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Abstract

Relational phrases (e.g., “got married to”)
and their hypernyms (e.g., “is a relative
of”) are central for many tasks including
question answering, open information ex-
traction, paraphrasing, and entailment de-
tection. This has motivated the develop-
ment of several linguistic resources (e.g.
DIRT, PATTY, and WiseNet) which sys-
tematically collect and organize relational
phrases. These resources have demonstra-
ble practical benefits, but are each limited
due to noise, sparsity, or size. We present a
new general-purpose method, RELLY, for
constructing a large hypernymy graph of
relational phrases with high-quality sub-
sumptions using collective probabilistic
programming techniques. Our graph in-
duction approach integrates small high-
precision knowledge bases together with
large automatically curated resources, and
reasons collectively to combine these re-
sources into a consistent graph. Using
RELLY, we construct a high-coverage,
high-precision hypernymy graph consist-
ing of 20K relational phrases and 35K hy-
pernymy links. Our evaluation indicates
a hypernymy link precision of 78%, and
demonstrates the value of this resource for
a document-relevance ranking task.

1 Introduction

One of the many challenges in natural lan-
guage understanding is interpreting the multi-
word phrases that denote relationships between
entities. Semantically organizing the complex re-
lationships between diverse phrases is crucial to
applications including question answering, open
information extraction, paraphrasing, and entail-
ment detection (Yahya et al., 2012; Fader et al.,

2011; Madnani et al., 2012; Dagan et al., 2005).
For example, a corpus containing the phrase
“George Burns was married to Gracie Allen” al-
lows us to answer the query “Who was the spouse
of George Burns?” However, “Jay Z is in a re-
lationship with Beyoncé” provides insufficient in-
formation to determine whether the couple is mar-
ried. To capture the knowledge found in text, rela-
tional phrases need to be systematically organized
with lexical links like synonymy (“married to” and
“spouse of”) and hypernymy (“in a relationship”
generalizing “married to”).

Many projects address the challenge of under-
standing relational phrases, but existing linguis-
tic resources are often limited to synonymy, suffer
from low precision, or have low coverage. Sys-
tems such as DIRT (Lin and Pantel, 2001), RE-
SOLVER (Yates and Etzioni, 2009), and WiseNet
(Moro and Navigli, 2012) have used sophisticated
clustering techniques to determine synonymous
phrases, but do not provide subsumption informa-
tion. The PATTY (Nakashole et al., 2012) project
goes beyond clustering and introduces a subsump-
tion hierarchy, but suffers from sparsity and con-
tains few hypernymy links. The HARPY (Gryc-
ner and Weikum, 2014) project extended PATTY,
generating 600K hypernymy links, but with low
precision. Berant et al. (2011) introduced en-
tailment graphs that provided a high-quality sub-
sumption hierarchy. This method required parti-
tioning the graph and the largest component con-
sisted of 120 relations. A number of manually-
curated relational taxonomies such as WordNet
(Fellbaum, 1998), VerbNet (Kipper et al., 2008),
and FrameNet (Baker et al., 1998) also offer high-
precision hierarchies with limited coverage.

In this paper, we introduce RELLY, a method
for producing a hypernymy graph that has both
high coverage and precision. We build on pre-
vious work, integrating the high-precision knowl-
edge in resources such as YAGO (Suchanek et al.,
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2007) and WordNet with noisy statistical informa-
tion from OpenIE projects PATTY and HARPY.
RELLY maintains a consistent graph by includ-
ing collective global constraints such as transitiv-
ity, asymmetry, and acyclicity. Scalability is of-
ten a concern when employing collective reason-
ing over large corpora, but our system can pro-
duce graphs with over 100K edges on conven-
tional hardware. As a result, we produce a large,
complete, and high-precision hypernym graph that
includes alignments and type information.

RELLY leverages probabilistic soft logic (PSL)
(Bach et al., 2015), a popular probabilistic mod-
eling framework, to collectively infer hypernymy
links at scale. PSL uses continuously-valued vari-
ables and evidence, allowing easy integration of
uncertain statistical information while encoding
dependencies between variables using a first-order
logic syntax. We define a PSL model with rules
that combine statistical features, semantic infor-
mation, and structural constraints. Statistical fea-
tures, such as argument overlap and alignments
to WordNet verbs senses, allow RELLY to learn
from large text collections. Semantic informa-
tion, such as type information for relation argu-
ments, improves precision of the resulting infer-
ences. Structural constraints, such as transitivity
and acyclicity, enforce a complete and consistent
set of edges. Using this PSL model, we learn rule
weights with a small amount of training data and
then perform joint inference over all hypernymy
links in the graph.

