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ABSTRACT
Detecting unsolicited content and the spammers who create
it is a long-standing challenge that affects all of us on a daily
basis. The recent growth of richly-structured social net-
works has provided new challenges and opportunities in the
spam detection landscape. Motivated by the Tagged.com1

social network, we develop methods to identify spammers
in evolving multi-relational social networks. We model a so-
cial network as a time-stamped multi-relational graph where
vertices represent users, and edges represent different ac-
tivities between them. To identify spammer accounts, our
approach makes use of structural features, sequence mod-
elling, and collective reasoning. We leverage relational se-
quence information using k -gram features and probabilistic
modelling with a mixture of Markov models. Furthermore,
in order to perform collective reasoning and improve the
predictive power of a noisy abuse reporting system, we de-
velop a statistical relational model using hinge-loss Markov
random fields (HL-MRFs), a class of probabilistic graphical
models which are highly scalable. We use Graphlab Cre-
ateTMand Probabilistic Soft Logic (PSL)2 to prototype and
experimentally evaluate our solutions on internet-scale data
from Tagged.com. Our experiments demonstrate the effec-
tiveness of our approach, and show that models which in-
corporate the multi-relational nature of the social network
significantly gain predictive performance over those that do
not.

∗Contribution partly performed while under internship at
if(we) Inc., formerly Tagged Inc.
†Currently with Niara, Inc., Sunnyvale, CA.
1Tagged.com was founded in 2004, has over 300 million reg-
istered members, and is aimed towards fostering new con-
nections between people.
2http://psl.umiacs.umd.edu
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1. INTRODUCTION
Unsolicited or inappropriate messages sent to a large num-

ber of recipients, known as “spam”, can be used for various
malicious purposes, including phishing and virus attacks,
marketing of objectionable materials and services, and com-
promising the reputation of a system. From printed ad-
vertisements to unsolicited phone calls, spam has been a
perennial problem in modern human communication. With
the emergence of the Internet, spammers have found a cost-
effective medium to reach a broader audience than was pre-
viously possible. Email spam is almost as old as the Internet
itself. The first email spam was sent in 1978 to all several
hundred users of ARPANET [1].

More recently, social media has given spammers a new
and effective medium to spread their content. Using social
media platforms, spammers can disguise themselves as le-
gitimate users and engage in realistic looking interactions.
They can use these platforms to send messages to users,
leave spam comments on popular pages, and reply to legiti-
mate comments using spam content. Such diversity of choice
has often increased spammers’ ability to conceal their inten-
tions from traditional spam filters. According to a study by
Nexgate [2], social spam grew by more than 355% between
January to July of 2013, one in 200 social messages contain
spam, and 5% of all social apps are spammy.

While content-based approaches have been shown to be
effective in stopping spam in email and the web, they can
be manipulated by sophisticated spammers via incorporat-
ing content randomness. Unlike in email and the web, social
media enables spammers to split their content across multi-
ple messages in order to bypass spam filters. Link-based
approaches that leverage the connectivity of the entities,
have been combined with content-based methods to build
more effective methods. While it is easier to pass tradi-
tional content-based filters, behavioral patterns and graph
properties of the users’ interactions are harder to manipu-
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Figure 1: A time-stamped multi-relation social network with
legitimate users and spammers. Each link 〈v1, v2〉 in the
network represents an action (e.g. profile view, message, or
poke) performed by v1 towards v2 at specific time t.

late. Furthermore, many social networks can not monitor
all the generated contents due to privacy and resources con-
cerns. Content-independent frameworks, such as the one
proposed in this paper, can be applied to systems that pro-
vide maximum user privacy with end-to-end encryption.

Perhaps the most important difference between social net-
works and email or web graphs is that social networks have
a multi-relational nature, where users have relationships of
different types with other users and entities in the networks.
For example, they can send messages to each other, add
each other as friends, “like”each other’s posts, and send non-
verbal signals such as “winks” or “pokes.” Figure 1 shows a
representation of a social network as a time-stamped multi-
relation graph. The multi-relational nature provides more
choices for spammers, but it also empowers detection sys-
tems to monitor patterns across activity types, and time.
In this paper, we propose a content-independent framework
which is based on the multi-relational graph structure of
different activities between users, and their sequences.

Our proposed framework is motivated by Tagged.com, a
social network for meeting new people which was founded
in 2004 and has over 300 million registered members. More
generally, the framework is applicable to any multi-relational
social network. Our goal is to identify sophisticated spam-
mers that require manual or semi-automated intervention
by the administrative security team. These spammers have
already passed initial classifiers and know how to manipu-
late their accounts and contents to avoid being caught by
automatic filters. We show that our framework significantly
reduces the need for manual administration to control spam.

