposed by Maron [14].

The diverse density method is a statistical approach to MI learning under the stan-
dard assumption. However, the original learning techniques within the framework are
computationally expensive. In this paper we first investigate heuristics that are designed
to improve computational efficiency. We show that runtime can be improved without
loss of accuracy. We then show how to adapt the basic algorithm so that it can be
boosted to increase predictive performance, yielding multi-instance classifiers that are
competitive with the state-of-the-art.

The remainder of the paper is structured as follows: Sections 2 and 3 detail the di-
verse density framework and its associated algorithms respectively. Section 4 describes
the heuristic variants of these algorithms we consider and Section 5 has experimental
results. Section 6 shows how to adapt the basic method to perform boosting and presents
the improvements in accuracy obtained. We conclude in Section 7.

2 Diverse Density

Diverse density DD(h) : h ∈ H → R+, as defined in [13, 14], is an objective function
for determining the best hypothesis ĥ in a certain class of probabilistic multi-instance
classifiers H . The objective function is designed to model the intuition that under the
standard MI assumption, the positive region of the instance space χ = Rd is most
likely to be close to instances from many different (i.e. “diverse”) positive bags. In
[13, 14], diverse density is assumed to be proportional to the posterior density for the
model parameters, so under this interpretation maximizing diverse density corresponds
to finding a maximum a-posteriori estimate ĥMAP .

As this posterior density is not defined in terms of a conditional likelihood in [13,
14], it is not immediately obvious that it is an appropriate objective function for classifi-
cation learning. The “diverse”-ness property is only a heuristic motivation for DD(h).

However, diverse density can instead be understood as a conditional likelihood function
under a different interpretation of some terms1 (see also [23]). This interpretation is
what we use here because it is more in line with work in probabilistic machine learning,
and it motivates diverse density learning as a principled maximum-likelihood estimate
of a discriminative model. Additionally, under this interpretation, we do not have to
resort to cross-validation on the training set in order to choose a decision boundary2.

Consider the task of learning a discriminative model Pr(+|Bi, h) for predicting
the probability that a bag Bi is positive, given a hypothesis h. Let Pr(+|Bij , h) be the
probability that instance j of bagBi is positive. Assuming independence,Pr(+|Bi, h) =
1−

∏
j(1− Pr(+|Bij , h)), the probability that at least one instance is positive, in line

with the standard MI assumption. Further assuming that bags are iid, the conditional
likelihood function for h given a dataset D is

L(h) = Pr(Y |D,h)
=
∏

i

Pr(+|B+
i , h)

∏
i

Pr(−|B−i , h)

=
∏

i

(
1−

∏
j

(1− Pr(+|B+
ij , h))

)∏
i

(∏
j

(1− Pr(+|B−ij , h))
)

,

where Y is the set of labels for the bags in D, and the B+
i s and B−i s are the positive

and negative training bags, respectively.

The model parameters to be learnt are h = {x1, . . . xd, s1, . . . , sd}, where x ∈
χ is the location of the “target point” identifying the positive region of the instance
space, and s is the feature scaling vector. To complete the model, we still need to
specify Pr(+|Bij , h). Maron and Lozano-Perez use a radial “Gaussian-like” function
Pr(+|Bij , h) = exp(−||Bij −x||2), with ||Bij −x||2 =

∑
k s

2
k(Bijk−xk)2. In other

words, it is assumed that the probability that instance j of bag Bi is positive drops ex-
ponentially with distance from point x, with the scaling of each dimension k in feature
space determined by sk.

Using this form for Pr(+|Bij , h), the conditional likelihood function is identical
to Maron and Lozano Perez’ diverse density function DD(h) under what they call the
“noisy-or model” (so named because the Pr(+|B+

i , h) term corresponds to a proba-
bilistic version of a logical “or”). Hence, maximizing the (log) likelihood of this model
is equivalent to maximizing diverse density. Maron also formulated the “most-likely-
cause” model for diverse density learning. With this model, the likelihood needs to be
modified so that Pr(+|Bi, h) = maxj Pr(+|Bij). The max operator can be viewed
as an approximation to a logical “or”, so the most-likely-cause model is also consistent
with the standard MI assumption.

1 Specifically, Maron and Lozano Perez’ “Pr(h|B)” and “Pr(h|Bij)” are interpreted as
Pr(+|B, h) and Pr(+|Bij , h) respectively.

2 This fact was also exploited implicitly in EM-DD [25].

3 Existing Diverse Density Algorithms

In this section we discuss existing MI learning algorithms that are based on the diverse
density framework. In the next section we introduce new variants of these methods
that are based on simple heuristics designed to reduce training time while maintaining
classification accuracy on new data.

The original maxDD diverse density algorithm attempts to find the target concept by
maximizing diverse density (i.e. conditional likelihood) over the instance space, using
gradient ascent with multiple starting points. Because the feature scaling vector is also
unknown, it is optimized simultaneously (and initialized with all values set to 1.0).
Restarts are performed at every instance from each positive bag, as the target point is
necessarily close to some of those instances.

