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Word Embeddings 

• Language models which learn to represent 
dictionary words with vectors 
 
 
 
 
 

• Nuanced representations for words 
• Improved performance for many NLP tasks 

– translation, part-of-speech tagging, chunking, NER, … 

• NLP “from scratch”? (Collobert et al., 2011) 
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dog:  (0.11, -1.5, 2.7, … ) 
cat:    (0.15, -1.2, 3.2,  … ) 
Paris: (4.5, 0.3, -2.1, …) 

dog 

cat Paris 



Word2vec (Mikolov et al., 2013) 

Skip-Gram 

3 Figure due to Mikolov et al. (2013) 

A log-bilinear classifier for the 
context of a given word 



Word2vec (Mikolov et al., 2013) 

 

• Key insights: 

 

–  Simple models can be trained efficiently on big data 

 

–  High-dimensional simple embedding models, 
 trained on massive data sets, 
 can outperform sophisticated neural nets 
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Target Corpus vs Big Data? 

• Suppose you want word embeddings to use on the 
NIPS corpus, 1740 docs 
 
Which has better predictive performance for 
held out word/context-word pairs on NIPS corpus? 
 
– Option 1: Word embeddings trained on NIPS. 

2.3 million word tokens, 128 dim vectors 

 
– Option 2: embeddings trained on Google News. 

100 billion word tokens, 300 dim vectors 
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Target Corpus vs Big Data? 

• Answer: Option 1, embeddings trained on NIPS 
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Similar Words to “learning” 
for each Corpus 

 

• Google News: teaching learn Learning reteaching 

learner_centered emergent_literacy kinesthetic_learning teach 
learners learing lifeskills learner experiential_learning Teaching 
unlearning numeracy_literacy taught cross_curricular 
Kumon_Method ESL_FSL 

 

• NIPS: reinforcement belief learning policy algorithms Singh robot 

machine MDP planning algorithm problem methods function 
approximation POMDP gradient markov approach based 
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The Case for Small Data 

• Many (most?) data sets of interest are small 
– E.g. NIPS corpus, 1740 articles 

 

• Common practice: 
– Use word vectors trained on another, larger corpus 

• Tomas Mikolov’s vectors from Google News, 100B words 

• Wall Street Journal corpus 

 

• In many cases, this may not be the best idea 
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The Case for Small Data 

• Word embedding models are biased by their training dataset, 
no matter how large 

 

• E.g. can encode sexist assumptions (Bolukbasi  et al., 2016) 
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“man is to computer programmer as woman is to homemaker” 

v(programmer) v(homemaker) 

v(man) 

-v(woman) 



The Case for Small Data 

 

• Although powerful, 

big data will not solve all our problems! 
 

• We still need effective quantitative methods 
for small data sets! 
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Contributions 

• Novel model for word embeddings on small data 
– parameter sharing via mixed membership 

 

• Efficient training algorithm 
– Leveraging advances in word embeddings (NCE) 

and topic models (Metropolis-Hastings-Walker) 

 

• Empirical study 
– Practical recommendations 
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The Skip-Gram as a Probabilistic Model 

• Can view skip-gram as probabilistic model for 
``generating’’ context words 
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Implements distributional hypothesis 

Conditional discrete distribution over words: can identify with a topic 



The Skip-Gram as a Probabilistic Model 
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Observed “cluster” assignment 

Naïve Bayes conditional independence 

“Topic” distribution 
for input word wi 



Mixed Membership Modeling 

• Naïve Bayes conditional independence assumption 
typically too strong, not realistic 

 

• Mixed membership: relax “hard clustering” assumption 
to “soft clustering” 
– Membership distribution over clusters 

E.g.: 
• Text documents belong to a distribution of topics 

• Social network individuals belong partly to multiple communities 

• Our genes come from multiple different ancestral populations 
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Grid of Models’ “Generative” Processes 

 

 

 

 

 

 

 

 

 

 

15 

Identifying word distributions with topics 
leads to analogous topic model 

Relax naïve Bayes assumption, replace 
with mixed membership model. 
  -flexible representation for words 
  -parameter sharing 

Reinstate word vector representation 



Mixed Membership Skip-Gram 
Posterior Inference for Topic Vector 

 

• Context can be leveraged for inferring the 
topic vector at test time, via Bayes’ rule: 
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Bayesian Inference for 
MMSG Topic Model 

 

• Bayesian version of model with Dirichlet priors 

 

• Collapsed Gibbs sampling 

 

 

 

 
17 



Bayesian Inference for 
MMSG Topic Model 

 

• Challenge 1: want relatively large # topics 

 

• Solution: Metropolis-Hastings-Walker algorithm 
(Li et al. 2014) 
– Alias table data structure, amortized O(1) sampling 

– Sparse implementation, sublinear in topics K 

– Metropolis-Hastings correction for sampling from 
stale distributions 
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Metropolis-Hastings-Walker 
(Li et al. 2014) 

 

 

 

 

 

 

• Approximate second term of the mixture, sample 
efficiently via alias tables, correct via Metropolis 
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Sparse Dense, slow-changing 



Metropolis-Hastings-Walker Proposal 

• Dense part of Gibbs update is a “product of experts” 
(Hinton, 2004), expert for each context word 

 

• Use a “mixture of experts” proposal distribution 

 

 

 

 

• Can sample efficiently from “experts” via alias tables 
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Bayesian Inference for 
MMSG Topic Model 

 

• Challenge 2: cluster assignment updates almost 
deterministic, vulnerable to local maxima 

 

• Solution: simulated annealing 

– Anneal temperature of model 

• adjusting Metropolis-Hastings acceptance probabilities 
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Approximate MLE for 
Mixed Membership Skip-Gram 

• Online EM impractical 
– M-step is O(V) 
– E-step is O(KV) 

 

• Approximate online EM 
– Key insight: MMSG topic model equivalent to word 

embedding model, up to Dirichlet prior 
• Pre-solve E-step via topic model CGS 
• Apply Noise Contrastive Estimation to solve M-step 

– Entire algorithm approximates maximum likelihood 
estimation via these two principled approximations 
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Qualitative Results, NIPS Corpus 
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Qualitative Results, NIPS Corpus 
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Qualitative Results, NIPS Corpus 
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Qualitative Results, NIPS Corpus 

26 



Qualitative Results, NIPS Corpus 
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Prediction Performance, NIPS Corpus 



29 

Prediction Performance, NIPS Corpus 

Mixed-membership models (w/ posterior) 
beat naïve Bayes models, 
 
for both word embedding and topic models 
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Prediction Performance, NIPS Corpus 

Using the full context 
(posterior over topic or summing vectors) 
helps all models except the basic skip-gram 
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Prediction Performance, NIPS Corpus 

Topic models beat their 
corresponding embedding models, 
for both naïve Bayes and Mixed Membership 

Open question: when do we really 
need word vector representations??? 



Conclusion 

• Small data still matters!! 
 

• Proposed mixed membership, topic model versions of 
skip-gram word embedding models 
 

• Efficient training via MHW collapsed Gibbs + NCE 
 

• Proposed models improve prediction 
 

• Ongoing/future work: 
– Evaluation on more datasets, downstream tasks 
– Adapt to big data setting as well? 
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