Our framework consists of three components. First, we
extract graph structure features for each of the relations
and show that considering the multi-relational nature of the
graphs improves the performance. Second, we consider the
activity sequence of each user across these relations and ex-
tract k -gram features and employ mixtures of Markov mod-
els to label spammers. Third, we propose a statistical re-
lational model based on hinge-loss Markov random fields to
perform collective reasoning using signals from an abuse re-
porting system in the social network.

The following sections formally define the problem and our
solution framework along with an experimental validation of
our approach on internet-scale data from Tagged.com.

2. PROBLEM STATEMENT
We represent a social network as a directed time-stamped

dynamic multi-relational graph G = 〈V, E〉, where V is the
set of vertices of the form v = 〈f1, . . . , fn〉 representing
users and their demographic features fi, and E is the set
of directed edges of the form e = 〈vsrc, vdst, ri, ti〉 represent-
ing their interactions, relation type ri, and a discrete time-
stamp ti. The social spam detection problem is to predict
whether vi with an unobserved label is a spammer or not,
based on the given network G and a set of observed labels
for already identified spammers. Since the deployed security
system could employ different measures based on the clas-
sification confidence, we are interested in (un-normalized)
probabilities or ranking scores of the likelihood that each
user is a spammer. In other words, the problem is assign-
ment of a score (e.g., a probability) to user accounts to rank
them from the most to the least probable spammer in the
system: c : vi → [0, 1].

3. OUR METHOD
In our framework, we focus on three different mechanisms

to identify spammers and malicious activities. We first cre-
ate networks from the user interactions and compute net-
work structure features from them. As these are evolving
networks, each user generates a sequence of actions with the
passage of time. Mining these sequences can provide valu-
able insights into the intentions of the user. We use two
methods to study these sequences and extract features from
them. We use the output of these methods as features to
classify spammers. We then employ a collective model to
identify spammer accounts only based on the signals from
the abuse reporting system (Greport) as a secondary source
to reassure predictions. The following sections discuss our
framework and extracted features in more details.

3.1 Graph Structure Features (XG)
We create a directed graph Gr = 〈V, Er〉 for each relation r

in the social network, where vertices V consist of users, and
edges Er represent interactions of type r between users, e.g.
if user1 sends a message to user2 then Gmessage will contain v1

and v2 representing the two users, and e1,2 representing the
relation between them. We have ten different graphs each
containing the same users as vertices but different actions
as edges.

We use Graphlab CreateTM3 to generate features based
on each of these graphs for each user. We use six graph
analytics methods mi to compute the features. Using each
mi we create a set of features for each relation graph Gr as
following:

Xmi
Gr =

[
Xmi
Gr1

. . . Xmi
Grn

]
where mi is one of the graph analytics methods described
below, and ri is one of the relationships considered in the
study.

We then use these features together to get a complete
multi-relational graph feature-set, as the following:

Xm
Gr =

[
Xm1
Gr . . . X

mk
Gr

]
The graph analytics methods mi we use to extract the

features from each relation network are described in the fol-

3http://dato.com/products/create
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lowing section. Each of these algorithms provieds differ-
ent perspectives on the local connectivity of the graph and
neighborhood characteristics of each user. Our goal is to
capture the structural differences between spammers’ and
legitimate users’ multi-relational neighborhood graph.

PageRank:
PageRank [3], is a well known ranking algorithm proposed
for ranking websites, and computes a score for each node
by considering the number and quality of links to a node.
The algorithm is based on the underlying assumption that
important nodes receive more links from other nodes.

Degree:
We compute the total degree, in-degree, and out-degree of
each node for each relation, which correspond to the total
number of activities a user has been involved in, the num-
ber of communications (or actions) a user received, and the
number of actions the user performed.

k-core:
k -core [4] is a centrality measure that is based on the graph
decomposition via a recursive pruning of the least connected
vertices. The value each vertex receives depends on the step
in which the vertex is eliminated from the graph. e.g, ver-
tices removed on the third iteration receive the value three.

Graph Coloring:
Graph coloring [5] is an assignment of colors to elements
(here vertices) of a graph, such that no two adjacent vertices
share the same color. Using a greedy implementation, we
obtain the color identifier of each vertex as a feature.

Connected Components:
A connected component [6] is a group of vertices with a
path between each vertex and all other vertices in the com-
ponent. A weakly connected component is a maximal set of
vertices such that there is an undirected path between any
two vertices in the set. We compute the weakly connected
component on each graph and extract the component iden-
tifier and size of the component that the vertex participates
in as features.

Triangle Count:
The triangle count [7] of a vertex is the number of triangles
(a complete subgraph of three vertices) in the graph the
vertex participates in. Such number is an indication of the
connectivity of the graph around that vertex.