Maron [13] also proposed an alternative DD maximization algorithm, Pointwise Di-
verse Density (PWDD), which was designed to speed up the training process. However,
he did not evaluate PWDD, except on a simple artificial dataset that is used to illus-
trate the underlying idea. One contribution of this paper is that we compare PWDD to
maxDD (and variants thereof) on a collection of datasets and thus attempt to close this
gap in the literature.

While maxDD uses a gradient ascent method to search for the point of maximum
diverse density—with different starting points—PWDD only computes diverse density
at exactly the points corresponding to instances in positive bags in the training data. For
each positive bag, the algorithm selects the instance with the highest diverse density,
and the output hypothesis is the average point of these selected instances.

This version of the DD algorithm performs no gradient optimization and is therefore
extremely fast; however it requires the feature scaling vector to be known. In practice,
this is typically not the case, so the method must be extended to find the best scaling
vector. Maron proposes several alternatives (but does not name them; the names are
ours):

– Scaling First For each instance in a positive bag, perform gradient ascent to opti-
mize the feature scaling vector for the highest diverse density at that point. Select
the vector that produced the highest diverse density, and use this for PWDD.

– Iterative Pick an initial scaling, then use PWDD to find the best point (or points)
with that scaling. Then use gradient ascent to optimize the scaling vector at the best
point(s). Repeat using the new scaling.

Maron also mentions potential variants where the selection of the best instance is
incorporated into the gradient ascent optimization routine by replacing the max op-
erator with the differentiable softmax function. However, we do not consider these
softmax-based variants in this paper.

Zhang and Goldman [25] later formulated the EM-DD algorithm, a variant of the
maxDD algorithm that is based on the expectation-maximization (EM) approach. The
algorithm starts with an initial guess h of the target concept, obtained by selecting
a point from a positive bag. It then performs an iterative procedure consisting of an
expectation step followed by a maximization step.

The expectation step selects the instance from each bag that is most likely to be
the cause of that bag’s label given the current hypothesis h, using the most-likely-cause

estimator. Then, the maximization step performs a gradient ascent search based on the
selected instances to find a new h′ that maximizes DD(h′). The current hypothesis h
is reinitialized to h′. The EM loop is repeated until convergence.

Considering computational efficiency, EM-DD has an advantage over maxDD, as it
selects only a single instance from each positive bag during the expectation step, which
reduces the computational difficulty of the maximization step. Hence, EM-DD scales
well with increasing bag size.

The authors of EM-DD initially reported improved performance over maxDD on
the musk data, but Andrews et al. [1] pointed out that the original formulation of EM-
DD selected the best hypothesis based on error rate on the test data. If this is corrected,
the algorithm’s accuracy is not generally superior to that of maxDD. However, it is still
notable for its improved computational efficiency and this is why it is included in the
experimental comparison presented in this paper.

Note that there are also algorithms related to the diverse density framework that are
not based on direct optimization. They include DD-SVM [5] and its successor MILES
[4], which create an instance-based feature space mapping by using diverse density to
compute a similarity function between a bag and an instance (which corresponds to a
feature in a new instance space), and build a support vector machine on the transformed
dataset. The boosted diverse density approach presented in Section 6 generates a similar
classifier because it also produces a linear combination of contributions from diverse
density target points, where each training instance can potentially become a target point.
However, in contrast to MILES, it allows the scaling of features in the original feature
space to be adapted to the data at hand—automatically and individually for each target
point. In Section 5, we compare the empirical performance of our approach with that of
MILES.

4 A New Approach: QuickDD

In this section, we describe some simple variants of existing diverse density maximiza-
tion algorithms that are designed to improve the computational efficiency of these tech-
niques.

As Maron and Lozano-Pérez observed, the point of maximum diverse density is by
definition close to instances from positive bags. A simple heuristic when searching for
this point is therefore to only consider the exact locations of instances in positive bags.
This heuristic is also used in PWDD, but then the best points from the different positive
bags are averaged to form a hypothesis. We propose an even simpler approach, where
the merging step is omitted, and we simply pick the best point from all positive bags as
our target point.

We will refer to this heuristic as QuickDD, as we expect quicker execution over
the standard gradient ascent approaches because the search space is greatly reduced in
this method. We hypothesized that (a) merging of candidate points as in PWDD can
produce undesirable target points and (b) gradient ascent search over instance space
as in maxDD is unnecessary, as an instance from a positive training bag is a sufficient
approximation of the target point in real-world problems. Regarding hypothesis (a), the
average of the highest diverse density points from each positive bag is not guaranteed

to be a high diverse density point. If the best points for the positive bags belong to
different local diverse density maxima, the average point may be in the trough between
the maxima, and may not be the best hypothesis.

If the optimal feature scaling is already known, the execution of the maxDD al-
gorithm with the QuickDD heuristic is very efficient: we merely compute the diverse
density at each instance from each positive bag, and select the location of the instance
with the highest diverse density, without performing any gradient optimization. Again,
this is simpler than the PWDD approach, as we do not find the best instance from each
positive bag and average the results, but merely select the best instance and use this as
the target point.

