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Social media data

• Content
• Text
• Images
• Video

• Relations
• Friendships/follows
• Likes/reactions
• Tags
• Re-tweets

• User attributes
• Location
• Age
• Interests



Outline

• Mathematical representations and generative 
models for social networks
• Introduction to generative approach

• Connections to sociological principles

• Fitting generative social network models to data
• Application scenarios with demos

• Model selection and evaluation

• Rich generative models for social media data
• Network models augmented with text and dynamics

• Case studies on social media data



Social networks as graphs

• A social network can be represented by a graph 𝐺 = 𝑉, 𝐸
• 𝑉: vertices, nodes, or actors typically representing people
• 𝐸: edges, links, or ties denoting relationships between nodes
• Directed graphs used to represent asymmetric relationships

• Graphs have no natural representation in a geometric space
• Two identical graphs drawn differently
• Moral: visualization provides very limited analysis ability
• How do we model and analyze social network data?



Matrix representation of social 
networks
• Represent graph by 𝑛 × 𝑛 adjacency matrix or 

sociomatrix 𝐘
• 𝑦𝑖𝑗 = 1 if there is an edge between nodes 𝑖 and 𝑗

• 𝑦𝑖𝑗 = 0 otherwise

• Easily extended to directed and weighted graphs

𝐘 =

0 1 1 0 0 1
1 0 0 1 1 0
1 0 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 0
1 0 1 0 0 0



Adjacency matrix permutation 
invariance
• Row and column permutations to adjacency matrix do 

not change graph
• Changes only ordering of nodes
• Provided same permutation is applied to both rows and 

columns

• Same graph with 2 different orderings of nodes



Sociological principles related to 
edge formation
• Homophily or assortative mixing

• Tendency for individuals to bond with similar others

• Assortative mixing by age, gender, social class, 
organizational role, node degree, etc.

• Results in transitivity (triangles) in social networks
• “My friend of my friend is my friend”

• Equivalence of nodes
• Two nodes are structurally equivalent if their relations to 

all other nodes are identical
• Approximate equivalence recorded by similarity measure

• Two nodes are regularly equivalent if their neighbors are 
similar (not necessarily common neighbors)



Brief history of social network 
models
• 1930s – Graphical depictions of social networks: sociograms 

(Moreno)

• 1950s – Mathematical (probabilistic) models of social 
networks (Erdős-Rényi-Gilbert)

• 1960s – Small world / 6-degrees of separation experiment 
(Milgram)

• 1980s – Introduction of statistical models: stochastic block 
models and precursors to exponential random graph models 
(Holland et al., Frank and Strauss)

• 1990s – Statistical physicists weigh in: small-world models 
(Watts-Strogatz) and preferential attachment (Barabási-
Albert)

• 2000s-today – Machine learning approaches, latent variable 
models



Generative models for social 
networks
• A generative model is one that can simulate

new networks

• Two distinct schools of thought: 
• Probability models (non-statistical)

• Typically simple, 1-2 parameters, not typically learned from 
data

• Can be studied analytically

• Statistical models
• More parameters, latent variables

• Learned from data via statistical estimation techniques



Probability and Inference
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Data generating 
process

Observed data

Probability

Inference

Figure based on one by Larry Wasserman, "All of Statistics"

Mathematics/physics: Erdős-Rényi, preferential attachment,…

Statistics/machine learning: ERGMs, latent variable models…



Probability models for networks

• Erdős-Rényi-Gilbert 𝐺 𝑁, 𝑝 model (1 parameter) 
• An edge is formed between any two nodes with equal 

probability 𝑝

• 2 drawbacks with 𝐺 𝑁, 𝑝 model:
• Does not generative networks with transitivity

• Each node ends up with roughly same degree (number of 
edges)

• Watts-Strogatz small-world model (2 parameters)
• Mechanistic construction by re-wiring edges

• Addresses drawback #1 by creating networks with 
triangles and short average path lengths



Probability models for networks

• Erdős-Rényi-Gilbert 𝐺 𝑁, 𝑝 model (1 parameter) 
• An edge is formed between any two nodes with equal 

probability 𝑝

• 2 drawbacks with 𝐺 𝑁, 𝑝 model:
• Does not generative networks with transitivity

• Each node ends up with roughly same degree (number of 
edges)

• Barabási-Albert model (2 parameters)
• Mechanistic construction that grows a network from an 

initial “seed” using preferential attachment

• Addresses drawback #2 by creating networks with 
power-law degree distributions



Probability models for networks

• Erdős-Rényi-Gilbert 𝐺 𝑁, 𝑝 model (1 parameter) 

• Watts-Strogatz small-world model (2 parameters)

• Barabási-Albert model (2 parameters)

• Advantage: simplicity enables rigorous theoretical 
analysis of model properties

• Disadvantage: limited flexibility results in poor fits 
to data
• Even though they are “generative”, they don’t generate 

networks that share many properties with the specific 
network they were fit to



Statistical models for networks

• Statistical models try to represent networks using a 
larger number of parameters to capture properties 
of a specific network

• Exponential random graph models

• Latent variable models
• Latent space models

• Stochastic block models

• Mixed-membership stochastic block models

• Latent feature models



Exponential family random graphs
(ERGMs)