3.2 Sequence-Based Features (XS)
Sequence classification is used in many domains, includ-

ing biology and health-informatics, anomaly detection, and
information retrieval [8]. In dynamically evolving multi-
relational social networks, each user vi generates a sequence
of edges via their actions as the following:

Svi = 〈rp, . . . , rq〉

Spammers typically pursue specific purposes in the net-
work and it is likely that their sequence of actions diverge
from the norm. In this section we study these sequences and
provide two different solutions for classifying users based on
their activity sequences. It is important to note that such

an approach would not be possible if the network were not
multi-relational.

Sequential k-gram Features
The simplest way to represent a sequence with features is
to treat each element in the sequence as a feature indepen-
dently. However, the order of the sequence cannot be cap-
tured with this approach. Furthermore, in our scenario the
values of these features will be the same as the out-degree
for each vertex, which we previously computed in the graph-
based features. To address this, a short sequence segment of
k consecutive actions, called a k -gram, can be used to cap-
ture the order of events [8]. The sequence can be represented
as a vector of the frequencies of the k -grams. To keep the
feature space computationally manageable we chose bigram
sequence features where k = 2. For example, the number
of times a user vi sent a message after performing a profile
view, would be the value for the feature xviprofileview-message.
The bigram feature set for the sequence S will be the fol-
lowing:

XSB =
[
Xr1r1 . . . Xrprq . . . Xrnrn

]
where ri is one of the relationships considered in the study,
Xrprq =

[
xv1rprq . . . x

vn
rprq

]ᵀ
, and xvirprq is the total number of

times user vi performed an action of type rq consecutively
after performing rp.

Mixture of Markov Models
While k -gram features capture some aspects of the order of
elements in the sequence, they may miss patterns in longer
sequences. Increasing k will rapidly increase the feature
space, introducing computational barriers and estimation
challenges due to feature sparsity. Instead, to capture the
salient information from longer sequence chains, and to study
the predictive power of this information, we construct a sim-
ple generative model for sequence data. The model is equiv-
alent to the chain-augmented naive Bayes model of [9], a
special case of the tree-augmented naive Bayes model [10]
which has been shown to be effective in language modelling.
The model posits that each user’s actions are generated via a
mixture of Markov models. In more detail, each class (spam-
mer or not spammer) is associated with a mixture compo-
nent y. Conditional on the class (mixture component) y for
a user, that user’s sequence of actions are assumed to be
generated from a Markov chain specific to that class. The
joint probability for a user’s class y and action sequence
xi, . . . , xn is given by

P (y, x) = P (y)P (x1|y)

n∏
i=2

P (xi|xi−1, y) ,

which we summarize with a directed graphical model dia-
gram in Figure 2. We place symmetric Dirichlet priors on the
parameters of the discrete distributions P (y), P (x1|y), and
P (xi|xi−1, y), and compute maximum a posteriori (MAP)
estimates of them, which are readily obtained as the propor-
tion of each outcome in the training data, with the counts
first adjusted by adding the Dirichlet smoothing parame-
ter α = 1. Finally, at test time we compute the posterior
probability of the user’s class label given the observed action
sequence x via Bayes rule, P (y|x) ∝ P (x|y)P (y) = P (y, x).

There are multiple methods to incorporate the predictions
from this model into our framework. We simply use the
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y

x1 x2 xn-1 xn...

Figure 2: The directed graphical model for the mixture of
Markov models / chain-augmented naive Bayes model, for
one user. In the diagram, y indicates the label (spammer or
not) and xi represents the ith action performed by the user.

ratio of posterior probabilities and their logarithmic forms
as a small feature-set (XSM ) for our classifier.

3.3 Collective Classification with Reports
Most websites that enable users to publish content also

provide an abuse reporting mechanism for other users to
bring malicious behavior to the system’s attention. How-
ever, these systems do not necessary offer clean signals. Spa-
mmers themselves often randomly report other users (spam-
mers and legitimate users) to increase the noise, legitimate
users often have different standards for malicious behaviors,
and users may report others for personal gains such as cen-
sorship or blocking an opponent in a (social) game from
accessing the system. A model that can extract sufficient
information from the relational report feature, can enhance
the administrative team’s performance by focusing their at-
tention, and can also provide an additional feature or parallel
mechanism for spam classification.

We propose a model based on hinge-loss Markov random
fields [11] to collectively classify spammers within the re-
ported users, and assign credibility scores to the users of-
fering feedback via the reporting system. Using this model
a better ranking of the reported users based on their prob-
ability of being spammers can be provided to the security
administration team. The hinge-loss formulation has the ad-
vantage of admitting highly scalable inference, regardless of
the structure of the network.