If the optimal feature scaling is not known in advance, we must incorporate some
method to compute it. The methods proposed by Maron for PWDD can easily be
adapted for QuickDD:

– Scaling Only For each instance in a positive bag, perform gradient ascent to opti-
mize the feature scaling vector at that point. The hypothesis is the point and asso-
ciated scaling vector that produces the highest diverse density. Here, although the
gradient ascent optimization must be performed as many times as for maxDD, the
number of parameters is halved because the coordinates of the target point are not
optimized.

– Iterative Pick an initial scaling, then compute the diverse density of the points in
all positive bags with respect to that scaling, and select the point (or points) with
the highest diverse density. Then use gradient ascent to optimize the scaling vector
at the best point(s). Repeat using the new scaling.

A motivation for using QuickDD Iterative over PWDD Iterative is that the former
monotonically increases the diverse density of the current hypothesis in each iteration—
since it will not pick a scaling vector or target point location with a lower DD value
than that of the current hypothesis—and thus is guaranteed to converge to a local DD
maximum (or saddle point), while the averaging step in PWDD means that there are no
such guarantees for that algorithm.

Note that the Scaling Only method is also applicable to EM-DD, by restricting the
gradient search performed in each iteration to only optimize the scaling parameters for
a fixed location in instance space.

We also consider the following simplifications of the above approaches:

– No Scaling Initialize all entries of the feature scaling vector to the same value (i.e.
1.0 if we follow [14]). Compute the diverse density for each instance in each posi-
tive bag, and select the point with the highest diverse density. Do not perform any
gradient ascent optimization.

– Scaling Once Initialize the scaling vector as above. Compute the diverse density of
the points in all positive bags with respect to that scaling, and select the point with
the highest diverse density. Then use gradient ascent to optimize the feature scaling
vector at that point. This is equivalent to the QuickDD Iterative method with the
maximum number of iterations set to one.

– Scaling Last This is an adaption of the Scaling Once method to PWDD. Execute
PWDD to find a point with high diverse density with respect to an initial feature

Table 1. Datasets used in the Experiments

Name Number of Number of Avg. Number of Min. Number of Max. Number of
Bags Attributes Instances per Bag Instances per Bag Instances per Bag

musk1 92 166 5.2 2 40
musk2 102 166 64.7 1 1044
muta-atoms 188 10 8.6 5 15
muta-bonds 188 16 21.3 8 40
muta-chains 188 24 28.5 8 52
elephant 200 230 7.0 2 13
fox 200 230 6.6 2 13
tiger 200 230 6.1 1 13
maron 50 2 50.0 50 50

Table 2. Percentage Accuracy for EM-DD, maxDD and PWDD

Dataset EM-DD maxDD PWDD PWDD PWDD PWDD
Scaling First Iterative Scaling Last No Scaling

musk1 85.4±11.6 86.8±11.5 86.9±10.2 86.5±11.5 85.5±11.5 48.9±4.9 •
musk2 85.6±9.8 85.7±9.6 86.3±10.6 85.1±10.0 84.9±10.2 62.7±9.9 •
muta-atoms 72.2±8.4 72.2±10.1 36.1±7.3 • 42.9±15.0 • 64.1±6.5 • 66.5±2.3
muta-bonds 73.0±10.1 73.9±9.5 52.1±17.0 • 70.4±8.9 73.2±8.5 66.5±2.3
muta-chains 73.5±11.1 79.1±7.6 67.8±7.0 65.2±11.1 80.3±7.8 66.5±2.3
elephant 75.9±10.3 81.9±8.9 78.5±6.3 10 82.6±8.7 ◦ 82.6±8.8 ◦ 56.4±5.9 •
fox 60.3±8.5 61.3±10.8 59.7±8.9 62.3±10.7 60.4±10.9 55.4±5.3
tiger 71.9±10.3 75.4±9.7 72.0±9.6 70.5±11.0 71.4±9.9 49.9±6.8 •
maron 93.4±11.0 96.4±7.7 94.2±10.0 94.4±9.9 94.4±9.9 61.6±14.4 •
◦, •: significant increase or decrease vs EM-DD; number in small font: completed runs

scaling vector, then perform a gradient ascent search to optimize the feature scaling
vector at that point, i.e. perform a single iteration of PWDD Iterative.

5 Experimental Results

In this section we present the results of an empirical study of the classification per-
formance and training time of the algorithms discussed above. The algorithms were
evaluated on a variety of two-class datasets by averaging the results of ten repeats of
ten-fold cross-validation, measuring both classification accuracy and training time. The
datasets used were:

– elephant, fox, tiger Content-based image retrieval datasets, originally provided by
[1]. The MI bags represent photographs of animals, and the task is to predict
whether an image contains the target animal (elephants, foxes and tigers, respec-
tively).

– musk1, musk2 The musk data used in [7]. Each bag represents a molecule, and the
task is to predict whether the molecule emits a musky odour. The musk2 dataset is
larger, both in terms of the number of molecules, and the number of instances per
molecule.

– mutagenesis The mutagenicity prediction problem [18], widely used as a bench-
mark for ILP algorithms. The learning problem is to identify mutagenic molecules.