17

Arbitrary sufficient statistics

Covariates (gender, age, …)

E.g. “how many males are friends with females”



Exponential family random graphs
(ERGMs)
• Pros:

• Powerful, flexible representation

• Can encode complex theories, and do substantive social 
science

• Handles covariates

• Mature software tools available,
e.g. ergm package for statnet

18



Exponential family random graphs
(ERGMs)
• Cons:

• Computationally intensive to fit to data

• Model degeneracy can easily happen
• “a seemingly reasonable model can actually be such a bad mis-

specification for an observed dataset as to render the observed 
data virtually impossible”
• Goodreau (2007)

• Moral of the story: ERGMs are powerful, but 
require care and expertise to perform well

19



Latent variable models for social 
networks
• Model where observed variables are dependent on 

a set of unobserved or latent variables
• Observed variables assumed to be conditionally 

independent given latent variables

• Why latent variable models?
• Adjacency matrix 𝐘 is invariant to row and column 

permutations

• Aldous-Hoover theorem implies existence of a latent 
variable model of form

for iid latent variables      and some function 



Latent variable models for social 
networks
• Latent variable models allow for heterogeneity of 

nodes in social networks
• Each node (actor) has a latent variable 𝐳𝑖
• Probability of forming edge between two nodes is 

independent of all other node pairs given values of 
latent variables

𝑝 𝐘 𝐙, 𝜃 =ෑ

𝑖≠𝑗

𝑝 𝑦𝑖𝑗 𝐳𝑖 , 𝐳𝑗 , 𝜃

• Ideally latent variables should provide an interpretable
representation



(Continuous) latent space model

• Motivation: homophily or assortative mixing
• Probability of edge between two nodes increases as 

characteristics of the nodes become more similar

• Represent nodes in an unobserved (latent) space of 
characteristics or “social space”

• Small distance between 2 nodes in latent space 
high probability of edge between nodes
• Induces transitivity: observation of edges 𝑖, 𝑗 and 𝑗, 𝑘

suggests that 𝑖 and 𝑘 are not too far apart in latent 
space more likely to also have an edge



(Continuous) latent space model

• (Continuous) latent space model (LSM) proposed 
by Hoff et al. (2002)
• Each node has a latent position 𝐳𝑖 ∈ ℝ𝑑

• Probabilities of forming edges depend on distances
between latent positions

• Define pairwise affinities 𝜓𝑖𝑗 = 𝜃 − 𝐳𝑖 − 𝐳𝑗 2



Latent space model: generative 
process
1. Sample node positions in 

latent space

2. Compute affinities 
between all pairs of nodes

3. Sample edges between all 
pairs of nodes

Figure due to P. D. Hoff, Modeling homophily and stochastic equivalence in symmetric relational data, NIPS 2008



Advantages and disadvantages of 
latent space model
• Advantages of latent space model

• Visual and interpretable spatial representation of 
network

• Models homophily (assortative mixing) well via 
transitivity

• Disadvantages of latent space model
• 2-D latent space representation often may not offer 

enough degrees of freedom

• Cannot model disassortative mixing (people preferring 
to associate with people with different characteristics)



Stochastic block model (SBM)

• First formalized by Holland et al. 
(1983)

• Also known as multi-class Erdős-
Rényi model

• Each node has categorical latent 
variable 𝑧𝑖 ∈ 1,… , 𝐾 denoting 
its class or group

• Probabilities of forming edges 
depend on class memberships of 
nodes (𝐾 × 𝐾 matrix W)
• Groups often interpreted as 

functional roles in social networks



Stochastic equivalence and block 
models
• Stochastic equivalence: 

generalization of structural 
equivalence

• Group members have 
identical probabilities of 
forming edges to members 
other groups
• Can model both assortative and 

disassortative mixing

Figure due to P. D. Hoff, Modeling homophily and stochastic equivalence in symmetric relational data, NIPS 2008



Stochastic equivalence
vs community detection

Original graph Blockmodel

Figure due to Goldenberg et al. (2009) - Survey of Statistical Network Models, Foundations and Trends

Stochastically equivalent, but 
are not densely connected



Reordering the matrix to show the 
inferred block structure

Kemp, Charles, et al. "Learning systems of concepts with an infinite relational model." AAAI. Vol. 3. 2006.



Model structure

Kemp, Charles, et al. "Learning systems of concepts with an infinite relational model." AAAI. Vol. 3. 2006.

Latent groups Z

Interaction matrix W

(probability of an edge 
from block k to block k’)



Stochastic block model
generative process
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Stochastic block model
Latent representation

Running Dancing Fishing

Alice 1

Bob 1

Claire 1

Alice Bob

Claire

Nodes assigned to only 
one latent group.