We highlight three major contributions of our
work. First, we introduce RELLY, a scalable
method for integrating statistical and semantic sig-
nals to produce a hypernymy graph. RELLY is ex-
tensible and can easily incorporate additional in-
formation sources and features. Second, we gener-
ate a complete and precise hypernymy graph over
20K relational phrases and 35K hypernymy links.
We have publicly released this hypernymy graph
as a resource for the NLP community. Third, we
present a thorough empirical evaluation to mea-
sure the precision of the hypernymy graph as well
as demonstrate its usefulness in a real-world docu-
ment ranking task. Our results show a high preci-
sion (0.78) and superior performance in document
ranking compared to state-of-the-art models such
as word2vec (Mikolov et al., 2013).

2 Background

Before describing the details of RELLY, we be-
gin with necessary background information on the
task of semantically organizing relational phrases,
as well as the probabilistic soft logic modeling lan-
guage which we use to develop our hypernymy
graph construction method.

2.1 Relational Phrases

Relational phrases are textual representations of
relations which occur between named entities
(e.g., “Terry Pratchett”) or noun phrases (e.g., “the
great writer”). Nakashole et al. (2012) identify re-
lational phrases with the semantic type signature
of the relation, i.e. the fine-grained lexical types
of left- and right-hand side arguments. For ex-
ample, “Terry Pratchett published his new novel
The Colour of Magic” is an instance of the re-
lational phrase “<person> published his * ADJ
novel <book>.” In this case, the left-hand ar-
gument (the domain of the relation) has the type
<person> and the right-hand argument (the range
of the relation) has the type <book>.

Several projects from the Open Information
Extraction community have addressed the task
of finding synonyms of relational phrases us-
ing clustering algorithms. The biggest collec-
tion of relational phrases and their synonyms is
currently the PATTY project (Nakashole et al.,
2012), with around 350,000 semantically typed
relational phrases. Prominent alternatives are
WiseNet (Moro and Navigli, 2012), which offers
40,000 synsets of relational phrases, PPDB (Gan-
itkevitch et al., 2013), which contains over 220
million paraphrase pairs, as well as DIRT and Ver-
bOcean (Lin and Pantel, 2001; Chklovski and Pan-
tel, 2004) which inspired the approach and results
pursued here.

Relational phrases can be further organized into
a hierarchical structure according to their hyper-
nymy (subsumption) relationships. For example,
“<person> moves to <country>” is a hypernym
of the relational phrase “<musician> emigrates to
<country>.” Of the aforementioned collections,
only PATTY attempts to automatically create a
subsumption hierarchy for the extracted relational
phrases. The authors of the HARPY system ar-
gue that the sparseness of PATTY’s graph comes
from the lack of general phrases in the source
corpus. As a solution, they propose using the
WordNet verb hierarchy (which contains general
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verb senses) to construct a similar hierarchy with
PATTY’s relational phrases. The graph obtained
by HARPY consists of around 600,000 hyper-
nymy links for around 20,000 relational phrases.
However, the final graph was not evaluated for pre-
cision; rather, the evaluation was instead concen-
trated on the alignment between verb senses and
relations.

In this paper we will make use of several con-
cepts that are closely related to hypernymy, which
we define below. Note that although the following
definitions concern verbs, we also apply them to
relational phrases:

• hypernym: the verb Y is a hypernym of the
verb X if Y is more general than X . To per-
ceive is a hypernym of to listen (Bai et al.,
2010).

• troponym: the verb Y is a troponym of the verb
X if doing Y is doing X , in some manner. To
lisp is a troponym of to talk (Bai et al., 2010).
Troponym is a verb counterpart for hyponym,
which applies to nouns. In this work we use
these two terms interchangeably.

• entailment: the verb Y is entailed by X if, by
doing X , you must be doing Y . To sleep is
entailed by to snore (Bai et al., 2010).