Table 3. Training Times in CPU seconds (s), minutes (m) or hours (h) for EM-DD, maxDD and
PWDD

Dataset EM-DD maxDD PWDD PWDD PWDD PWDD
Scaling First Iterative Scaling Last No Scaling

musk1 2.7m±35.2s 22.7m±2.6m ◦ 9.1m±43.2s ◦ 6.6s±1.5s • 2.8s±0.6s • 0.4s±0.0s •
musk2 29.6m±27.7m 23.6h±9.3h ◦ 24.5h±7.1h ◦ 4.9m±2.1m • 1.6m±45.8s • 36.1s±4.9s •
muta-a 0.9s±0.4s 6.4m±2.6m ◦ 27.4s±1.4s ◦ 1.9s±0.8s ◦ 0.8s±0.1s 0.9s±0.0s
muta-b 6.4s±2.2s 49.8m±2.4m ◦ 7.1m±19.0s ◦ 14.5s±4.1s ◦ 9.4s±0.5s ◦ 7.7s±0.1s
muta-c 16.9s±3.7s 6.1h±2.5h ◦ 32.8m±50.2s ◦ 27.0s±7.1s ◦ 21.3s±0.8s ◦ 18.9s±0.3s
elephant 20.1m±3.9m 12.7h±4.2h ◦ 165.8h±47.1h 10 28.5m±33.5m 19.3m±15.9m 6.1s±0.1s •
fox 14.9m±3.5m 13.7h±3.6h ◦ 19.7h±19.0h ◦ 1.9m±2.1m • 2.3m±3.7m • 4.9s±0.1s •
tiger 9.5m±2.4m 6.2h±2.2h ◦ 11.2h±7.4h ◦ 1.9m±1.4m • 2.2m±1.8m • 3.8s±0.1s •
maron 2.5s±0.1s 4.2m±12.5s ◦ 1.3m±2.2s ◦ 4.0s±1.4s ◦ 1.2s±0.0s • 1.1s±0.0s •

◦, •: statistically significant increase or decrease vs EM-DD; number in small font: completed runs

Three representations of molecules were used [17]: muta-atoms, muta-bonds and
muta-chains.

– maron An artificial dataset based on one used in [14]. For each bag, 50 instances
were sampled from a uniform distribution in [0, 100] × [0, 100] ⊆ R2. Instances
were positive if and only if they were within a 5 × 5 square in the middle of the
domain, thus implementing the standard MI assumption. We generated 25 positive
and 25 negative bags.

Key statistics of these datasets are summarized in Table 1.
The experiments were performed using WEKA [22], on 3.00 GHz Intel Pentium

4 CPU machines. All implementations were based on those of maxDD and EM-DD
in WEKA, which use a quasi-Newton method with BFGS updates rather than plain
gradient search. The details of this method can be found in Appendix B of [23]. For
numeric stability, the negative logarithm of DD is minimized instead of maximizing
DD directly.

The default behavior of the WEKA implementation of maxDD is to only consider
instances from the largest positive bag as starting points for the optimization; we mod-
ified this to consider instances from all positive bags, to be consistent with the original
description of maxDD. EM-DD was executed using instances from three random posi-
tive bags as starting points [25].

All iterative algorithms were restricted to a maximum of 10 iterations. We also ap-
plied normalization of attributes to the [0, 1] interval to all datasets except for maron, as
all of the algorithms typically performed poorly without this. We tested for significant
differences between algorithms using the corrected resampled t-test [15] with signifi-
cance level α = 0.05.

Tables 2 and 3 display the accuracy and training time results for the three pre-
existing algorithms EM-DD, maxDD and PWDD. Note that some of the 100 runs for
the more expensive methods did not complete in time for submission. In those cases,
no significance test was performed and the number of completed runs is given in small
font next to the corresponding entry.

The results are consistent with the observations in [1], who disputed the superior
classification performance of EM-DD over maxDD that was reported in earlier work:
EM-DD performed similarly to maxDD on all datasets. However, its training time was

Table 4. Percentage Accuracy for EM-DD and maxDD, Using 3 Random Positive Bags for Start-
ing Points

Dataset EM-DD maxDD
musk1 85.4±11.6 87.0±11.4
musk2 85.6±9.8 85.8±10.1
muta-atoms 72.2±8.4 71.5±8.8
muta-bonds 73.0±10.1 74.1±9.5
muta-chains 73.5±11.1 79.2±7.7
elephant 75.9±10.3 81.9±8.5 ◦
fox 60.3±8.5 60.8±10.8
tiger 71.9±10.3 75.6±9.4
maron 93.4±11.0 96.4±7.7
◦, • statistically significant increase

or decrease vs EM-DD

Table 5. Training Times in CPU seconds (s), minutes (m) or hours (h) for EM-DD and maxDD,
Using 3 Random Positive Bags for Starting Points

Dataset EM-DD maxDD
musk1 2.7m±35.2s 1.8m±27.0s •
musk2 29.6m±27.7m 4.2h±3.6h ◦
muta-atoms 0.9s±0.4s 13.1s±2.8s ◦
muta-bonds 6.4s±2.2s 3.2m±41.6s ◦
muta-chains 16.9s±3.7s 12.7m±2.1m ◦
elephant 20.1m±3.9m 19.5m±5.2m
fox 14.9m±3.5m 15.6m±5.3m
tiger 9.5m±2.4m 8.8m±2.9m
maron 2.5s±0.1s 24.3s±1.9s ◦
◦, • statistically significant increase

or decrease vs EM-DD

several orders of magnitude lower in all cases. Hence, EM-DD is a worthwhile candi-
date in practical applications of MI learning.