Not always an appropriate
assumption



Mixed membership
stochastic blockmodel (MMSB)

Airoldi et al., (2008)

Running Dancing Fishing

Alice 0.4 0.4 0.2

Bob 0.5 0.5

Claire 0.1 0.9

Alice Bob

Claire

Nodes represented by distributions 
over latent groups (roles)



Mixed membership
stochastic blockmodel (MMSB)

Airoldi et al., (2008)



Latent feature models

Cycling
Fishing
Running

Waltz
Running

Tango
Salsa

Alice Bob

Claire

Mixed membership implies a kind of “conservation of (probability) mass” constraint:
If you like cycling more, you must like running less, to sum to one

Miller, Griffiths, Jordan (2009)



Latent feature models

Miller, Griffiths, Jordan (2009)

Cycling
Fishing
Running

Waltz
Running

Tango
Salsa

Cycling Fishing Running Tango Salsa Waltz

Alice

Bob

Claire

Z =

Alice Bob

Claire
Nodes represented by
binary vector of latent features



Latent feature models
• Latent Feature Relational Model LFRM

(Miller, Griffiths, Jordan, 2009) likelihood model:

• “If I have feature k, and you have feature l, add Wkl to the log-
odds of the probability we interact”

• Can include terms for network density, covariates, popularity, 
etc.
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Python code for demos 
available on tutorial 
website
https://github.com/kevin-s-xu/ICWSM-2018-Generative-
Tutorial

https://github.com/kevin-s-xu/ICWSM-2018-Generative-Tutorial


Outline

• Mathematical representations and generative 
models for social networks
• Introduction to generative approach

• Connections to sociological principles

• Fitting generative social network models to data
• Application scenarios with demos

• Model selection and evaluation

• Rich generative models for social media data
• Network models augmented with text and dynamics

• Case studies on social media data



Application 1: Facebook wall posts

• Network of wall posts on Facebook collected by 
Viswanath et al. (2009)
• Nodes: Facebook users

• Edges: directed edge from 𝑖 to 𝑗 if 𝑖 posts on 𝑗’s 
Facebook wall

• What model should we use?





Application 1: Facebook wall posts

• Network of wall posts on Facebook collected by 
Viswanath et al. (2009)
• Nodes: Facebook users

• Edges: directed edge from 𝑖 to 𝑗 if 𝑖 posts on 𝑗’s 
Facebook wall

• What model should we use?
• (Continuous) latent space models do not handle 

directed graphs in a straightforward manner

• Wall posts might not be transitive, unlike friendships

• Stochastic block model might not be a bad choice 
as a starting point



Model structure

Kemp, Charles, et al. "Learning systems of concepts with an infinite relational model." AAAI. Vol. 3. 2006.

Latent groups Z

Interaction matrix W

(probability of an edge 
from block k to block k’)



Fitting stochastic block model

• A priori block model: assume that class (role) of 
each node is given by some other variable
• Only need to estimate 𝑊𝑘𝑘′: probability that node in 

class 𝑘 connects to node in class 𝑘′ for all 𝑘, 𝑘′

• Likelihood given by

• Maximum-likelihood estimate (MLE) given by

Number of actual
edges in block 𝑘, 𝑘′

Number of possible 
edges in block 𝑘, 𝑘′



Estimating latent classes

• Latent classes (roles) are unknown in this data set
• First estimate latent classes 𝐙 then use MLE for 𝐖

• MLE over latent classes is intractable!
• ~𝐾𝑁 possible latent class vectors

• Spectral clustering techniques have been shown to 
accurately estimate latent classes
• Use singular vectors of (possibly transformed) adjacency 

matrix to estimate classes

• Many variants with differing theoretical guarantees



Spectral clustering for directed 
SBMs
1. Compute singular value decomposition 𝑌 =

𝑈Σ𝑉𝑇

2. Retain only first 𝐾 columns of 𝑈, 𝑉 and first 𝐾
rows and columns of Σ

3. Define coordinate-scaled singular vector matrix 
෨𝑍 = 𝑈Σ1/2 𝑉Σ1/2

4. Run k-means clustering on rows of ෨𝑍 to return 
estimate መ𝑍 of latent classes

Scales to networks with thousands of nodes!



Demo of SBM on Facebook wall 
post network
1. Load adjacency matrix 𝐘

2. Model selection: examine singular values of 𝐘 to 
choose number of latent classes (blocks)
• Eigengap heuristic: look for gaps between singular values

3. Fit selected model

4. Analyze model fit: class memberships and block-
dependent edge probabilities

5. Simulate new networks from model fit

6. Check how well simulated networks preserve actual 
network properties (posterior predictive check)



Conclusions from posterior 
predictive check
• Block densities are well-replicated

• Transitivity is partially replicated
• No mechanism for transitivity in SBM so this is a natural 

consequence of block-dependent edge probabilities

• Reciprocity is not replicated at all
• Pair-dependent stochastic block model can be used to 

preserve reciprocity

𝑝 𝐘 𝐙, 𝜃 =ෑ

𝑖≠𝑗

𝑝 𝑦𝑖𝑗 , 𝑦𝑗𝑖 𝐳𝑖 , 𝐳𝑗 , 𝜃

• 4 choices for pair or dyad: 𝑦𝑖𝑗 , 𝑦𝑗𝑖 ∈
0,0 , 0,1 , 1,0 , 1,1



Application 2: Facebook 
friendships
• Network of friendships on Facebook collected by 

Viswanath et al. (2009)
• Nodes: Facebook users

• Edges: undirected edge between 𝑖 and 𝑗 if they are 
friends

• What model should we use?