Hinge-loss Markov Random Fields
Hinge-loss Markov random fields (HL-MRFs) are a general
class of conditional, continuous probabilistic models [11, 12].
HL-MRFs are log-linear models whose features are hinge-
loss functions of the variable states. Through constructions
based on soft logic, hinge-loss potentials can be used to
model generalizations of logical conjunction and implication.
A hinge-loss Markov random field P over random variables
Y and conditioned on random variables X defines a condi-
tional probability density function as the following:

P (Y|X) =
1

Z(λ)
exp

[
−

m∑
j=1

λjφj(Y,X)

]
,

where Z is the normalization constant of the form

Z =

∫
Y

exp

[
−

m∑
j=1

λjφj(Y,X)

]
.

In the above, φ is a set of m continuous potential of the form

φj(Y,X) =
[

max {`j(Y,X), 0}
]pj ,

where ` is a linear function of Y, and X and pj ∈ {1, 2}.
Probabilistic Soft Logic (PSL) [12] uses a first-order log-

ical syntax as a templating language for HL-MRFs. HL-
MRFs have achieved state-of-the-art performance in many
domains including knowledge graph identification [13], un-
derstanding engagements in MOOCs [14], biomedicine and
multi-relational link prediction [15, 16], and modelling social
trust [17]. A typical example of a PSL rule is

λ : P (a, b) ∧Q(a)→ R(b),

where P , Q, and R are predicates, a and b are variables,
and λ is the weight associated with the rule, indicating its
importance. For instance, P (a, b) can represent a relational
edge in the graph such as Reported(a, b), and Q(a) could
represent a value for a vertex such as Credible(b). Each
grounding forms a ground atom, or logical fact, that has
a soft-truth value in the range [0, 1]. The rules can en-
code domain knowledge about dependencies between these
predicates. PSL uses the Lukasiewicz norms to provide re-
laxations of the binary connectives to soft-truth values. A
ground instance of a rule r (rbody −→ rhead) is satisfied when
the value of rbody is not greater than the value of rhead. ` is
defined to capture the distance to satisfaction for rules:

` = val(rbody)− val(rhead) .

HL-MRFs Collective Model for Reports
The goal of this model is to use reports to predict spammers.
We study three HL-MRFs models to incorporate the report-
ing users’ credibility into the reporting system and improve
the predictability of the reports. We show that collective
reasoning over credibility of the reporting user and the prob-
ability of the reported user being an spammer, increases the
classification performance of the system.

Our collective HL-MRFs model uses the report relation
graph (Greport), and is based on the intuition that the credi-
bility of a user’s abuse reporting should increase when they
report users that are more likely to be spammers. Hence, if a
user reports other users whom there are other evidence sup-
porting them being spammers, the credibility of that person
should increase. On the other hand, if the user reports an-
other user that is unlikely to be a spammer, the credibility
of the reporting user should decrease.

Credible(v1) ∧Reported(v1, v2)→ Spammer(v2)

Spammer(v2) ∧Reported(v1, v2)→ Credible(v1)

¬Spammer(v2) ∧Reported(v1, v2)→¬Credible(v1)

Prior-Credible(v)→ Credible(v)

¬Prior-Credible(v)→¬Credible(v)

¬Spammer(v)

Figure 3: Collective HL-MRFs model to predict spammers
based on the reports from other users.

We propose the model shown in Figure 3 to capture the
collective intuition. We incorporate prior credibility of the
reporting users based on the past reporting behavior into
the model. The negative prior on SPAMMER is included
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in the model to complement the first rule that increases the
score of users being spammers. To study the effect of each
part of the model, we experimentally compare the proposed
collective model with two simpler HL-MRFs models that do
not contain the collective reasoning and credibility priors in
section 5.4.

4. DATA
The dataset4 was collected from the Tagged.com social

network website, which is a network for meeting new peo-
ple, and has multiple methods for users to make new con-
nections. Tagged has various methods to deal with spam. It
uses several registration and activation filters to identify and
block spam accounts based on traditional methods such as
content and registration information and patterns. Tagged
also employs a reporting mechanism that users can report
spammers to the system. An administrative security team
also monitors the network for malicious behaviors and man-
ually blocks spammers. Our goal in this study is to identify
sophisticated spammers that require manual intervention by
the security team. These spammers have already passed ini-
tial classifiers and know how to manipulate their content to
avoid being caught by automatic filters.

The purpose of the social network affects its susceptibility
to spam. A social network which is designed for connecting
the users who already know each other, can control spam
by limiting the communications between users who are not
already connected in the network. However, a social network
that promotes finding new connections may like to impose
minimum limitations on how users interact. Tagged, which
is a social network for meeting new people, has multiple
venues for users to communicate without much restriction.