When interpreting this result, it is important to remember that maxDD was executed
using all instances from positive training bags as starting points for the gradient search,
while EM-DD only used instances from three random positive bags. To isolate the ef-
fect of this modification, we performed a separate experiment where we used the same
heuristic to reduce the number of starting points for the search in maxDD. Even with
this modification maxDD frequently remains orders of magnitude slower than EM-DD.
This can be seen from the results shown in Tables 4 and 5. Note that with this change
to maxDD, the difference in accuracy on the elephant dataset becomes statistically sig-
nificant.

Table 2 shows that all variants of PWDD suffered at least one significant loss in clas-
sification accuracy against EM-DD. In particular, PWDD struggled on the mutagenesis
datasets, where most variants of the algorithm failed to improve on the 66.5% accu-
racy rate obtained by predicting the majority class. PWDD No Scaling, the variant of
PWDD where no gradient search was used to optimize the scaling vector, only exceeded
the majority class baseline on three datasets (elephant, fox and maron), demonstrating
the importance of scaling features appropriately. PWDD Scaling First also performed
quite poorly, indicating that undesirable scaling vectors were chosen. Moreover, PWDD
Scaling First exhibited larger training times than even maxDD on the image datasets,

Table 6. Percentage Accuracy for QuickDD Variants vs EM-DD

Dataset EM-DD QuickDD QuickDD QuickDD EM-DD QuickDD
No Scaling Scaling Only Iterative Scaling Only Scaling Once

musk1 85.4±11.6 49.0±4.9 • 86.1±11.4 86.7±11.1 84.1±12.2 86.4±10.4
musk2 85.6±9.8 62.0±7.3 86.1±11.0 87.4±11.3 83.7±10.5 87.2±11.4
muta-atoms 72.2±8.4 64.5±4.8 • 70.9±8.2 68.5±8.2 75.6±9.5 68.5±8.2
muta-bonds 73.0±10.1 73.6±7.0 74.0±9.4 76.7±8.3 71.8±9.5 76.7±8.3
muta-chains 73.5±11.1 75.5±7.2 80.4±8.5 78.5±7.9 73.4±8.9 78.4±7.9
elephant 75.9±10.3 72.7±9.6 80.7±9.1 30 81.1±8.8 76.2±9.9 81.8±8.9
fox 60.3±8.5 53.7±11.3 60.3±11.2 57 64.0±10.3 61.0±10.4 64.0±10.3
tiger 71.9±10.3 60.0±8.9 • 74.3±10.1 75.1±10.1 72.5±10.5 75.5±9.6
maron 93.4±11.0 61.4±14.3 • 96.2±8.4 96.2±8.4 89.4±13.5 96.8±8.4
◦, •: significant increase or decrease vs EM-DD; number in small font: completed runs

Table 7. Training Times in CPU seconds (s), minutes (m) or hours (h) for QuickDD Variants vs
EM-DD

Dataset EM-DD QuickDD QuickDD QuickDD EM-DD QuickDD
No Scaling Scaling Only Iterative Scaling Only Scaling Once

musk1 2.7m±35.2s 0.4s±0.0s • 8.2m±39.6s ◦ 7.7s±2.9s • 36.2s±7.7s • 1.7s±0.6s •
musk2 29.6m±27.7m 36.2s±4.9s • 22.7h±8.9h ◦ 6.0m±3.5m • 8.1m±7.1m • 4.2m±3.0m •
muta-a 0.9s±0.4s 0.6s±0.0s • 58.0s±3.1s ◦ 3.3s±1.9s ◦ 0.3s±0.1s • 0.7s±0.0s
muta-b 6.4s±2.2s 4.5s±0.1s • 14.3m±39.2s ◦ 49.9s±25.6s ◦ 3.3s±0.8s • 5.0s±0.2s
muta-c 16.9s±3.7s 10.4s±0.2s • 55.4m±3.2m ◦ 1.3m±44.4s ◦ 12.0s±2.5s • 11.8s±0.4s •
elephant 20.1m±3.9m 3.1s±0.1s • 80.7h±54.8h 30 10.6m±13.1m 1.5h±45.8m ◦ 4.8m±6.7m •
fox 14.9m±3.5m 2.5s±0.0s • 29.3h±26.3h 57 2.7m±3.3m • 16.5m±7.1m 1.2m±1.6m •
tiger 9.5m±2.4m 1.9s±0.0s • 8.7h±4.4h ◦ 1.5m±1.4m • 8.2m±4.8m 39.7s±35.6s •
maron 2.5s±0.1s 0.5s±0.0s • 55.7s±1.7s ◦ 4.4s±1.6s ◦ 0.9s±0.0s • 1.2s±0.0s •
◦, •: statistically significant increase or decrease vs EM-DD; number in small font: completed runs

indicating that optimizing the scaling vector only can result in hard optimization prob-
lems when the corresponding candidate target point is not appropriate.