Application 2: Facebook 
friendships
• Network of friendships on Facebook collected by 

Viswanath et al. (2009)
• Nodes: Facebook users

• Edges: undirected edge between 𝑖 and 𝑗 if they are 
friends

• What model should we use?
• Edges denote friendships so lots of transitivity may be 

expected (compared to wall posts)

• Stochastic block model can replicate some transitivity 
due to class-dependent edge probabilities but doesn’t 
explicitly model transitivity

• Latent space model might be a better choice



(Continuous) latent space model

• (Continuous) latent space model (LSM) proposed 
by Hoff et al. (2002)
• Each node has a latent position 𝐳𝑖 ∈ ℝ𝑑

• Probabilities of forming edges depend on distances
between latent positions

• Define pairwise affinities 𝜓𝑖𝑗 = 𝜃 − 𝐳𝑖 − 𝐳𝑗 2

𝑝 𝐘 𝐙, 𝜃

=ෑ

𝑖≠𝑗

𝑒𝑦𝑖𝑗𝜓𝑖𝑗

1 + 𝑒𝜓𝑖𝑗



Estimation for latent space model

• Maximum-likelihood estimation
• Log-likelihood is concave in terms of pairwise distance 

matrix 𝐷 but not in latent positions 𝑍

• First find MLE in terms of 𝐷 then use multi-dimensional 
scaling (MDS) to get initialization for 𝑍

• Faster approach: replace 𝐷 with shortest path distances 
in graph then use MDS

• Use quasi-Newton (BFGS) optimization to find MLE for 𝑍

• Latent space dimension often set to 2 to allow 
visualization using scatter plot

Scales to ~1000 nodes



Demo of latent space model on 
Facebook friendship network
1. Load adjacency matrix 𝐘

2. Model selection: choose dimension of latent 
space
• Typically start with 2 dimensions to enable visualization

3. Fit selected model

4. Analyze model fit: examine estimated positions of 
nodes in latent space and estimated bias

5. Simulate new networks from model fit

6. Check how well simulated networks preserve 
actual network properties (posterior predictive 
check)



Conclusions from posterior 
predictive check
• Block densities are well-replicated by SBM

• Transitivity is partially replicated by SBM

• Overall density is well-replicated by latent space 
model
• No blocks in latent space model

• Transitivity is well-replicated by latent space model

• Can increase dimension of latent space if posterior 
check reveals poor fit
• Not needed in this small network



Frequentist inference

• Both these demos used frequentist inference

• Parameters 𝜃 treated as having fixed but unknown 
values
• Stochastic block model parameters: class memberships 
𝐙 and block-dependent edge probabilities 𝐖

• Latent space model parameters: latent node positions 𝐙
and scalar global bias 𝜃

• Estimate parameters by maximizing likelihood 
function of the parameters

መ𝜃𝑀𝐿𝐸 = argmax𝜃 𝑃𝑟 𝐗 𝜃



Bayesian inference

• Parameters 𝜃 treated as random variables.  We can 
then take into account uncertainty over them

• As a Bayesian, all you have to do is write down your 
prior beliefs, write down your likelihood, and apply 
Bayes ‘ rule,

58



Elements of Bayesian Inference

59

Posterior

Likelihood

Marginal likelihood
(a.k.a. model evidence)

Prior

is a normalization constant that does not depend on 
the value of θ.  It is the probability of the data under 
the model, marginalizing over all possible θ’s.



MAP estimate can result in 
overfitting

60



Inference Algorithms

• Exact inference

– Generally intractable 

• Approximate inference

– Optimization approaches

• EM, variational inference

– Simulation approaches

• Markov chain Monte Carlo, importance sampling, 
particle filtering

61



Markov chain Monte Carlo

• Goal: approximate/summarize a distribution, e.g. 
the posterior, with a set of samples

• Idea: use a Markov chain to simulate the 
distribution and draw samples

62



Gibbs sampling

• Update variables one at a time by drawing from 
their conditional distributions

• In each iteration, sweep through and update all of 
the variables, in any order.

63



Gibbs sampling for SBM



Variational inference

• Key idea:

• Approximate distribution of interest p(z) with another 
distribution q(z)

• Make q(z) tractable to work with

• Solve an optimization problem to make q(z) as similar to 
p(z) as possible, e.g. in KL-divergence

65



Variational inference
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p

q



Variational inference
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Variational inference
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p

q



Mean field algorithm

• The mean field approach uses a fully factorized q(z)

• Until converged
• For each factor i

• Select variational parameters        such that   

69



Mean field vs Gibbs sampling

• Both mean field and Gibbs sampling iteratively 
update one variable given the rest

• Mean field stores an entire distribution for each 
variable, while Gibbs sampling draws from one.