Another challenge with identifying spammers in multi-
purpose social networks such as Tagged is that users join the
network for different reasons. For example, users may come
to Tagged to play social games such as Pets and MeetMe,
to find romantic relationships, or simply to spend time with
virtual connections. Not only they will generate different
behavioral patterns, they will use security measures such as
abuse reporting mechanism differently and introduce noise
to it.

In our experiments, all the users who had at least one
activity in the sampling time frame were included in the
sample dataset. More formally our initial sample included
the following elements:

V = { v | ∃ e = 〈v, v∗, r∗, tk〉 ∈ Eall ∧ tb ≤ tk ≤ te}
E = { e = 〈vi, vj , r∗, tk〉 | ∃ vi, vj ∈ V ∧ ts ≤ tk ≤ te}

where v∗ indicates any user in the network, r∗ indicates any
type of action in the study, Eall indicates all the edges in
the Tagged network, and tb and te indicate the time of the
beginning and the end of the sampling period.

To perform a retrospective study, we chose tb and te such
that enough time had passed since the sampling period by
the time we accessed the data (taccess), so that most of the
spam accounts were identified and labeled. We then removed
the users who had deactivated their accounts themselves by
taccess, because we could not determine their labels. The
remaining users were labeled as spam if their accounts has

4An anonymized sample of the multi-relational part of the
dataset along with our code for the experiments can be found
here: http://github.com/shobeir/fakhraei_kdd2015.

been manually canceled by a security team by taccess. Al-
though the security team cancels accounts for multiple rea-
sons, not just spam, most of the canceled accounts are due
to malicious activities. For simplicity, we labeled all the can-
celed accounts as spammers. Ten different activities on the
website were selected during the sampling time frame. The
activities included in the study are: viewing another user’s
profile, sending friend requests, sending messages, sending
luv, sending winks, buying or wishing others in the Pets
game, clicking yes or no in the MeetMe game, and reporting
other users for abuse.

There are more effective ways to sample the network in or-
der to conserve its characteristics [18, 19, 20]. However, for
practical reasons and ease of deployment, we have chosen
the simple time-based sampling method. Further perfor-
mance improvements may be achieved via better sampling
employments. The spammer accounts that were selected for
this study could initially bypass Tagged deployed preventa-
tive measures and successfully perform at least one action
in the network. Although they could be identified within
a short period of time after their activity, their identifica-
tion required a manual or semi-automated procedure by the
members of the security team. Not only are these spammers
harder to identify, they are also very rare in the dataset,
causing a huge class imbalance.

Table 1 shows some statistics from the sample we used.
These numbers do not represent the statistics of the Tagged
social network, as they have been altered by limiting the
number of action types in the study as well as eliminating
users with deactivated accounts at taccess (which is later than
the sample period). Furthermore, only the users who per-
formed an action in the sampling period were included in
the dataset.

Table 1: Data Sample Statistics.

Entity Count

|V| (total users) 5,607,454
|E| (total actions) 912,280,409
max(|Er|) (number of actions that are
most frequent action type)

350,724,903

min(|Er|) (number of actions that are
least frequent action type)

137,550

total users labeled as spammers (%3.9) 221,305

All of our experiments are based on the relational data in
the following form:

〈ti, vsrc, vdst, rj〉

where ti is the time stamp, vsrc is the user who initiated
the action, vdst is the user the action was towards, and ri
categorizes the type of action.

5. EXPERIMENTAL VALIDATION
We performed four sets of experiments to evaluate the

proposed methods. First we study the graph structure prop-
erties and compare the multi-relational approach with only
considering a single relation. We also study using one graph
analytics algorithm as a feature, comparing to having fea-
tures from multiple methods. We then study the effective-
ness of sequence mining features and combine them with
graph-based methods to measure the overall performance

1773

http://github.com/shobeir/fakhraei_kdd2015


enhancements. We then include only three demographics
features for each user to measure their influence on the
performance. Finally we perform collective reasoning over
abuse reports and measure the improvement of the predic-
tions with this method.

For our experiments we used Graphlab CreateTM and the
Java-based open-source Probabilistic Soft Logic (PSL),5 on
a single Ubuntu machine with 32GB RAM and 3.2GHz CPU
(4 cores). For classification, we used Gradient-Boosted De-
cision Trees which is a collection of decision trees combined
through a technique called gradient boosting [21].