However, the Iterative and Scaling Last variants of PWDD were quite competitive
with EM-DD overall, both in terms of classification accuracy and training time. Both
achieved a significant win against EM-DD on the elephant data, while suffering a signif-
icant loss on muta-atoms, with no other significant differences. Both were significantly
faster than EM-DD on all datasets except the three mutagenesis problems and elephant,
exhibiting very fast training times on the two musk datasets. It is noteworthy that the
single-iteration Scaling Last variant was very competitive with Iterative PWDD, where
the maximum number of iterations was set to ten.

The results for QuickDD are summarized in Tables 6 and 7, and compared to EM-
DD. We can see that except for the No Scaling variant — which performed poorly, as
expected — and not withstanding the incomplete results for QuickDD Scaling Only,
there were no significant differences for any of the QuickDD variants against EM-DD
with respect to classification accuracy. Additionally, several QuickDD variants were
superior in terms of training time.

The tables also show results for the EM-DD variant Scaling Only. It was signifi-
cantly faster than the original EM-DD algorithm on six of the nine datasets, and only
significantly slower on the elephant dataset, without any significant differences in clas-
sification accuracy.

Table 8. Percentage Accuracy for QuickDD Scaling Once and PWDD Scaling Last

Dataset PWDD QuickDD
Scaling Last Scaling Once

musk1 85.5±11.5 86.4±10.4
musk2 84.9±10.2 87.2±11.4
muta-atoms 64.1±6.5 68.5±8.2
muta-bonds 73.2±8.5 76.7±8.3
muta-chains 80.3±7.8 78.4±7.9
elephant 82.6±8.8 81.8±8.9
fox 60.4±10.9 64.0±10.3
tiger 71.4±9.9 75.5±9.6
maron 94.4±9.9 96.8±8.4
No significant differences were observed

Table 9. Training Times in CPU seconds (s) or minutes (m) for QuickDD Scaling Once and
PWDD Scaling Last

Dataset PWDD QuickDD
Scaling Last Scaling Once

musk1 2.8s±0.6s 1.7s±0.6s •
musk2 1.6m±45.8s 4.2m±3.0m ◦
muta-atoms 0.8s±0.1s 0.7s±0.0s
muta-bonds 9.4s±0.5s 5.0s±0.2s •
muta-chains 21.3s±0.8s 11.8s±0.4s •
elephant 19.3m±15.9m 4.8m±6.7m •
fox 2.3m±3.7m 1.2m±1.6m
tiger 2.2m±1.8m 39.7s±35.6s •
maron 0.9s±0.0s 0.9s±0.0s
◦, • statistically significant increase
or decrease vs PWDD Scaling Last

QuickDD Iterative yielded an equal number of significant wins and losses for train-
ing time against EM-DD, but the wins were by a large margin on the slowest datasets,
while the losses occurred only on datasets where the training times were already short.
Furthermore, QuickDD Iterative and Scaling Once both had a higher classification ac-
curacy than EM-DD on eight of the nine datasets, though these differences were not
individually statistically significant.

It is interesting to compare the runtime of QuickDD Scaling Only with that of
maxDD from Table 3. The former was faster on the musk and mutagenesis datasets,
but slower on the image datasets. This behaviour is similar to that of PWDD Scaling
First, which we discussed above. In both cases, the dimensionality of the search space
for the gradient optimization routine is halved relative to maxDD, but training time
increases, implying the occurrence of harder optimization problems.

Similarly to the PWDD case, QuickDD Iterative performed just as well with one
iteration (Scaling Once) as with a maximum of ten, with dramatic reductions in train-
ing time. Thus, repeated iterations appear unnecessary for both PWDD and QuickDD
Iterative. This indicates that the initial scaling factor of 1.0 for all attributes may be
sufficient for finding the location of a good hypothesis, perhaps aided by the dataset
normalization step performed.

There were no significant differences in accuracy between the single-iteration ver-
sions of PWDD and QuickDD (Table 8), but QuickDD Scaling Once was faster that

PWDD Scaling Last on eight of the nine datasets, (Table 9) with only one loss with
respect to training time. Additionally, as Table 7 shows, QuickDD Scaling Once was
significantly faster than EM-DD on seven of the nine datasets and still faster on the
same seven datasets when the Scaling Only heuristic was applied in EM-DD. This is
despite the fact that all points in all positive training bags were considered as candi-
date target points by the algorithm, while EM-DD only considered instances from three
random bags as starting points. This shows that QuickDD Scaling Once is faster over-
all than all previous algorithms, while retaining the classification performance of the
slower methods.

6 Boosting Diverse Density Learning

The above results show that simple heuristics can improve the runtime of diverse den-
sity learning. However, they do not increase accuracy in a significant manner. In this
section, we discuss what modifications are required to successfully apply boosting to
diverse density learning, and present experimental results demonstrating that significant
increases in accuracy can be obtained in this manner. We use the Real AdaBoost algo-
rithm described in [10]. In contrast to the original AdaBoost method [9], which is based
on 0/1 predictions from the weak learner, this boosting method can exploit predictions
that are class probability estimates.