70



Pros and cons vs Gibbs sampling

• Pros:
• Deterministic algorithm, typically converges faster
• Stores an analytic representation of the distribution, not just 

samples
• Non-approximate parallel algorithms
• Stochastic algorithms can scale to very large data sets
• No issues with checking convergence

• Cons:
• Will never converge to the true distribution,

unlike Gibbs sampling
• Dense representation can mean more communication for parallel 

algorithms
• Harder to derive update equations

71



Variational inference algorithm
for MMSB (Variational EM)
• Compute maximum likelihood estimates for interaction 

parameters Wkk’

• Assume fully factorized variational distribution for 
mixed membership vectors, cluster assignments

• Until converged
• For each node

• Compute variational discrete distribution over it’s latent
zp->q and zq->p assignments

• Compute variational Dirichlet distribution over its mixed 
membership distribution

• Maximum likelihood update for W



Application of MMSB to 
Sampson’s Monastery
• Sampson (1968) studied

friendship relationships 
between novice monks

• Identified several factions
• Blockmodel appropriate?

• Conflicts occurred
• Two monks expelled

• Others left

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels.
In Advances in Neural Information Processing Systems (pp. 33-40).



Application of MMSB to 
Sampson’s Monastery

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels.
In Advances in Neural Information Processing Systems (pp. 33-40).

Estimated
blockmodel



Application of MMSB to 
Sampson’s Monastery

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels.
In Advances in Neural Information Processing Systems (pp. 33-40).

Estimated
blockmodel

Least coherent



Application of MMSB to 
Sampson’s Monastery

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels.
In Advances in Neural Information Processing Systems (pp. 33-40).

Estimated Mixed 
membership
vectors

(posterior mean)



Application of MMSB to 
Sampson’s Monastery

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels.
In Advances in Neural Information Processing Systems (pp. 33-40).

Estimated Mixed 
membership
vectors

(posterior mean)
Expelled



Application of MMSB to 
Sampson’s Monastery

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels.
In Advances in Neural Information Processing Systems (pp. 33-40).

Estimated Mixed 
membership
vectors

(posterior mean)

Wavering not captured

Wavering captured



Application of MMSB to 
Sampson’s Monastery

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels.
In Advances in Neural Information Processing Systems (pp. 33-40).

Original network
(whom do you like?)

Summary of network (use π‘s)



Application of MMSB to 
Sampson’s Monastery

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels.
In Advances in Neural Information Processing Systems (pp. 33-40).

Original network
(whom do you like?)

Denoise network (use z’s)



Evaluation of
unsupervised models

• Quantitative evaluation
• Measurable, quantifiable performance metrics

• Qualitative evaluation
• Exploratory data analysis (EDA) using the model

• Human evaluation, user studies,…
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Evaluation of
unsupervised models

• Intrinsic evaluation
• Measure inherently good properties of the model

• Fit to the data (e.g. link prediction), interpretability,…

• Extrinsic evaluation
• Study usefulness of model for external tasks

• Classification, retrieval, part of speech tagging,…

82



Extrinsic evaluation:
What will you use your model for?
• If you have a downstream task in mind, you should 

probably evaluate based on it!

• Even if you don’t, you could contrive one for 
evaluation purposes

• E.g. use latent representations for:
• Classification, regression, retrieval, ranking…

83



Posterior predictive checks

• Sampling data from the posterior predictive distribution 
allows us to “look into the mind of the model” – G. Hinton

84

“This use of the word mind is not intended to be metaphorical. We believe that a mental 
state is the state of a hypothetical, external world in which a high-level internal 
representation would constitute veridical perception. That hypothetical world is what the 
figure shows.” Geoff Hinton et al. (2006),  A Fast Learning Algorithm for Deep Belief Nets.



Posterior predictive checks

• Does data drawn from the model differ from the 
observed data, in ways that we care about?

• PPC:
• Define a discrepancy function (a.k.a. test statistic) T(X).

• Like a test statistic for a p-value.  How extreme is my data set?

• Simulate new data X(rep) from the posterior predictive
• Use MCMC to sample parameters from posterior, then simulate data

• Compute T(X(rep)) and T(X), compare. Repeat, to estimate:
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Outline

• Mathematical representations and generative 
models for social networks
• Introduction to generative approach

• Connections to sociological principles

• Fitting generative social network models to data
• Application scenarios with demos

• Model selection and evaluation

• Rich generative models for social media data
• Network models augmented with text and dynamics

• Case studies on social media data



Networks and Text

• Social media data often involve networks with text associated
– Tweets, posts, direct messages/emails,…

• Leveraging text can help to improve network modeling, and to 
interpret the network

• Simple approach: model networks and text separately
– Network model, can determine input for text analysis,

e.g. the text for each network community

• More powerful methodology:
joint models of networks and text
– Usually combine network and language model

components into a single model
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Design Patterns for Probabilistic Models

• Condition on useful information you don’t need to model

• Or, jointly model multiple data modalities

• Hierarchical/multi-level structure
– Words in a document

• Graphical dependencies

• Temporal modeling / time series

88



Box’s Loop

89

Understand,
explore,
predict

Data

Complicated, noisy,
high-dimensional

Low-dimensional, 
semantically meaningful
representations

Probabilistic 
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General-purpose modeling frameworks
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Probabilistic Programming Languages

• These systems can make it much easier for you to 
develop custom models for social media analytics!