2.2 Probabilistic Soft Logic

Our approach is based on probabilistic soft logic
(PSL), a popular statistical relational learning sys-
tem which we briefly describe here. PSL is a tem-
plating language for a class of graphical models
known as hinge-loss Markov random fields. PSL
models are specified using rules in first-order logic
syntax, expressing dependencies between interre-
lated variables. For example, the PSL rule

w : HYPERNYM(P1, P2) ∧ HYPERNYM(P2, P3)
⇒ HYPERNYM(P1, P3)

expresses the transitivity of hypernyms: if phrase
P1 is a hypernym of phrase P2 and P2 is a hyper-
nym of P3, then P1 is a hypernym of P3. Rules are
weighted (w) to indicate their importance in the
model, and weight learning in PSL allows these
weights to be learned from training data.

Each rule is ground by substituting the variables
in the rule with constants, e.g. ”married to” and
”relative of” for P1 and P2. However, unlike pre-
vious approaches such as Markov logic networks,
the atoms in each logical rule take values in the

[0,1] continuous domain. In addition to provid-
ing a natural way of incorporating uncertainty and
similarity into models, continuous-valued vari-
ables allow the inference objective to be formu-
lated as convex optimization making MAP infer-
ence extremely efficient, with empirical perfor-
mance that scales linearly with the number of
ground rules.

3 Hypernymy Graph Construction

In this section we detail RELLY, our system for
constructing a hypernymy graph. RELLY incor-
porates semantic and statistical information from
sources such as YAGO, WordNet, PATTY, and
HARPY, and uses PSL to combine and reason
over these sources. For each source, we in-
troduce a PSL predicate (Table 1). The predi-
cates are divided into three categories: statisti-
cal (continuous-valued features arising from sta-
tistical methods), semantic (binary predicates ac-
quired from knowledge bases) and output (the tar-
get variables). We relate these predicates with a
series of rules which combine alignment links, ar-
gument similarity, and hierarchical information.
The collection of rules defines the PSL model,
which we describe in Section 3.1 and Table 2.

In the resulting hypernymy graph, an edge from
a relational phraseR1 to a relational phraseR2 de-
notes thatR1 is more specific thanR2, i.e. R2 is a
hypernym of R1. For example, there is an edge
from R1 =“<musician> emigrates to <coun-
try>” toR2 = “<person>moves to<country>.”
In the PSL model the strength of this edge is rep-
resented by the confidence score of the predicate
hyponym(R1, R2).

3.1 PSL Rules

The PSL rules that define the model are shown in
Table 2. Each of the rules is additionally supplied
with a weight which describes its importance in
the model. The weights are learned from a small
hand-crafted hierarchy of relational phrases. The
full PSL model combines multiple statistical and
semantic signals into the hypernymy graph.

Our model includes rules to encode signals that
provide evidence for hypernymy, as well as rules
to encode consistency in the graph. One statistical
signal for phrase subsumption is argument over-
lap. If the arguments to a relational phrase R1
are also found as arguments to another relational
phrase R2, R1 and R2 may be synonymous or
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Table 1: PSL predicates;
R1, R2 are relational phrases, V b1, V b2 WordNet verb senses and TL1, TR1, T1, T2 YAGO types

PSL predicate Type Description

weedsInclusion(R1, R2) statistical degree of inclusion of sets of argument pairs of re-
lations defined as |ArgsR1|

|ArgsR1∩ArgsR2| (Weeds and Weir,
2003)

pattySubsumption(R1, R2) statistical PATTY subsumption (Nakashole et al., 2012)
harpy(R1, V b1) statistical alignment links between relational phrases and Word-

Net verb senses (Grycner and Weikum, 2014)
wordnetHyponym(V b1, V b2) semantic hyponymy link between WordNet verb senses
lType(R1, TL1) semantic left (domain) type of arguments of a relational phrase
rType(R1, TR1) semantic right (range) type of arguments of a relational phrase
yagoHyponym(T1, T2) semantic T1 is a subtype of T2 in YAGO hierarchy
candidateHyponym(R1, R2) output relational phrase R1 is more specific than R2 (without

enforcing consistent argument types)
hyponym(R1, R2) output relational phrase R1 is more specific than R2

R2 may be a hypernym of R1. We use two mea-
sures of argument overlap, weedsInclusion and
pattySubsumption, in rules 1 and 2, respectively,
to capture the relationship between argument over-
lap and subsumption. Another signal, used in rule
3, is the alignment between relational phrases and
WordNet verb senses. If relational phrasesR1 and
R2 are aligned to WordNet verb senses V b1 and
V b2 which are in a hyponymy relationship, then
this is evidence that R1 is more specific than R2.
An example of using HARPY alignment links and
WordNet hierarchy is shown in Figure 1.