As in the original AdaBoost, Real AdaBoost is a sequential process for learning an
ensemble of weak classifiers. In each iteration, a weak classifier is learned based on a
reweighted version of the training data. Initially, all examples receive the same weight.
In subsequent iterations of the boosting process, the weight of an example, i.e. bag B
in the context considered here, is updated based on the current hypothesis h using the
following equation:

w := w × e−0.5 log
P r({+,−}|B,h)

1−P r({+,−}|B,h)

where Pr({+,−}|B, h) is the predicted class probability for the observed class of the
bag (either + or −). Thus, the square root of the predicted odds ratio for the observed
class label determines the update. To reduce the likelihood of overfitting, the exponent
can be moderated by multiplying it with a shrinkage value s ∈ (0, 1].

Boosting diverse density learning becomes computationally feasible by applying
the QuickDD Scaling Once variant discussed above as the weak learner. Real AdaBoost
requires the underlying learning algorithm to be able to deal with weighted examples,
but it is straightforward to modify diverse density learning to do this by replacing the
likelihood function with a weighted likelihood and adapting the gradient correspond-
ingly. If wi is the weight of a bag, then we now maximize:∑

i

w+
i logPr(+|B+

i , h) +
∑

i

w−i logPr(−|B−i , h).

However, application of Real AdaBoost to the datasets considered above does not
yield significant improvements in accuracy compared to applying stand-alone QuickDD
Scaling Once itself directly to the data. We found that two further changes to the diverse
density method are critical to render application of boosting successful:

Table 10. Percentage Accuracy for Boosted QuickDD Scaling Once and (optimized) MILES

Dataset No boosting 10 boosting 100 its. Best MILES
iterations shrink. 0.5 configuration

musk1 86.4±10.4 88.2±11.5 89.8±10.9 89.1
musk2 87.6±11.4 88.1±10.0 90.8±9.1 91.6
mutagenesis3-atoms 68.5±8.2 80.6±7.6 ◦ 84.7±7.2 ◦ 83.9
mutagenesis3-bonds 76.7±8.3 80.8±8.9 87.6±7.5 ◦ 86.3
mutagenesis3-chains 78.4±7.9 80.3±7.8 84.6±7.8 86.0
tiger 75.6±9.6 81.1±9.4 82.1±9.2 81.7
fox 64.0±10.3 62.2±9.1 64.4±8.7 64.9
elephant 81.7±9.0 84.5±8.2 86.9±7.9 84.1

◦ statistically significant increase vs baseline
(no significance tests were performed wrt MILES-based results)

1. Symmetric learning Diverse density learning as discussed so far requires the user
to decide prior to learning which class is to be treated as the positive class. The
first modification is to eliminate this requirement: the basic algorithm is run twice,
in each class treating one class as the positive class and the other class as the neg-
ative one. The final concept output is then the one of the two point-and-scaling
concepts—one representing a negative target point and one representing a (tra-
ditional) positive one— that maximizes the (weighted) conditional loglikelihood.
This means that different classes can be viewed as the positive class in different
iterations of the boosting process.

2. One-sided prediction Perhaps the most important change is to localize the influ-
ence of each diverse density classifier in the instance space. To this end, we change
the diverse density model so that the probability predicted for the positive class can
never drop below 0.5 (and, consequently, the probability for the negative class can
never exceed 0.5). The new model is:

Pr(+|Bi, h) = 1− 0.5×
∏
j

(1− Pr(+|Bij , h))

This has the effect that the algorithm can abstain from making a prediction in the
boosting process: a predicted probability of 0.5 means that the odds ratio becomes 1
in the above weight update. Thus, the influence of a weak classifier can be restricted
to a small area around the concept that was found. The likelihood is optimized wrt
this adjusted model.

Table 10 compares the accuracy of the boosted QuickDD Scaling Once algorithm
with the above modifications to that of stand-alone QuickDD Scaling Once, which is the
baseline in the left-most column, on the real-world datasets used in our study. Results
for boosting with 10 iterations and no shrinkage, and boosting with 100 iterations and
shrinkage 0.5 are included. To account for class imbalance, the boosting process was
initialized with a model that predicts the class prior probabilities from the training data.
No shrinkage was applied to the predictions of this initial model. The feature scaling
was initialized to 100.0 for the mutagenesis datasets when boosting because poor results
were obtained for value 1.0, most likely due to the more localized models being used.
Note that runtime (not shown) is linear in the number of boosting iterations.

For reference the table also contains the best results obtained from different variants
of the state-of-the-art MILES multi-instance learning method [4], taken from [8]. As
discussed at the end of Section 3, MILES produces a similar model. The results for
MILES were generated under the same experimental conditions and are thus directly
comparable. Note that these results are for the best configurations tried—in several
cases the performance of the standard MILES approach could be improved by replacing
the 1-norm support vector machine from [4] with another learning algorithm [8]—so
they are likely to be optimistic. Despite this optimistic bias, we can see that boosted
diverse density learning is highly competitive.

7 Conclusions

Our results show that PWDD Iterative, a previously proposed MI learning algorithm
that has not received much attention in the literature, perhaps due to a lack of published
empirical results, is very competitive with the more well-known EM-DD algorithm,
both in terms of classification accuracy and training time. Moreover, we found that the
repeated iteration of the algorithm is in fact unnecessary on the datasets we considered,
as similar accuracy could be achieved with a single iteration of PWDD.