• Define a probabilistic model by writing code in a 
programming language

• The system automatically performs inference
– Recently, these systems have become very practical

• Some popular languages:
– Stan, Winbugs, JAGS, Infer.net, PyMC3, Edward, PSL
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Infer.NET

• Imperative probabilistic programming API for 
any .NET language

• Multiple inference algorithms
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Networked Frame Contests within 
#BlackLivesMatter Discourse

• Studies discourse around the #BlackLivesMatter movement on Twitter
• Finds network communities on the political left and right, and analyzes their 

competition in framing the issue

• The authors use a mixed-method, interpretative approach
– Combination of algorithms and qualitative content analysis
– Networks and text considered separately

• network communities the focal points
for qualitative study of text

Stewart et al. (2017). Drawing the Lines of Contention: Networked Frame Contests Within #BlackLivesMatter Discourse



• Retrieve tweets using Twitter streaming API
– between December 2015 – October 2016

– keywords relating to both shootings and one of: blacklivesmatter, 
bluelivesmatter, alllivesmatter

• Construct “shared audience graph”
– Edges between users with large overlap in followers (20th percentile 

in Jaccard similarity of followers)

Networked Frame Contests within 
#BlackLivesMatter Discourse

Stewart et al. (2017). Drawing the Lines of Contention: Networked Frame Contests Within #BlackLivesMatter Discourse



• Perform clustering on network to find communities
– Louvain modularity method used.  Aims to find densely connected 

clusters/communities with few connections to other communities

Networked Frame Contests within 
#BlackLivesMatter Discourse

Stewart et al. (2017). Drawing the Lines of Contention: Networked Frame Contests Within #BlackLivesMatter Discourse



• Content analysis of the clusters

Networked Frame Contests within 
#BlackLivesMatter Discourse

Stewart et al. (2017). Drawing the Lines of Contention: Networked Frame Contests Within #BlackLivesMatter Discourse

Composite left

Broader public of right-
leaning *LM tweeters

Conservative Tweeters 
and Organizers

Alt-Right Elite: Influencers 
and Content Producers

Gamergate



Stewart et al. (2017). Drawing the Lines of Contention: Networked Frame Contests Within #BlackLivesMatter Discourse

Very few retweets between left and right super-clusters (204/18,414 = 1.11%)

Composite left

Broader public of right-
leaning *LM tweeters

Conservative Tweeters 
and Organizers

Alt-Right Elite: Influencers 
and Content Producers

Gamergate

Networked Frame Contests within 
#BlackLivesMatter Discourse



• Study framing contests between left- and right-leaning super-clusters

• #BLM framing on the left: injustice frames

Networked Frame Contests within 
#BlackLivesMatter Discourse

Stewart et al. (2017). Drawing the Lines of Contention: Networked Frame Contests Within #BlackLivesMatter Discourse



• Study framing contests between left- and right-leaning super-clusters

• #BLM framing on the right: Reframing as detrimental to social order
and being anti-law

Networked Frame Contests within 
#BlackLivesMatter Discourse

Stewart et al. (2017). Drawing the Lines of Contention: Networked Frame Contests Within #BlackLivesMatter Discourse



• Study framing contests between left- and right-leaning super-clusters

• Defending and revising frames against challenges (left)

Networked Frame Contests within 
#BlackLivesMatter Discourse

Stewart et al. (2017). Drawing the Lines of Contention: Networked Frame Contests Within #BlackLivesMatter Discourse



• Study framing contests between left- and right-leaning super-clusters

• Defending and revising frames against challenges (right)

Networked Frame Contests within 
#BlackLivesMatter Discourse

Stewart et al. (2017). Drawing the Lines of Contention: Networked Frame Contests Within #BlackLivesMatter Discourse



• Social media sites for debating issues

• Valuable resources for:

– Argumentation

– Dialogue

– Sentiment

– Opinion mining

102

Online Debate Forums



CreateDebate.org
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CreateDebate.org
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Debate topic



CreateDebate.org
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Debate topic

Posts



CreateDebate.org
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Debate topic

Posts

Replies



CreateDebate.org
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Debate topic

Posts

Replies

Reply polarity



Graph of posts:
tree structure

Online Debate Forums

108

Graph of users:
loopy structure



Stance

Stance

Stance

Stance

Disagrees

Disagrees

Disagrees

Disagrees

Classification Targets
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• Stance

• Author-level

• Post-level

• Disagreement

• Author-level

• Post-level

• Textual



Stance

Stance

Stance

Stance

Stance

Stance

Stance

Stance

Stance

Modeling at author-level or post-level?

110[Hasan and Ng 2013] [Other Related Work] 

Modeling Question 1)



Stance

Stance

Stance

Stance

Stance

Stance

Stance

Stance

Modeling Question 2)

111
[Walker et al. 2012, Hasan and Ng 2013 ] [Walker et al. 2012]

Collective classification vs. local classification?



Stance

Stance

Stance

Stance

Disagrees

Disagrees

Disagrees

Disagrees
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Jointly model disagreement together with stance?

[Abbott et. al 2012 - Linguistic Features], [Burfoot et. al 2011 for Congressional Debates]

Modeling Question 3)

Stance

Stance

Stance

Stance

Disagrees

Disagrees

Disagrees

Disagrees

Stance



Our Contributions

• A unified framework to explore multiple models

• Fast, highly scalable inference

– Large post-level graphs

– Loopy author-level graphs

• Systematic study of modeling options

– Modeling recommendations
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Author

Post

Local

Collective

Joint

Author Local

Author Coll.