We encode local consistency requirements us-
ing Rules 4–6. Rule 4 (types compatibility) is a
constraint to restrict hypernymy links to be be-
tween relations whose types are compatible, i.e
they are identical or the types of the more specific
relation are subtypes of the types of the more gen-
eral relation. Rules 5 and 6 create a transitive clo-
sure of both WordNet and YAGO hierarchies. As a
result of these rules, we can use indirect hyponyms
(in rule 3) or indirect subtypes (in rule 4).

Finally, rules 7, 8 and 9 shape the structure of
the output graph with collective global constraints.
Rule 7 (asymmetry) removes bidirectional links,
rule 8 (transitivity) creates a transitive closure of
the graph and rule 9 (acyclicity) prevents the cre-
ation of small cycles in the graph.

3.2 RELLY Overview

RELLY has four stages: data pre-processing, rule
weight learning, inference, and thresholding.

  

<person> created a <artifact> make.03

create_verbally.01

<person> wrote a poem <artifact> write.01
HARPY alignment

HARPY alignment

WordNet
hierarchy

WordNet
hierarchy

hyponym

Figure 1: HARPY alignment usage

First, in the data pre-processing stage, we as-
sign confidence scores of 0 or 1 for the binary-
valued semantic predicates in the PSL model.
For example, the wordnetHyponym(V b1, V b2)
confidence score is set to 1 if there is a hy-
ponymy link between verb senses V b1 and V b2
and 0 otherwise. In other cases, the confidence
is set to a similarity score of a feature which
is represented by a predicate. For example, the
weedsInclusion(R1, R2) confidence is equal to
the Weeds inclusion score between relations R1
and R2.

In the next stage the weights of the PSL rules
described in Table 2 are learned from a small
handcrafted graph of relational phrases. The
weight learning is performed using an EM al-
gorithm. Later, the most-probable explanation
(MPE) state of the output predicates is inferred.

Finally, we export the inferred confidence
scores of the predicate hyponym and perform ad-
ditional cleaning. Whenever two links contradict
each other (e.g. we have both hyponym(R1, R2)
and hyponym(R2, R1)) we remove the link with
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Table 2: PSL rules

Id Feature PSL rule
1 Weeds inclusion weedsInclusion(R1, R2)⇒ candidateHyponym(R1, R2)
2 Patty subsumption pattySubsumption(R1, R2)⇒ candidateHyponym(R1, R2)
3 Harpy alignment wordnetHyponym(V b1, V b2) ∧ harpy(R1, V b1) ∧ harpy(R2, V b2)

⇒ candidateHyponym(R1, R2)
4 Types candidateHyponym(R1, R2) ∧ lType(R1, TL1) ∧ rType(R1, TR1)

compatibility ∧lType(R2, TL2) ∧ rType(R2, TR2) ∧ yagoHyponym(TL1, TL2)
∧yagoHyponym(TR1, TR2)⇒ hyponym(R1, R2)

5 WordNet wordnetHyponym(V b1, V b2) ∧ wordnetHyponym(V b2, V b3)
hierarchy ⇒ wordnetHyponym(V b1, V b3)

6 Yago hierarchy yagoHyponym(T1, T2) ∧ yagoHyponym(T2, T3)
⇒ yagoHyponym(T1, T3)

7 Asymmetry hyponym(R1, R2)⇒ ¬hyponym(R2, R1)
8 Transitivity hyponym(R1, R2) ∧ hyponym(R2, R3)⇒ hyponym(R1, R3)
9 Acyclicity hyponym(R1, R2) ∧ hyponym(R2, R3)⇒ ¬hyponym(R3, R1)

the lower confidence score. If both predicates have
the same confidence score we exclude them both
from the final graph. Additionally, we only con-
sider links with a confidence score above an em-
pirically chosen threshold of 0.2.

