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* It was recently shown that Bayesian posterior
sampling can provide privacy “for free”
(Dimitrakakis et al., 2014; Wang et al., 2015)

« This beautiful result has practical limitations:
data inefficiency, approximate inference

 We develop a very simple alternative
technique to resolve these limitations, and
study it both theoretically and empirically

*University of California, San Diego

Overview

* As individuals and consumers we benefit daily
from ML systems trained on our data.
The cost Is our privacy

« Bayesian inference is widely used for modeling
data where privacy is invaluable, including
MOOCs, text data, recommendations,...

* Need privacy-preserving, Bayesian
data analysis technigues
« Balance utility and privacy
« Trade-off should improve with more data

Background: Differential Privacy
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Privacy-preserving interface: randomized algorithms
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Definition of differential privacy (Dwork et al, 2006):
A randomized algorithm M (X) is e-differentially private if

Pr(M(X) € S)
PriM(X) €S) =

66

for all outcomes S, and pairs of databases X, X’ differing in a single element.

Laplace and exponential mechanisms

Laplace mechanism
Add Laplace noise to results of query. Amount of
noise depends on the L1-sensititivity of the query:

L L /
Ah = max |A(X) — h(X)|1

Exponential mechanism
Given a utility function, select outputs with high
utility more often:

Pr(Mg(X,u,€) =r) x exp (u();, r))
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Posterior sampling via exponential mechanism
(Dimitrakakis et al., 2014; Wang et al., 2015)

Use utility function u(X, 8) = log Pr(6,X)
Alog Pr(0,X) £

1max
6,(X(1),X®)

Posterior sampling is € = 2A log Pr (6, X)-DP

For smaller €, flatten posterior by increasing the
temperature

James Foulds,* Joseph Geumlek,* Max Welling,* Kamalika Chaudhuri*

*University of Amsterdam

Temperature depends on sensitivity, epsilon

|log Pr(0, X)) —log Pr(6, X)),

Privacy for exponential family posteriors

For exponential family posteriors w\ conjugate priors

Pr(0)X, x, a) o g(0)V % exp (HT ( Z S(x\D) 4 oex))
i=1

* \We propose to use the Laplace mechanism to
privatize likelihood model’'s sufficient statistics

| Mechanism | Sufficient statistics S(X) are: | Release | Sensitivity

Laplace Noised additively Statistics SUPy  ||9(x") — S(x)[1

Exponential Rescaled multiplicatively One sample | SUpy y/ey 0co |07 (S(x’) - S(x)) + log h(x') — log h(x)|

A

Worst case over parameters as well as data

Example: Beta-Bernoulli model

45 - Add Laplace noise

True posterior
Laplace mechanism
OPS

Truncate, flatten posterior
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L1 error for posterior samples of Bernoulli success parameter
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Asymptotic relative efficiency (ARE) results

« ARE =ratio between variance of estimator

and optimal variance achieved by posterior mean
in the limit, [~ /N

 Exponential mechanism:
Temperature T >= 1 (Wang et al., 2015)

Our results: under general conditions,
 Laplace mech. (one sample):

ARE =2

 Laplace mech. (posterior mean): ARE=1

ARE=1+T

UNIVERSITY OF AMSTERDAM

* For exponential mechanism, privacy not
guaranteed If MCMC sampler not converged

* Interpret Gibbs update as exponential mechanism
<= privacy cost of posterior sample
* Instead, can use Laplace mechanism to protect

sufficient statistics needed for Gibbs updates,
just ONCE at beginning of sampling algorithm!

* Privacy cost per Gibbs update at temperature T

Private Gibbs sampling

Case study: Wikileaks War Logs

* Privacy-preserving HMM on US military logs
from lrag/Afghanistan wars leaked by Wikileaks

_Afghanistan (N=75,000)
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