

Mixed membership word embeddings:

Corpus-specific embeddings without big data

James Foulds

University of California, San Diego

Southern California Machine Learning Symposium, Caltech, 11/18/2018

Word Embeddings

 Language models which learn to represent dictionary words with vectors

dog: (0.11, -1.5, 2.7, ...) cat: (0.15, -1.2, 3.2, ...) Paris: (4.5, 0.3, -2.1, ...)

- Nuanced representations for words
- Improved performance for many NLP tasks

 translation, part-of-speech tagging, chunking, NER, ...
- NLP "from scratch"? (Collobert et al., 2011)

Word2vec (Mikolov et al., 2013)

Skip-Gram

INPUT

PROJECTION

OUTPUT

A log-bilinear classifier for the context of a given word

 $p(w_j|w_i) \propto \exp(v_{w_j}^{\prime \mathsf{T}} v_{w_i})$ $v_w : \text{``input'' vectors}$ $v_w' : \text{``output'' vectors}$

Word2vec (Mikolov et al., 2013)

• Key insights:

- Simple models can be trained efficiently on big data
- High-dimensional simple embedding models, trained on massive data sets, can outperform sophisticated neural nets

Target Corpus vs Big Data?

• Suppose you want word embeddings to use on the NIPS corpus, 1740 docs

Which has better predictive performance for held out word/context-word pairs on NIPS corpus?

Option 1: Word embeddings trained on NIPS.
 2.3 million word tokens, 128 dim vectors

Option 2: embeddings trained on Google News.
 100 billion word tokens, 300 dim vectors

Target Corpus vs Big Data?

• Answer: Option 1, embeddings trained on NIPS

Similar Words to "*learning*" for each Corpus

• **Google News:** teaching learn Learning reteaching learner_centered emergent_literacy kinesthetic_learning teach learners learing lifeskills learner experiential_learning Teaching unlearning numeracy_literacy taught cross_curricular Kumon_Method ESL_FSL

• **NIPS:** reinforcement belief learning policy algorithms Singh robot machine MDP planning algorithm problem methods function approximation POMDP gradient markov approach based

The Case for Small Data

- Many (most?) data sets of interest are small
 E.g. NIPS corpus, 1740 articles
- Common practice:
 - Use word vectors trained on another, larger corpus
 - Tomas Mikolov's vectors from Google News, 100B words
 - Wall Street Journal corpus
- In many cases, this may not be the best idea

The Case for Small Data

- Word embedding models are biased by their training dataset, no matter how large
- E.g. can encode sexist assumptions (Bolukbasi et al., 2016)

"man is to computer programmer as woman is to homemaker"

The Case for Small Data

Although powerful,
 big data will not solve all our problems!

 We still need effective quantitative methods for small data sets!

Contributions

• Novel model for word embeddings on small data

- parameter sharing via mixed membership

• Efficient training algorithm

 Leveraging advances in word embeddings (NCE) and topic models (Metropolis-Hastings-Walker)

• Empirical study

Practical recommendations

The Skip-Gram as a Probabilistic Model

 Can view skip-gram as probabilistic model for ``generating'' context words

For each word in the corpus w_i

For each word $w_j \in context(i)$ Draw $w_j | w_i$ via $p(w_j | w_i) \propto exp(v'_{w_j} {}^{\mathsf{T}} v_{w_i} + b_j)$

Implements distributional hypothesis

Conditional discrete distribution over words: can identify with a topic

The Skip-Gram as a Probabilistic Model

Mixed Membership Modeling

- Naïve Bayes conditional independence assumption typically too strong, not realistic
- Mixed membership: relax "hard clustering" assumption to "soft clustering"
 - Membership distribution over clusters
 E.g.:
 - Text documents belong to a distribution of topics
 - Social network individuals belong partly to multiple communities