The deployment options of the framework and what ac-
tions are planned to be taken on the identified spammer
accounts determine which performance metrics are more ap-
propriate for this task. High precision lets the spam accounts
be blocked without manual intervention, and without con-
cerns of the system harming legitimate users. High recall
allows the system to identify the legitimate users with more
confidence and clear the environment via deploying measures
such as CAPTCHA and additional account verifications for
the users with suspicious status. Hence, the appropriate
metric to measure the performance of this system is the
Precision-Recall curve. The ROC curve could also be use-
ful, however, due to the high class-imbalance, it would not
provide much insight, and unless properly adjusted, it would
result in over-optimistic estimates. We report the area under
Precision-Recall curve (AUPR) and the area under the ROC
curve (AUROC) for the experiments. We used 10-fold cross-
validation to estimate the performance of each method and
feature-set. Unless stated otherwise, the reported numbers
represent mean and standard deviation over 10-fold cross-
validation.

5.1 Graph Structure Features
Table 2 shows the average results of classification via graph-

based features. The first row indicated the best results from
using a single relation with features from all the graph-based
algorithms. The second row shows the best graph-based fea-
ture with all the relations. Comparing the results from the
two rows suggests that combining different relations is more
effective than combining features from different algorithms
on a single relation. Using all algorithms to compute fea-
tures on all relation graphs results in the best performance
for graph-based methods.

Table 2: Classification with graph-based features.

Experiment AUPR AUROC[
Xm
Gri

]
1 Relation, k Methods 0.187±0.004 0.803±0.001[

Xmi
Gr

]
n Relations, 1 Method 0.285±0.002 0.809±0.001[

Xm
Gr

]
n Relations, k Methods 0.328±0.003 0.817±0.001

5.2 Sequence-based Features
Next, we experimentally evaluated the sequence-based fea-

tures. First, we study their effectiveness independently, and
then we measure their performance in combination with the
graph-based features. To compute the bigram features, we
first sorted all of the activities in our dataset based on user

5http://psl.umiacs.umd.edu

IDs and timestamps via the standard external sort function
in Linux. We did a single pass on the sorted file to compute
the bigram features.

Table 3: Classification with k -gram features.

Experiment AUPR AUROC[
XSB

]
k-gram features 0.471±0.004 0.859±0.001[

XSB Xm
Gr

]
k-gram & graph

features

0.543±0.005 0.914±0.001

Table 3 shows the results of classification using the bigram
features. The second row suggests that a model that uses
both graph-based and k -gram features outperforms the ones
that use them independently. Precision-Recall and ROC
curves from graph-based and k -gram features are shown in
Figure 4.

We further study the sequence-based classification with
the Mixture of Markov Models (MMM) approach. We did
a single pass on the sorted file we already generated for the
bigram features to compute the probabilities for this model.
We then used the probabilities generated from this model in
logarithmic and ratio forms as features for classification.

Table 4: Classification with mixture of Markov models.

Experiment AUPR AUROC[
XSM

]
MMM 0.246±0.009 0.821±0.003[

XSM XSB

]
MMM & k-gram 0.468±0.012 0.860±0.002[

XSM XSB Xm
Gr

]
MMM & k-

gram & graph

0.550±0.005 0.914±0.002

The results from Table 4 shows the classification perfor-
mance with these features, which suggests minimal improve-
ment employing longer sequence models. This may suggest
that the bigram features can incorporate enough signal to
capture spam activity in a multi-relational network. How-
ever, computing the Mixture of Markov Models does not im-
pose much overhead when extracting bigram features, and
can be done within the same process.

5.3 Demographic Information
Many people use Tagged to find new relationships. We

anticipate that in such environment users behave differently
based on their demographics. To capture this point, we
added three features (XD) to our model: age, gender, and
time since registration. Age and gender highly improved the
classification results as they tend to be most discriminative
of behavioral patterns. Another feature that we included in
our model is the time past since registration. As mentioned
earlier we labeled all the cancelled accounts for malicious
activities as spammers. However, these users have different
behavioral patterns, where spammers who mainly mass ad-
vertise, may use much newer accounts, in contrast to users
who have been blocked due to misbehaviors, and have been
active in the system much longer.

Table 5 shows the significant improvements of the results
when including these features in different models. Figure 4
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Figure 4: Precision-Recall and ROC curves for models with k-gram and graph-based features. Using both features with user
demographics significantly improve the results.

shows the Precision-Recall and ROC curves of the complete
framework.

Table 5: Classification when including user demographics
information.

Experiment AUPR AUROC[
XD XSB

]
Demo. & k-gram 0.689±0.006 0.935±0.001[

XD Xm
Gr

]
Demo. & graph 0.701±0.002 0.950±0.001[

XD XSB Xm
Gr

]
Demo. & k-

gram & graph

0.778±0.001 0.963±0.001[
XD XSM XSB Xm

Gr

]
Demo.