4 Evaluation

In our experiments, we use a large corpus of rela-
tional phrases to construct a hypernymy graph us-
ing RELLY. We evaluate RELLY using both intrin-
sic and extrinsic evaluation. In the intrinsic evalua-
tion, we asked human annotators to judge the rela-
tionship between two relational phrases and com-
pared results from several hypernymy graphs. In
the extrinsic evaluation, we used the hypernymy
graph for a real-world document ranking task and
measured the mean reciprocal rank (MRR) for a
number of methods. In both evaluations, the hy-
pernymy graph constructed by RELLY demon-
strates significantly better performance than com-
peting algorithms.

4.1 Dataset
We use RELLY to build a hypernymy graph with
data from the PATTY and HARPY projects. The
input to our system consists of 20,812 relational
phrases and the associated argument types ex-
tracted from the English-language Wikipedia web-
site using the PATTY system. For simplicity, we
only include relational phrases that contain exactly
one verb (e.g. “took the throne”), excluding noun
phrases (e.g. “member of”) and phrases contain-
ing multiple verbs (e.g. “hit and run”). The verb

“to be” and modal verbs were not considered in
the dataset. We also include HARPY alignments
to the corresponding verb senses in WordNet for
each phrase in the corpus. Additionally, we use
a subset of the type-subsumption hierarchy from
YAGO consisting of 144 types and 323 subsump-
tion relationships.

During graph inference, RELLY evaluated
7.9M possible hypernymy links using 9.7M
ground logical rules and constraints. Ultimately,
RELLY produced 35,613 hypernymy links be-
tween relational phrases with confidence scores
above 0.2. The hypernymy graph consisted of
3,730 roots. Running RELLY on a multi-core
2.27GHz server with 64GB of RAM required ap-
proximately 20 hours. For comparison, PATTY
produced 8,162 subsumption links out of 350,569
phrases with approximately 2,300 roots.

4.2 Intrinsic Evaluation

In our intrinsic evaluation, we assess the precision
of hypernymy links inferred by RELLY and com-
pare with the precision of hypernymy graphs of
PATTY and HARPY. In this evaluation, we mea-
sure precision for both the most confident hyper-
nymy links in the system (precision@100) and the
precision of a random sample of 100 hypernymy
links. Each set of hypernymy links were presented
to several human annotators for labeling.

To measure precision@100, we choose the top
100 hypernymy links using the confidence scores
reported by PSL. We similarly choose the top 100
links from PATTY using the PATTY subsumption
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score. Since HARPY does not provide confidence
scores, we were unable to compute precision@100
for HARPY.

For each of the three systems, we used the full
set of hypernymy links they produce, which con-
sisted of 8K links from PATTY, 600K links from
HARPY and 35K links from RELLY. We ran-
domly sampled 100 hypernymy links from each
of these systems.

We presented the selected hypernymy links to
several human annotators. The labeling task re-
quired the annotator to judge the relationship be-
tween two relational phrases in a hypernymy link.
For each relational phrase, we provided annota-
tors with type information about the phrase argu-
ments (domain and range) and examples of sen-
tences that use the relational phrase. Based on
this information, annotators could make one of
four judgments: (1) the phrases are unrelated;
(2) the phrases are synonymous; (3) the first
phrase is more specific than the second phrase;
(4) the second phrase is more specific than the
first phrase. This evaluation task had good inter-
annotator agreement, with a Cohen’s Kappa of
0.624. Separately, the precision@100 dataset had
Cohen’s Kappa of 0.708 and the randomly sam-
pled dataset had Cohen’s Kappa of 0.521.

We show the results of the intrinsic evaluation in
Table 3 with 0.9-confidence Wilson score interval
(Brown et al., 2001). In comparison to HARPY
and PATTY, RELLY has higher precision for both
precision@100 and random evaluations. Precision
in RELLY is comparable to PATTY, but RELLY
has more than four times as many hypernym links.
HARPY has far more hypernymy links, but with a
precision of 0.43, we find that many of these links
are incorrect.

