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Abstract

◮ Evaluating the predictive performance of topic models is expensive and unreliable, despite
recent advances in learning and inference algorithms.

◮ Annealed importance sampling (AIS), a Monte Carlo technique which operates by annealing
between two distributions, has previously been successfully used for topic model evaluation.

◮ We introduce new AIS annealing paths which anneal from one topic model to another,
thereby estimating the relative predictive performance of the models, and the progress of
topic model training algorithms, efficiently and reliably.

Evaluating Topic Models

◮ For every held-out document d, computing the likelihood involves an intractable sum or an
intractable integral,

Pr(w(d)|Φ, α) =
∑
z(d)

Pr(w(d), z(d)|Φ, α)

=

∫
θ
Pr(w(d), θ(d)|Φ, α) .

◮ We need to approximate this for each of possibly tens of thousands of documents in the test set!

Annealed Importance Sampling (Neal, 2001)

Draw from
distribution pn

Simulated annealing
towards

Target distribution
of interest p0

Use this as an importance sampling proposal distribution for:

Annealing in the reverse direction, from the target to the source.

◮ The importance samples can be used to estimate the ratio of normalizing constants of
f0 ∝ p0 and fn ∝ pn. ∑

w(i)

N
⇒

∫
f0(x)dx∫
fn(x)dx

◮ Wallach et al. (2009) show how to employ AIS in the context of topic models to

estimate Pr(w(d)|Φ, α(d)):

◮ Perform AIS on the topic assignments z(d), collapsing out θ(d).

◮ Anneal from the prior to the posterior.
◮ Draw initial state from the prior over z, fn = Pr(z(d)|α(d)).
◮ Anneal towards a distribution proportional to the posterior,
f0 = Pr(w(d), z(d)|φ, α(d)).

◮ Estimate the likelihood by taking the average of the importance weights:

∑
w(i)

N
⇒

∑
z(d)

Pr(w(d), z(d)|φ, α(d))∑
z(d)

Pr(z(d)|α(d))

=
Pr(w(d)|φ,α(d))

1
= Pr(w(d)|φ, α(d)) .

Ratio-AIS for Comparing Topic Models

◮ Typically for evaluation we are interested in the relative performance of topic model 1 (e.g. a new
model) and topic model 2 (e.g. vanilla LDA):

logPr(w(d)|φ(1), α(d,1)) − logPr(w(d)|φ(2), α(d,2))

= log
Pr(w(d)|φ(1), α(d,1))

Pr(w(d)|φ(2), α(d,2))
.

◮ This could be estimated by running AIS once for each model. However, AIS is already designed
to compute a ratio. We can estimate this ratio directly.

Ratio-AIS

Draw from
posterior for

Topic Model 2

Simulated annealing
towards

Posterior for
Topic Model 1

fn = Pr(w(d), z(d)|φ(2), α(d,2)) f0 = Pr(w(d), z(d)|φ(1), α(d,1))

∑w(i)

N
⇒

Pr(w(d)|φ(1), α(d,1))

Pr(w(d)|φ(2), α(d,2))

◮ It remains to choose the sequence of intermediate distributions. We consider two alternatives:

Geometric Averages Path

fj(z
(d)) = f0(z

(d))βjfn(z
(d))1−βj

Convex Combinations Path

fj(z
(d)) = Pr(w(d), z(d)|Φj = βjΦ

(1) + (1 − βj)Φ
(2)

αj = βjα
(1) + (1 − βj)α

(2)) .

◮ This approach avoids several sources of Monte Carlo error incurred by running AIS for each
model separately. Specifically, the standard method

◮ estimates the denominator of a ratio even though it is a constant (=1),
◮ uses different z’s for both models,
◮ and is run twice, introducing Monte Carlo noise each time.

◮ An easy convergence check: anneal in the reverse direction to compute the reciprocal.

Iteration-AIS for Evaluating Topic Model Learning Algorithms

◮ We evaluate learning algorithms by using the learned model at each iteration as an AIS
intermediate distribution, and using ratio-AIS to anneal between each successive model.

◮ This provides a warm-start with successively more effective temperatures, potentially leading to
better estimates as the learning algorithm proceeds.

Iteration-AIS

Prior ⇒ Model at ⇒ Model at ⇒ . . .⇒ Model at
Iteration 1 Iteration 2 Iteration I

Wallach et al. Ratio-AIS Ratio-AIS

logw(i,t) = logw(i,t−1) +

n−1∑
j=0

log
ft,j(zt,j)

ft,j+1(zt,j)

Experimental Analysis on the NIPS and ACL Corpora

Comparing Learned Topics with Perturbed Topics

◮ Dots below 1: Unperturbed topics are better (likely correct)

◮ Dots on the diagonal: Two repeated runs of the method produce the same perplexity ratio

100 temperatures
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10,000 temperatures
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Standard AIS
Left−to−Right
Ratio−AIS Convex vs Convex (Reverse)
Ratio−AIS Geometric vs Geometric (Reverse)

% Correct Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS
to Right AIS Geometric Geom. (reverse) Convex Convex (reverse)

NIPS (cheap) 63.8 48.8 83.8 89.2 84.6 87.7
NIPS (expensive) 84.6 62.3 86.9 87.7 87.7 87.7
ACL (cheap) 80.2 50.8 88.3 92.0 88.3 92.3

ACL (expensive) 90.7 75.2 90.3 90.3 90.3 90.3

Comparing Asymmetric α and Symmetric α Topic Models

Correlation with Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS
Long LR Run to Right AIS Geometric Geom. (reverse) Convex Convex (reverse)
NIPS (cheap) 0.947 0.619 0.973 0.975 0.976 0.981

NIPS (expensive) 0.993 0.852 0.981 0.982 0.981 0.982
ACL (cheap) 0.965 0.578 0.984 0.983 0.987 0.986

ACL (expensive) 0.995 0.892 0.989 0.989 0.990 0.989

Variance of Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS
Perplexity Ratio to Right AIS Geometric Geom. (reverse) Convex Convex (reverse)

NIPS (cheap) 2.6 ×10−4 2.6 ×10−3 2.0 ×10−5 1.5 ×10−5 8.2 × 10−6 9.8 ×10−6

NIPS (expensive) 1.7 ×10−5 6.0 ×10−4 1.4 ×10−6 1.2 ×10−6 6.9 ×10−7 5.8 × 10−7

ACL (cheap) 1.7×10−4 3.6 ×10−3 1.6×10−5 1.3×10−5 7.7×10−6 6.6 × 10−6

ACL (expensive) 1.4×10−5 5.6×10−4 1.1×10−6 9.4×10−7 7.4×10−7 5.1 × 10−7

Corpus-Level Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS
Perplexity Ratio to Right AIS Geometric Geom. (reverse) Convex Convex (reverse)
NIPS (cheap) 0.984 0.975 1.01 0.992 1.01 0.994

NIPS (expensive) 0.989 0.990 1.00 0.999 1.00 0.998
ACL (cheap) 0.984 0.980 1.00 0.985 1.00 0.988

ACL (expensive) 0.987 0.989 0.994 0.992 0.996 0.992

Evaluating Iteration-AIS
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