Our simplified QuickDD Iterative variant of PWDD, which provides convergence
guarantees, improved results further. When restricted to a single iteration (QuickDD
Scaling Once), the algorithm was very competitive with PWDD and EM-DD for classi-
fication accuracy, while enjoying faster training times. Our results show that instances
from positive training bags are often a sufficient representation for the location of di-
verse density target points. This heuristic dramatically reduces the search space, en-
abling more efficient algorithms for learning diverse density concepts.

We also showed how boosting can be applied in conjunction with QuickDD Scaling
Once to obtain state-of-the-art accuracy on the datasets investigated. Three changes to
the algorithm were necessary to obtain improved accuracy using boosting: incorpora-
tion of bag weights, symmetric treatment of classes, and enabling one-sided prediction.
With these changes, boosting diverse density learning appears to be a viable and prac-
tical alternative to other advanced methods for multi-instance learning.

References

1. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance
learning. In: Neural Information Processing Systems. pp. 561–568. MIT Press (2003)

2. Andrews, S., Hofmann, T.: Multiple-instance learning via disjunctive programming boosting.
In: NIPS (2003)

3. Auer, P., Ortner, R.: A boosting approach to multiple instance learning. In: European Con-
ference on Machine Learning. pp. 63–74. Springer (2004)

4. Chen, Y., Bi, J., Wang, J.Z.: MILES: Multiple-instance learning via embedded instance se-
lection. IEEE Pattern Analysis and Machine Intelligence 28(12), 1931–1947 (2006)

5. Chen, Y., Wang, J.Z.: Image categorization by learning and reasoning with regions. Journal
of Machine Learning Research 5, 913–939 (2004)

6. Chevaleyre, Y., Zucker, J.D.: Solving multiple-instance and multiple-part learning problems
with decision trees and rule sets. Application to the mutagenesis problem. In: Conference
of the Canadian Society for Computational Studies of Intelligence. pp. 204–214. Springer
(2001)

7. Dietterich, T.G., Lathrop, R.H., Lozano-Perez, T.: Solving the multiple instance problem
with axis-parallel rectangles. Artificial Intelligence 89(1–2), 31–71 (1997)

8. Foulds, J.R., Frank, E.: Revisiting multiple-instance learning via embedded instance selec-
tion. In: Proc 21st Australasian Joint Conference on Artificial Intelligence. pp. 300–310.
Auckland, New Zealand, Springer (2008)

9. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: International
Conference on Machine Learning. pp. 148–156. Morgan Kaufmann (1996)

10. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical view of
boosting. Annals of Statistics 28(2), 337–407 (2000)

11. Gärtner, T., Flach, P.A., Kowalczyk, A., Smola, A.: Multi-instance kernels. In: International
Conference on Machine Learning. pp. 179–186. Morgan Kaufmann (2002)

12. Krogel, M.A., Wrobel, S.: Feature selection for propositionalization. In: International Con-
ference on Discovery Science. pp. 430–434. Springer (2002)

13. Maron, O.: Learning from ambiguity. Ph.D. thesis, Massachusetts Institute of Technology
(1998)

14. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Neural Infor-
mation Processing Systems. MIT Press (1998)

15. Nadeau, C., Bengio, Y.: Inference for the Generalization Error. Machine Learning 52(3),
239–281 (2003)

16. Ray, S., Craven, M.: Supervised learning versus multiple instance learning: an empirical
comparison. In: International Conference on Machine Learning. pp. 697–704. Omnipress
(2005)

17. Reutemann, P.: Development of a Propositionalization Toolbox. Master’s thesis, Albert Lud-
wigs University of Freiburg (2004)

18. Srinivasan, A., Muggleton, S., King, R., Sternberg, M.: Mutagenesis: ILP experiments in a
non-determinate biological domain. In: Inductive Logic Programming. pp. 217–232. GMD-
Studien (1994)

19. Viola, P.A., Platt, J.C., Zhang, C.: Multiple instance boosting for object detection. In: NIPS
(2005)

20. Wang, J., Zucker, J.D.: Solving the multiple-instance problem: A lazy learning approach. In:
International Conference on Machine Learning. pp. 1119–1125. Morgan Kaufmann (2000)

21. Weidmann, N., Frank, E., Pfahringer, B.: A two-level learning method for generalized multi-
instance problems. In: European Conference on Machine Learning. pp. 468–479. Springer
(2003)

22. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques. Mor-
gan Kaufmann (2005)

23. Xu, X.: Statistical Learning in Multiple Instance Problems. Master’s thesis, University of
Waikato (2003)

24. Xu, X., Frank, E.: Logistic regression and boosting for labeled bags of instances. In: Pacific-
Asia Conference on Knowledge Discovery and Data Mining. pp. 272–281. Springer (2004)

25. Zhang, Q., Goldman, S.: EM-DD: An improved multiple-instance learning technique. In:
Neural Information Processing Systems. pp. 1073–1080. MIT Press (2002)

26. Zhang, Q., Yu, W., Goldman, S., Fritts, J.: Content-based image retrieval using multiple-
instance learning. In: International Conference on Machine Learning. pp. 682–689. Morgan
Kaufmann (2002)