Table 4 includes example hypernymy links from
RELLY. There are examples where PATTY’s sub-
sumption is a dominant signal (“<person> pub-
licly accused <person>”⇒ “<person> accused
<person>”). We also observe YAGO type hier-
archy influence (“<athlete> played for <team>”
⇒ “<person> played for <organization>”), as
well as the influence of combined WordNet hierar-
chy with HARPY alignments (“<person> marry
daughter <person>” ⇒ “<person> joins <per-
son>”). The advantage of RELLY is that it com-
putes the final graph jointly and incorporates tran-
sitivity, asymmetry and acyclicity rules. It leads
to less semantic drift in longer hypernymy chains

Table 3: Intrinsic evaluation

Prec. Range Cvg.

precision@100

RELLY 0.87 0.81 - 0.92 35K
PATTY 0.83 0.76 - 0.90 8K

random sample

RELLY 0.78 0.71 - 0.84 35K
PATTY 0.75 0.68 - 0.82 8K
HARPY 0.43 0.35 - 0.52 600K

(e.g. Figure 2) compared with PATTY where
“<organization> merged <organization>” can
lead to “<team> beat <team>”.

  

<organization> acquires <organization>

<organization> purchased share <organization>

<organization> bought half of <company>

<company> bought half of <company>

<company> later bought half of <company>

Figure 2: Chain of hypernymy

4.3 Ablation Study

Two advantages of RELLY that we have high-
lighted are easily incorporating new information
sources and collectively enforcing global con-
straints. To analyze the influence of these sys-
tem components, we performed an ablation study
where we omitted PSL rules corresponding to
specific model features. Using this approach,
we quantify the importance of these features to
RELLY’s performance.

First, we demonstrate the value of type informa-
tion in determining hypernymy. The YAGO type
hierarchy allows RELLY to detect hypernymy
links between relational phrases where types do
not match exactly, but are compatible through
type subsumption. When the YAGO type hierar-
chy rules are omitted from the model, coverage
is reduced dramatically; the resulting hypernymy
graph contains only 12,000 hypernymy links in
contrast to the 35,000 links in the original model.
Additionally, removing YAGO type information
harms precision, with a precision of 0.75 ± 0.09
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Table 4: Example RELLY hypernymy links

Hyponym relational phrase Hypernym relational phrase
Domain Text pattern Range Domain Text pattern Range

head of state abdicated in favor of sovereign person resigns as person
person publicly accused person person accused person
person marry daughter person person joins person
person had paid person person interacted with person
athlete played for team person played for organization

Table 5: Results for Entailment graphs induction

Prec. Rec. F1

Berant et al. (2011) 0.422 0.434 0.428
PSL 0.461 0.435 0.447

with 0.9-confidence Wilson score interval for a
random sample of 100 examples.

Next, we show how global constraints on the
hypernymy graph such as anti-symmetry and
acyclicity improve the quality of the hypernymy
graph. Since the relational phrases generated
by PATTY are clustered to find synonymous re-
lations, these global constraints prevent RELLY
from merging clusters. When the anti-symmetry
and acyclicity rules were removed from the model,
the resulting hypernymy graph included approxi-
mately 500 additional hypernymy links, while 10
existing links were removed. We manually evalu-
ated the newly introduced links, and found that the
majority of links were false positives.

4.4 Entailment Graph Induction

We compared the performance of PSL against the
Integer Linear Programming (ILP) formulation by
(Berant et al., 2011). The comparison was per-
formed on the task of creating entailment graphs
as described in (Berant et al., 2011). This task is
strongly related to finding hypernyms of relational
phrases. The experiments were executed on the
dataset of 10 manually annotated graphs. In to-
tal this dataset contains 3,427 positive and 35,585
negative examples. Our model uses the transi-
tivity rule (entails(A,B) ∧ entails(B,C) ⇒
entails(A,C)). We also include the local en-
tailment scores (score(A,B) ⇒ entails(A,B))
which were released by (Berant et al., 2011). Ta-
ble 5 presents micro-averaged precision, recall and
F1 scores for this comparison.

PSL was much faster than the other exact meth-

ods used for this problem. To compare efficiency
we measured the run-time of our method. With-
out any graph decomposition it took on average
232 seconds. The experiments were performed
on a multi-core 2.67GHz server with 32GB of
RAM. The methods reported in (Berant et al.,
2012), which did not utilize graph decomposition
method, had run-time above 5000 seconds.

4.5 Extrinsic Evaluation

The ultimate goal of producing a high-quality hy-
pernymy graph is to deepen our understanding of
natural language and improve performance on the
many NLP applications. One such application is
document retrieval, where billions of queries are
performed each day through search engines. In our
extrinsic evaluation, we demonstrate how a hyper-
nymy graph can improve performance on a docu-
ment ranking and retrieval task.