& MMM & k-gram & graph

0.779±0.002 0.963±0.001

5.4 Collective Classification with Reports
The reporting system can have useful information to de-

tect spammers. We studied the effectiveness of our proposed
collective model (in Figure 3) to extract useful signals from
this relation. We first designed a baseline model shown in
Figure 5a to only use the reports to detect spammers. This
model gives similar results to assigning total count of the
reports for each user as their score of being a spammer. We
then designed the model shown in Figure 5b to use the re-
ports and prior credibility of the reporting user to detect
spammers. This model gives similar results to assigning to-
tal weighted count of the reports for each user as their score
of being a spammer, where reports are weighted by the cred-
ibility of the reporting users.

To perform the experiments we have only used Greport,
which is a sparse graph. Our collective model is aimed to
propagate information between the reported users’ likeli-
hood of being spammer, through the credibility of the re-
porting users. In order for information to propagate in the

model, each reporting user should at least have reported two
other users. Hence, we removed the vertices with out-degree
less than two. We then performed 10-fold cross validation to
compare the three models and study the effectiveness of the
collective model. We used the ratio of the correctly reported
spammers from the training data as a simple prior on cred-
ibility for each user. Potentially more effective priors could
incorporate the the count and the frequency of the reports
as well.

Reported(v1, v2)→ Spammer(v2)

¬Spammer(v)

(a) HL-MRFs model that only uses the reports to detect spam-
mers. This model would give similar results to assigning total
count of the reports for each user as their score of being a spam-
mer.

Credible(v1) ∧Reported(v1, v2)→ Spammer(v2)

Prior-Credible(v)→ Credible(v)

¬Prior-Credible(v)→¬Credible(v)

¬Spammer(v)

(b) HL-MRFs model that uses the reports and prior credibility
of the reporting user to detect spammers. This model would give
similar results to assigning total weighted counts of the reports
for each user as their score of being a spammer.

Figure 5: Simple HL-MRFs models to compare with the
collective model shown in Figure 3.

Table 6 shows the results from our three experiments. Us-
ing the collective model significantly increases the perfor-
mance of the reports in detecting spammers. These predic-
tions can be added to the overall classification framework
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as a feature. However, since the report graph was sparse
relative to the other relation graphs in our dataset, many
users could not be classified with this model. Hence, we did
not include these predictions as a feature in our framework.
This model can be deployed independently to improve the
signal from the reports.

Table 6: Classification with collective HL-MRFs model.

Experiment AUPR AUROC

Reports (Figure 5a) 0.674±0.008 0.611±0.007

Reports & Credibility (Fig-
ure 5b)

0.869±0.006 0.862±0.004

Reports & Credibility & Col-
lective Reasoning (Figure 3)

0.884±0.005 0.873±0.004

6. RELATED WORK
Spam detection in email [22] and the web [23] have been

extensively studied, and various methods and features have
been proposed for them. Network-based approaches are
more closely related to our proposed framework. These
methods can be generally categorized based on feature con-
struction and label propagation. Shrivastava et al. [24] gen-
eralized the network-based spam detection to random link
attacks and showed that the problem is NP-complete. Tseng
and Chen [25] used network features to identify email spam-
mers, and incrementally updated the SVM classifier to cap-
ture the changes in spam patterns. Oscar and Roychowd-
bury [26] used a network representation of the emails where
nodes were email addresses and links between them indi-
cated a sender-receiver relationship. They used clustering
properties of the network to build white and black lists of
email addresses and identify spammers. Becchetti et al. [27]
proposed a link-based classification for web spam detection,
and later combined it with content-based features and used
graph topology to improve performance [28]. Since spam-
mers tend to form clusters on the web (unlike in social net-
works), the authors leveraged clustering and label propaga-
tion, to further improve their predictions.

A group of methods are based on label propagation and
influenced by PageRank. TrustRank [29] for example, used
reputable sites as seeds and propagated reputations through
the network. There are multiple variations which prop-
agate dis-trust. Similar to this work, Chirita et al. [30]
proposed MailRank which ranked the trustworthiness of a
sender based on the network representation of the mail en-
vironment. Abernethy et al. [31] proposed a method based
on graph regularization and used regularizers that is based
on the intuition that linked pages are somewhat similar.

The research focus on spam detection in social networks
is relatively more recent. Heymann et al. [32] surveyed dif-
ferent countermeasures to address the spam issue in social
networks, and categorized them into methods based on de-
tection, demotion, and prevention. Hu et al. [33] combined
information from email, text messages (SMS), and web with
Twitter content to detect spammers, and showed improve-
ments in results. Tan et al. [34] proposed an unsupervised
spam detection method that focused on identifying a white
list of non-spammers from the social network. They argued
that legitimate users show more stable patterns in social
blogs.