Grid of Models' "Generative" Processes

Identifying word distributions with topics leads to analogous topic model

	Skip-gram	Skip-gram topic model
Naive Bayes	For each word in the corpus w_i	For each word in the corpus w_i
	For each word $w_j \in context(i)$	For each word $w_j \in context(i)$
	Draw $w_j w_i$ via $p(w_j w_i) \propto exp(v'_{w_j} {}^{T} v_{w_i} + b_j)$	Draw $w_j w_i \sim \text{Discrete}(\phi^{(w_i)})$
Mixed membership	For each word in the corpus w_i	For each word in the corpus w_i
	Draw a topic $z_i \sim \text{Discrete}(\theta^{(w_i)})$	Draw a topic $z_i \sim \text{Discrete}(\theta^{(w_i)})$
	For each word $w_j \in context(i)$	For each word $w_j \in context(i)$
	Draw $w_j w_i$ via $p(w_j w_i) \propto exp(v'_{w_j} {}^{T} v_{z_i} + b_j)$	Draw $w_j w_i \sim \text{Discrete}(\phi^{(z_i)})$

Reinstate word vector representation

Relax naïve Bayes assumption, replace with mixed membership model. -flexible representation for words -parameter sharing

Mixed Membership Skip-Gram Posterior Inference for Topic Vector

 Context can be leveraged for inferring the topic vector at test time, via Bayes' rule:

$$Pr(v_{w_i} = v_k | w_i, \text{context}(i), \mathbf{V}, \Theta) \propto Pr(z_i = k | w_i, \Theta) Pr(\text{context}(i) | z_i = k, \mathbf{V})$$
$$= \theta_k^{(w_i)} \prod_{c \in \text{context}(i)} \frac{exp(v_{w_c^{(i)}}^{\prime \mathsf{T}} v_k)}{\sum_{j'=1}^{V} exp(v_{j'}^{\prime \mathsf{T}} v_k)}$$

Bayesian Inference for MMSG Topic Model

• Bayesian version of model with Dirichlet priors

Collapsed Gibbs sampling

$$p(z_i = k|\cdot) \propto \left(n_k^{(w_i)\neg i} + \alpha_k\right) \prod_{c=1}^{|\text{context}(i)|} \frac{n_{w_c^{(i)}}^{(k)\neg i} + \beta_{w_c^{(i)} + n_{w_c^{(i)}}^{(i,c)}}}{n^{(k)\neg i} + \sum_{w'} \beta_{w'} + c - 1}$$

Bayesian Inference for MMSG Topic Model

- Challenge 1: want relatively large # topics
- Solution: Metropolis-Hastings-Walker algorithm (Li et al. 2014)
 - Alias table data structure, amortized O(1) sampling
 - Sparse implementation, sublinear in topics K
 - Metropolis-Hastings correction for sampling from stale distributions

Metropolis-Hastings-Walker (Li et al. 2014) Dense, slow-changing **Sparse** $p(z_i = k|\cdot) \propto n_k^{(w_i)\neg i} A_{ik} + \alpha_k A_{ik}$ $A_{ik} = \prod_{c=1}^{|\text{context}(i)|} \frac{n_{w_c^{(i)}}^{(k)\neg_i} + \beta_{w_c^{(i)} + n_{w_c^{(i)}}^{(i,c)}}}{n^{(k)\neg_i} + \sum_{w'} \beta_{w'} + c - 1}$

 Approximate second term of the mixture, sample efficiently via alias tables, correct via Metropolis

Metropolis-Hastings-Walker Proposal

- Dense part of Gibbs update is a "product of experts" (Hinton, 2004), expert for each context word
- Use a "mixture of experts" proposal distribution

$$q(k) = \sum_{c=1}^{|\text{context}(w_i)|} \frac{1}{|\text{context}|} q_{w_c^{(i)}}(k) , q_{w_c^{(i)}}(k) = \frac{1}{Z_{w_c}} \alpha_k \frac{n_{w_c^{(i)}}^{(k)} + \beta_{w_c^{(i)}}}{n^{(k)} + \sum_{w'} \beta_{w'}}$$