Author Joint

Post Local

Post Joint

Post Coll.

Modeling 

Granularity

Statistical Models

All Combinations of Models

114



Probabilistic Soft Logic (PSL)

• Templating language for highly scalable graphical model 

called Hinge-loss Markov Random Fields

115

5.0: Disagrees(A1, A2) ^ Pro(A1)  ~Pro(A2)

Rule Weight Predicates are 

continuous 

Random 

Variables!

Relaxations of Logical Operators



Hinge-loss MRFs Over Continuous Variables

Bach et al. NIPS 12, Bach et al. UAI 13
116

Conditional 

random field 

over 

continuous 

RVs in [0,1]

Feature function for 

each instantiated rule

5.0: Disagrees(      ,      ) ^ Pro(      )  ~Pro(       )
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Feature functions are hinge loss functions

Hinge losses encode the  
distance to satisfaction
for each instantiated rule

2

Linear function

Hinge-loss MRFs Over Continuous Variables



Unigrams, Bigrams, Lengths, Initial 

n-grams, Repeated Punctuation

Logistic Regression

Observed Prediction Probabilities 

Obama

Bush

believe

Constructing Local Predictors

118

Pro

Not Pro

Bag-of-words

Training Labels

LocalPro: 0.8

LocalPro: 0.1



119

• Local classifiers for stance (e.g. pro gun control)
• Local classifiers for disagreement
• Collective classification on stance and disagreement

• Can model either at author or post level

• Three increasingly complicated models:
• Just local prediction
• Collective, reply edge implies reverse polarity
• Disagreement modeling

PSL Rules for Stance Prediction Models

Stance

Stance

Stance

Stance

Disagrees

Disagrees

Disagrees

Disagrees
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Post 

Local

Post

Coll.

Post 

Joint

Author

Local

Author

Coll.

Author

Joint

Accuracy

Author Stance Prediction – CreateDebate.org

Post < Author

Author-Joint

Model is best
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Accuracy

Post 

Local

Post

Coll.

Post 

Joint

Author

Local

Author

Coll.

Author

Joint

Post Stance Prediction – CreateDebate.org

Post < Author
(still!)

Author-Joint

Model still best!
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Post 

Local

Post

Coll.

Post 

Joint

Author

Local

Author

Coll.

Author

Joint

Accuracy

Author Stance Prediction – CreateDebate.org

Local < Collective < Joint



Modeling Influence Relationships in 
the U.S. Supreme Court

123
Guo, F., Blundell, C., Wallach, H., and Heller, K. (2015). AISTATS



Modeling Influence Relationships in 
the U.S. Supreme Court

124
Guo, F., Blundell, C., Wallach, H., and Heller, K. (2015). AISTATS

• Model intuition: linguistic accommodation
• Influential speakers lead others to use the same words as them

• Weighted influence network 𝜌(𝑞𝑝) determines influence relationships

• Infer influence network via Bayesian inference

Expected word probabilities,
person p, word v, utterance n 

Person p’s inherent
language usage Influence from person 

q to person p

Word counts for person q, with time decay



Modeling Influence Relationships in 
the U.S. Supreme Court

125
Guo, F., Blundell, C., Wallach, H., and Heller, K. (2015). AISTATS

Previous utterances and 
their end times

Influence from person 
q to person p

Dirichlet distribution
(allows the final word distribution 

𝜙(𝑝) to deviate from 𝑩(𝑝))

Person p’s nth utterance: 
timestamp t, length L, words w

Time decay

Word counts (time decayed)



Modeling Influence Relationships in 
the U.S. Supreme Court

126
Guo, F., Blundell, C., Wallach, H., and Heller, K. (2015). AISTATS

Total influence exerted and received,
District of Columbia v. Heller case

Represented 
petitioner Represented 

respondent

Influence predictions 
from Guo et al.’s model

Supreme court justices
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What are the influence 
relationships between
articles?

Modeling Influence in Citation Networks

Which are the most 
important articles?

Foulds and Smyth (2013). Modeling Scientific Impact with Topical Influence Regression. EMNLP

A similar model can be used in this 
context as well (Foulds and Smyth, 2013)
• Dirichlet priors cause influenced documents to 

accommodate topics instead of words



Information diffusion in
text-based cascades

t=0t=3.5

t=1

t=2

t=1.5

- Temporal information

- Content information

- Network is latent
X. He, T. Rekatsinas, J. R. Foulds, L. Getoor, and Y. Liu. HawkesTopic: A joint model for network inference and topic modeling 

from text-based cascades. ICML 2015.



HawkesTopic model
for text-based cascades

129

Mutual exciting nature:  A posting event can trigger future events

Content cascades:  The content of a document should be similar
to the document that triggers its publication

X. He, T. Rekatsinas, J. R. Foulds, L. Getoor, and Y. Liu. HawkesTopic: A joint model for network inference and topic modeling 
from text-based cascades. ICML 2015.



Modeling posting times

Mutually exciting nature captured via
Multivariate Hawkes Process (MHP) [Liniger 09].