Stein et al. [35] described the spam filtering system in
Facebook. They highlighted that attacks on social media
use multiple channels, and an effective systems must share
feedback and feature data across channels. Gao et al. [36]
studied messages between users in Facebook, and used clus-
tering to detect spam campaigns. They identify multiple
clusters associated with several campaigns.

Markines et al. [37] studied multiple features and classi-
fiers to detect spam in social tagging systems. Benevenuto
et al. [38] used content such as presence or absence of a
URL in the post, and user social behaviors such as number
of posts to detect spam on Twitter. Lee et al. [39] used hon-
eypots in Twitter and MySpace to harvest deceptive spam
profiles. They then used content, posting rate, number of
friends, and user demographics such as age and gender as
features in their classifier.

Zhu et al. [40] reported that unlike email and web, in
social networks, spammers do not form clusters with other
spammers, and their neighbors are mostly non-spammers.
They use matrix factorization on user activity matrix of data
extracted from Renren6 and use the latent factors as features
for classification.

Evolving social networks are of high interest to researchers
and have been studied for different purposes [41]. Jin et al.
[42] modeled a social network as a time-stamped heteroge-
neous network and used a clustering method to identify spa-
mmers. They also used active learning to refine their model.
Zhang et al. [43] identified spam campaigns on Twitter by
linking accounts with similar malicious URLs in their posts.

Laorden et al. [44] used collective classification to filter
spam messages based on their text, to reduce the number of
necessary labeled messages. They used implementations in
WEKA for collective classification in their evaluation. Geng
et al. [45] used a semi-supervised learning algorithm to re-
duce the labeled training data requirement for web spam
detection. Torkamani and Lowd [46] proposed a method to
robustly perform collective classification against malicious
adversaries that change their behavior in the system.

7. DISCUSSION AND DEPLOYMENT
We have studied the characteristics of time-stamped multi-

relational social networks that can be leveraged to detect
spammers. We showed that by considering action or relation
types and incorporating graph-based features from different
relations, one can improve the spammer classification per-
formance. We then showed two sequence mining techniques
and their effectiveness to model sequences extracted from
time-stamped multi-relational network for spam detection.
We also proposed a collective model to refine and improve
the signals from the abuse report graph.

Depending on the precision of the results from the model,
the security system could either automatically flag a user as
spammer and deactivate the account or block its activities
in the system, or ask for more verification. Our experimen-
tal results show that our model can detect over 65% of the
manually detected spammers with higher than 85% preci-
sion. These sophisticated spammers had passed the already
deployed security measures and performed some activity in
the network. Inspecting some of the false positives with the
highest spammer probability, we found unlabeled and aban-
doned spammer accounts, which suggests the real precision

6A social network in China: http://renren.com
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of the proposed framework might actually be higher than
reported. These results can significantly reduce the manual
overhead of the administrative security team. Furthermore,
our results show that the precision at 80% recall, is above
50%, suggesting this portion of users can be asked for addi-
tional verification (e.g., CAPTCHA) without affecting many
legitimate users.

This model can be deployed as an iterative batch module
to complement real-time filters. Except for some parameters
such as the user credibility prior for the report system that
should be set and adjusted globally for the user, the model
has to be re-trained from a fresh sample of the network to ad-
just to the adversarial changes in patterns. Computing the
parameters of the models on a relatively low-powered single
machine for our experiments suggests that the framework
could be run on very short intervals depending on the train-
ing size and computational power. The features can also be
computed in parallel. Using Graphlab CreateTM, comput-
ing the features is highly efficient. To provide an example,
for a graph with 5.6 million vertices and 350 million edges
computing PageRank on our experiment machine took ap-
proximately 6.25 minutes, triangle counting 17.98 minutes,
k-core 14.3 minutes, and graph coloring 143 minutes.

To optimize the model for production, it is possible to
perform feature selection and reduce the necessary features.
Feature selection [47] may also improve the performance of
the model. Our method for collectively refining the signals
from the report graph can be used independently or as a
feature in the framework. Improved precision of the pre-
dictions via reports enables the system to take actions with
more confidence, and reduces the manual overhead.

Our method should be retrained with every new sample.
An online learning method that can incorporate the changes
in the dynamic network can effectively improve the usability
of our framework. Another approach that could improve the
prediction results significantly could be incorporating this
framework with content-based models. Furthermore, spam
accounts often do not act independently and are part of
spam campaigns. Their targets may often not be at random
as well. They may use a white list of legitimate users to tar-
get. Our initial observations show that spammers make re-
lations with legitimate users disproportionally to the overall
population ratios. A multi-relational model that can classify
spammer accounts based on their target accounts, and iden-
tify campaigns based on their relational information could
potentially improve the results.
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