We consider a task where an input query
document is compared to a corpus of docu-
ments with the aim of finding the most relevant
related documents. To isolate the evaluation
to relational phrases, we anonymize the doc-
uments, by replacing all named entities and
noun phrases with placeholders. For example,
the sentence “The villain has already
fled to the Republica de Isthmus”
is anonymized to “* has already fled
to *.” Anonymized retrieval has potential appli-
cations in security and for sensitive documents.

We collected a dataset consisting of movie plot
summaries from two different websites, Wikipedia
and the Internet Movie Database (IMDB). We
chose plot synopses from 25 James Bond movies
and 23 movies based on the Marvel Comics char-
acters. For each plot synopsis, we have two plot
descriptions: one from Wikipedia and another
from IMDB. Given a query in the form of an
anonymized plot description from one website, the
task is to rank the anonymized plot descriptions
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from the other dataset using relational phrase sim-
ilarity. For example, given a query plot description
of “Iron Man” from Wikipedia, rank plot descrip-
tions from IMDB with the goal of maximizing
the ranking of the corresponding “Iron Man” plot
summary. We evaluate the quality of these rank-
ings using the mean reciprocal rank (MRR) score,
MRR = 1

|Q|
∑|Q|

i=1
1

ranki
. Here, Q is the number of

documents in the collection (i.e. 2*48 = 96) and
ranki is the position of the counterpart document
in the ranking of document i.

As baseline algorithms, we use a unigram
word2vec model and a bigram model. In the uni-
gram word2vec model documents are represented
by the average of the 300-dimensional word vec-
tors trained on part of Google News dataset (about
100 billion words) (Mikolov et al., 2013). We
could not use the bigram word2vec model because
of the frequent occurrence of the placeholder sym-
bol. In the bigram model, documents are rep-
resented by vectors in the bag-of-bigrams model
with bigram frequency weights. The similarity
measure in both cases is the cosine similarity mea-
sure.

As the first of our approaches we proposed a
solution purely based on relational phrases. In
the relational phrases model we extract relational
phrases from a text and we map them to their
synsets from PATTY (clusters of synonyms). A
phrase is mapped to a synset if the Jaccard simi-
larity between tokens of extracted relation and to-
kens of one of the phrases in the synset is above
a threshold. Next we represent the document as
a vector of the relational phrase synsets weighted
by the frequency of the synset in the document
(bag-of-relational phrases). The similarity score
between two documents is the cosine similarity
between two vectors representing two documents.
The ranking is created based on the similarity
scores. In the relational phrases + hypernyms
model we add hypernyms of the extracted rela-
tional phrases to the document vector (based on
the hypernymy graph). Hypernyms are addition-
ally weighted by the confidence score produced by
the algorithm described in the Section 3. In the
second approach we combine relational phrases
models with the best of the baselines. The similar-
ity score is then equal to λsim1+(1−λ)sim2. The
λ parameter is trained on a different dataset (2*8
plot descriptions of Harry Potter movies). Train-
ing was performed by maximization of the MRR

Table 6: Extrinsic evaluation (Bond & Marvel)

MRR score

word2vec 0.26

bigram 0.55

relational phrases 0.28
+ hypernyms 0.25
+ bigrams 0.58
+ hypernyms + bigrams 0.60

score using grid search. We consider the combina-
tion of the bigram model with relational phrases,
as well as the combination of the bigram model
with relational phrases + hypernyms.

The results of the experiment are presented in
Table 6. The best MRR score was obtained by re-
lational phrases + hypernyms + bigrams model.
The number of samples, 96, was large enough for
statistical significance. We performed a paired t-
test for MRR between each of these methods.
The obtained p-values were below 0.05.

5 Related Work

The biggest sources of hypernyms, subsumptions,
and hierarchical structure can be found in exist-
ing knowledge bases. Examples of these are Free-
base (Bollacker et al., 2008), YAGO, DBPedia
(Lehmann et al., 2014), and Google Knowledge
Vault (Dong et al., 2014). However, these knowl-
edge bases are mainly concentrated on named enti-
ties and noun phrases, and the variety of relations
between entities is much smaller. Relations and
information about them are underrepresented.