For MHP, intensity process 𝜆𝑣(𝑡) takes the form:

𝜆𝑣 𝑡 = 𝜇𝑣 + σ𝑒:𝑡𝑒<𝑡
𝐴𝑣𝑒,𝑣𝑓Δ(𝑡 − 𝑡𝑒)

𝐴𝑢,𝑤: influence strength from 𝑢 to 𝑣
𝑓Δ(⋅): probability density function of the delay distribution

Base intensity Influence from previous events +Rate =



Clustered Poisson process 
interpretation

X. He, T. Rekatsinas, J. R. Foulds, L. Getoor, and Y. Liu. HawkesTopic: A joint model for network inference and topic modeling 
from text-based cascades. ICML 2015.



Generating documents

X. He, T. Rekatsinas, J. R. Foulds, L. Getoor, and Y. Liu. HawkesTopic: A joint model for network inference and topic modeling 
from text-based cascades. ICML 2015.



Experiments for HawkesTopic

X. He, T. Rekatsinas, J. R. Foulds, L. Getoor, and Y. Liu. HawkesTopic: A joint model for network inference and topic modeling 
from text-based cascades. ICML 2015.



Results: ArXiv

X. He, T. Rekatsinas, J. R. Foulds, L. Getoor, and Y. Liu. HawkesTopic: A joint model for network inference and topic modeling 
from text-based cascades. ICML 2015.



Results: ArXiv

X. He, T. Rekatsinas, J. R. Foulds, L. Getoor, and Y. Liu. HawkesTopic: A joint model for network inference and topic modeling 
from text-based cascades. ICML 2015.



Dynamic social network

• Relations between people may change over time

• Need to generalize social network models to 
account for dynamics

Dynamic social network
(Nordlie, 1958; Newcomb, 1961)



Dynamic Relational Infinite 
Feature Model (DRIFT)

J. R. Foulds, A. Asuncion, C. DuBois, C. T. Butts, P. Smyth.
A dynamic relational infinite feature model for longitudinal social networks.  AISTATS 2011

• Models networks as they over time, by way of 
changing latent features
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Dynamic Relational Infinite 
Feature Model (DRIFT)
• Models networks as they over time, by way of 

changing latent features

• HMM dynamics for each actor/feature (factorial HMM)
J. R. Foulds, A. Asuncion, C. DuBois, C. T. Butts, P. Smyth.

A dynamic relational infinite feature model for longitudinal social networks.  AISTATS 2011



Enron Email Data: Edge 
Probability Over Time

J. R. Foulds, A. Asuncion, C. DuBois, C. T. Butts, P. Smyth.
A dynamic relational infinite feature model for longitudinal social networks.  AISTATS 2011



Quantitative Results

J. R. Foulds, A. Asuncion, C. DuBois, C. T. Butts, P. Smyth.
A dynamic relational infinite feature model for longitudinal social networks.  AISTATS 2011



Hidden Markov dynamic network 
models

• Most work on dynamic network modeling 
assumes hidden Markov structure
– Latent variables and/or parameters follow Markov 

dynamics

– Graph snapshot at each time generated using static 
network model, e.g. stochastic block model or latent 
feature model as in DRIFT

– Has been used to extend SBMs to dynamic models 
(Yang et al., 2011; Xu and Hero, 2014)



Beyond hidden Markov networks

• Hidden Markov model (HMM) structure is tractable but not 
very realistic assumption in social interaction networks
– Interaction between two people does not influence future 

interactions

• Autoregressive HMM: Allow current graph to depend on 
current parameters and previous graph

• Approximate inference using extended Kalman filter + 
greedy algorithms
– Scales to ~ 1000 nodes



Stochastic block transition model

• Generate graph at initial time step using SBM
• Place Markov model on Π𝑡|0, Π𝑡|1

• Main idea: parameterize each block 
𝑘, 𝑘′ with two probabilities
– Probability of forming new edge

𝜋
𝑘𝑘′
𝑡|0

= Pr 𝑌𝑖𝑗
𝑡
= 1|𝑌𝑖𝑗

𝑡−1
= 0

– Probability of existing edge re-
occurring

𝜋
𝑘𝑘′
𝑡|1

= Pr 𝑌𝑖𝑗
𝑡
= 1|𝑌𝑖𝑗

𝑡−1
= 1



Application to Facebook wall posts

• Fit dynamic SBMs to network of Facebook wall posts
– ~ 700 nodes, 9 time steps, 5 classes

• How accurately do hidden Markov SBM and SBTM 
replicate edge durations in observed network?
– Simulate networks from both models using estimated 

parameters

– Hidden Markov SBM cannot replicate long-lasting edges in 
sparse blocks



Behaviors of different classes

• SBTM retains interpretability of SBM at each time step

• Q: Do different classes behave differently in how they form edges?

• A: Only for probability of existing edges re-occurring
• New insight revealed by having separate probabilities in SBTM



Summary

• Generative models provide a powerful mechanism 
for modeling and analyzing social media data

• Latent variable models offer flexible yet 
interpretable models motivated by sociological 
principles
• Latent space model
• Stochastic block model
• Mixed-membership stochastic block model
• Latent feature model

• Generative models provide a rich mechanism for 
incorporating multiple modalities of data present in 
social media
• Dynamic networks, cascades, joint modeling with text