Can sample efficiently from "experts" via alias tables

Bayesian Inference for MMSG Topic Model

• Challenge 2: cluster assignment updates almost deterministic, vulnerable to local maxima

- Solution: simulated annealing
 - Anneal temperature of model
 - adjusting Metropolis-Hastings acceptance probabilities

Approximate MLE for Mixed Membership Skip-Gram

- Online EM impractical
 - M-step is O(V)
 - E-step is O(KV)
- Approximate online EM
 - Key insight: MMSG topic model equivalent to word embedding model, up to Dirichlet prior
 - Pre-solve E-step via topic model CGS
 - Apply Noise Contrastive Estimation to solve M-step
 - Entire algorithm approximates maximum likelihood estimation via these two principled approximations

Model	Input word = "Bayesian" Top words in topic for input word. Top 3 topics for word shown for mixed membership models.
SGTM SG	model networks learning neural bayesian data models approach network framework belief learning framework models methods markov function bayesian based inference
MMSGTM	bayesian model parameters posterior prior distribution approach likelihood variational inference neural networks computation bayesian learning mackay framework network functions practical carlo monte bayesian gaussian neural neal implementation methods models williams
MMSG	variational likelihood bayesian inference approach parameters marginal dirichlet posterior sampling neural bayesian learning networks computation framework regularization entropy press mackay neal rasmussen monte bayesian models http press neural barber carlo

Model	Input word = "Bayesian" Top words in topic for input word. Top 3 topics for word shown for mixed membership models.
SGTM SG	model networks learning neural bayesian data models approach network framework belief learning framework models methods markov function bayesian based inference
MMSGTM	bayesian model parameters posterior prior distribution approach likelihood variational inference neural networks computation bayesian learning mackay framework network functions practical
MMSG <	carlo monte bayesian gaussian neural neal implementation methods models williams variational likelihood bayesian inference approach parameters marginal dirichlet posterior sampling neural bayesian learning networks computation framework regularization entropy press mackay neal rasmussen monte bayesian models http press neural barber carlo

Model	Input word = "Bayesian" Top words in topic for input word. Top 3 topics for word shown for mixed membership models.
SGTM SG	model networks learning neural bayesian data models approach network framework belief learning framework models methods markov function bayesian based inference
MMSGTM	bayesian model parameters posterior prior distribution approach likelihood variational inference neural networks computation bayesian learning mackay framework network functions practical
MMSG	variational likelihood bayesian inference approach parameters marginal dirichlet posterior sampling neural bayesian learning networks computation framework regularization entropy press mackay

Model	Input word = "Bayesian" Top words in topic for input word. Top 3 topics for word shown for mixed membership models.
SGTM SG	model networks learning neural bayesian data models approach network framework belief learning framework models methods markov function bayesian based inference
MMSGTM	bayesian model parameters posterior prior distribution approach likelihood variational inference neural networks computation bayesian learning mackay framework network functions practical carlo monte bayesian gaussian neural neal implementation methods models williams
MMSG	variational likelihood bayesian inference approach parameters marginal dirichlet posterior sampling neural bayesian learning networks computation framework regularization entropy press mackay
	near rasmussen monte bayesian models nup press neural barber carlo

Model	Input word = "SVM" Top words in topic for input word. Top 3 topics for word shown for mixed membership models.
SGTM SG	svm algorithm training method set support vector kernel data error svm svms performance smo results figure learning algorithms function problem
MMSGTM	method svm parzen figure probability shows distribution gaussians mixture density smo kernel svm chunking wij light time linear sparse faster data kernel vector support class set vectors training estimate function
MMSG	parzen svm pact xll method xla forty ibr substitution figure smo svm advantage numerical speed light terms support estimator kernel function support vector svm vectors relevance class svms working kernel

Conclusion

- Small data still matters!!
- Proposed mixed membership, topic model versions of skip-gram word embedding models
- Efficient training via MHW collapsed Gibbs + NCE
- Proposed models **improve prediction**
- Ongoing/future work:
 - Evaluation on more datasets, downstream tasks
 - Adapt to **big data** setting as well?