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Topic models 

• Topic models are foundational building blocks for 
powerful latent variable models 

 

– Authorship  (Rosen-Zvi et al., 2004) 

– Conversational Influence  (Nguyen et al., 2014) 

– Knowledge base construction 

     (Movshovitz-Attias and Cohen, 2015) 

– Machine translation  (Mimno et al., 2009) 

– Political analysis  (Grimmer, 2010), (Gerrish and Blei, 2011, 2012) 

– Recommender systems  (Wang and Blei, 2011), (Diao et al., 2014)  

– Scientific impact  (Dietz et al. 2007), (Foulds and Smyth, 2013) 

– Social network analysis  (Chang et al., 2009) 

– Word-sense disambiguation  (Boyd-Graber et al., 2007) 

– … 

 6 



Custom topic models 

 

• Custom latent variable topic models useful for 

    data mining and computational social science 

 

• The challenge is scalability 

 

 

7 



Custom topic models 

 

• Custom latent variable topic models useful for 

    data mining and computational social science 

 

• The challenge is scalability 

 

 

8 



Custom topic models 

 

• Custom latent variable topic models useful for 

    data mining and computational social science 

 

• The challenge is scalability 

 

 

9 

Sparse, stochastic, collapsed, distributed algorithms, … 



Custom topic models 

 

• Custom latent variable topic models useful for 

    data mining and computational social science 

 

• The challenge is scalability 

 

 

10 

Sparse, stochastic, collapsed, distributed algorithms, … 

Max Welling 

There’s no end to 
speeding up LDA! 



Custom topic models 

 

• Custom latent variable topic models useful for 

    data mining and computational social science 

 

• The bottleneck is human effort and expertise 
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Our contribution 

• We introduce latent topic networks 

– A versatile, general-purpose framework for 
specifying custom topic models 
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simple logical probabilistic programming language 
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Correlations / 
Dependencies 

Observed 
Covariates 

Additional  
Latent Variables 

Constraints Probabilistic 
Programming 

Systems for Encoding Domain Knowledge, Covariates, and Correlations 

CTM (Blei and Lafferty, 2007) 
     

DMR (Mimno & McCallum, 2008) 
     

Dirichlet Forests 
(Andzejewski et al., 2009 

     

xLDA (Wahabzada et al., 2010) 
     

SAGE (Eisenstein et al., 2011) 
     

STM (Roberts et al., 2013) 
     

Graphical Modeling and Probabilistic Programming Systems 

CTRF (Zhu & Xing, 2010) 
     

Fold.all  
(Andrzejewski et al., 2011) 

     

Logic LDA (Mei et al., 2014) 
     

Latent Topic Networks 
     
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Restrict dependencies 
to citation graph 

Influence and topic 
are both high 

Citing document 
also has the topic 

Entire model with just 5 rules! 



Statistical relational learning 

• An “interface layer for AI.” 

 

– Programming languages for 

    specifying models and 

    encoding domain knowledge 

 

 

– Typically based on first-order logic 
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5.0: 
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Rule weight Continuous random variables! 



Probabilistic soft logic (PSL) 

• A first-order logic-based SRL language 

 

 

 

 

 

• Specifies a class of highly scalable continuous 
graphical models called hinge-loss MRFs 
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Latent Dirichlet allocation 
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• Priors: Hinge-loss MRFs  
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Training algorithm 

• Expectation Maximization 

– E-step: the same as for LDA 

 

 

– M-step: 

68 Convex optimization! Solve in parallel using consensus ADMM 

LDA EM lower bound minus hinge loss terms 



Weight learning 

• Optimize pseudo-likelihood approximation: 
 

 
 

• Gradient: 
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Case study: Modeling US Presidential 
state of the Union addresses 

 

 

• The US President updates Congress on the state of the Union, roughly annually 

 

• Do these addresses depict the true, underlying state of the Union? 

 

• Are they biased by political agendas? 
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Document Completion 
Perplexity 

Fully Held-Out 
Perplexity 

Latent topic 
networks 

2.33 x 103 2.43 x 103 

 

LDA topic model 2.36 x 103 

 
2.59 x 103 

 

Dynamic topic 
model 

2.43 x 103 

 
2.55 x 103 

 



Conclusion 

• We introduce latent topic networks, a versatile general-purpose 
framework for building and inferring custom topic models. 

 

• Our experimental results show that models specified in our 
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• Future directions 
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