Open Information Extraction systems try to
solve this problem by extracting new relations
from natural text. These new relations do not
necessarily follow the standard schema of knowl-
edge bases. Additionally, these systems often or-
ganize the newly extracted relations by clustering
or hierarchy construction. A first attempt to ex-
tract and cluster similar relations was presented in
DIRT. This work was followed by projects such
as ReVerb, PATTY, WiseNet, NELL (Carlson et
al., 2010), and RESOLVER (Yates and Etzioni,
2009). PATTY and WiseNet also introduced se-
mantic types to their concept of relational phrases.
All of these systems rely on the co-occurrence of
arguments of clustered relations. A different ap-
proach was presented in PPDB, where the authors
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cluster phrases based on the similarity of transla-
tions to other languages.

Of these systems, only PATTY attempted to cre-
ate a hierarchy of relations and the result was very
sparse. HARPY aimed to overcome this problem
by disambiguating and aligning relational phrases
with WordNet, and performing a simple recon-
struction of the WordNet hierarchy on top of rela-
tional phrases from PATTY. A very similar prob-
lem was addressed in the entailment graph project
(Levy et al., 2014). The authors automatically
created graphs of entailments between proposi-
tions, using Integer Linear Programing as one of
the main components. Propositions can be en-
coded as triples of form (subject, relation, ob-
ject). Edges in the entailment graph occur between
these triples, whereas edges connect typed rela-
tions in PATTY and HARPY. Moreover, the rela-
tions in the propositions were mainly limited to
single verbs, whereas in our case we also consider
longer relational phrases. Relations with semantic
types were also used in typed entailment graphs
(Berant et al., 2011). However, the type hierarchy
was not considered there, which prevented from
creating links between two relations with different
semantic types. The input dataset was also smaller
– the biggest graph consisted of 118 relations.

Although there is a scarcity of automatically
created taxonomies of relations, there exist several
manually curated taxonomies. Manually crafted
verb or relation hierarchies are available in Word-
Net, VerbNet and FrameNet. WordNet has 13,767
verb synsets, which are organized into a hierarchy
with 13,239 hypernymy links.

Automatic construction of taxonomies of
named entities or noun phrases has received much
more attention than organization of verbs or rela-
tions. In (Snow et al., 2006), the WordNet taxon-
omy was extended by 10,000 novel noun synsets
with hypernym-hyponym links. In (Bansal et al.,
2014), the authors reconstructed WordNet’s noun
hypernymy/hyponymy hierarchy from scratch us-
ing a probabilistic graphical model formulation.
Another method of organizing noun phrases was
proposed in (Mehdad et al., 2013), where an en-
tailment graph of noun phrases was constructed.

Building a hypernymy graph for relational
phrases is strongly related with the textual entail-
ment task (Dagan et al., 2010). This concept was
introduced in the Recognizing Textual Entailment
(RTE) shared task (Dagan et al., 2005). Instead of

short typed relational phrases, the input data are
two texts – the entailing text T and the hypothesis
text H . According to (Dagan et al., 2005)’s defi-
nition, “T entails H if, typically, a human reading
T would infer that H is most probably true.”

In RELLY, we use probabilistic soft logic (PSL)
as the main ingredient of our approach. PSL was
successfully used for numerous other applications
including knowledge graph construction (Pujara
et al., 2013), trust in social networks (Huang et
al., 2012b), ontology alignment (Broecheler and
Getoor, 2009), and social group modeling (Huang
et al., 2012a).

6 Conclusion

This paper presents RELLY, a scalable method for
integrating statistical and semantic signals to pro-
duce a hypernymy graph of relational phrases. We
used RELLY to create a hypernymy graph that has
both high coverage and precision, as shown in our
evaluation. RELLY is extensible and can easily in-
corporate additional information sources and fea-
tures. The hypernymy graph of relational phrases
could potentially be useful for many problems of
natural language processing and information re-
trieval. For example, we applied the hypernymy
graph to a document-relevance task, which we
used to evaluate RELLY extrinsically. As a future
work, RELLY can incorporate more information
sources and statistical signals and be expanded
to infer multi-verb or noun relational phrases.
The RELLY resource is publicly available at
www.mpi-inf.mpg.de/yago-naga/patty/.
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