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Topic models

* Topic models are foundational building blocks for
powerful latent variable models

— Authorship (Rosen-Zvi et al., 2004)
— Conversational Influence (nguyen et al,, 2014)
— Knowledge base construction

(Movshovitz-Attias and Cohen, 2015)

— Machine translation (vimno et al., 2009)
— Political analysis (Grimmer, 2010), (Gerrish and Blei, 2011, 2012)

— Recommender systems (Wang and Blei, 2011), (Diao et al., 2014)
— Scientific impact (pietz et al. 2007), (Foulds and Smyth, 2013)

— Social network analysis (chang et al.,, 2009)

— Word-sense disambiguation (Boyd-Graber et al., 2007)
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Custom topic models

* Custom latent variable topic models useful for
data mining and computational social science

* The challenge is scalability

Sparse, stochastic, collapsed, distributed algorithms, ...

There’s no end to
speeding up LDA!

Max Welling
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Custom topic models

e Custom latent variable topic models useful for
data mining and computational social science

* The bottleneck is human effort and expertise

Design time >> run time
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Custom topic models
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Our contribution

 We introduce latent topic networks

— A versatile, general-purpose framework for
specifying custom topic models
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Our contribution

 We introduce latent topic networks

— A versatile, general-purpose framework for
specifying custom topic models

— Models and domain knowledge specified using a
simple logical probabilistic programming language

— A highly parallelizable EM training algorithm
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Previously...

Grad student =6 months Topic modeling
research paper
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Latent topic networks

AN
Grad student =E-raarths New custom
I 1 weekend topic model

Shachi Kumar
Master’s student, UCSC
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Related work

Correlations / Observed Additional Constraints Probabilistic
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Systems for Encoding Domain Knowledge, Covariates, and Correlations
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Example: modeling influence in
citation networks

Foulds and Smyth (2013), EMNLP
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Example: modeling influence in
citation networks
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Foulds and Smyth (2013), EMNLP
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Example: modeling influence in
citation networks

What are the influence
relationships between articles?

Foulds and Smyth (2013), EMNLP
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Topical influence regression

1

Latent variables for
document influence
citation edge influence

',

Foulds and Smyth (2013), EMNLP




Topical influence regression

Latent variables for
document influence
citation edge influence

Probabilistic dependencies
along the citation graph I

Foulds and Smyth (2013), EMNLP
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Encoding dependencies

via logical rules

cites(A, B) & (influences(B, A) A GIE:B))

T

Restrict dependencies Influence and topic
to citation graph are both high

—

Citing document
also has the topic

Y

(A)
Qk

0=

]
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Encoding dependencies
via logical rules

Citing document
also has the topic

Y

cites(A, B) & (influences(B, A) A GIE:B)) = Ql(cA)
Restrict dependencies Influence and topic

to citation graph are both high

Entire model with just 5 rules!
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Statistical relational learning

* An “interface layer for Al.” &t B

Markov Logic

An Interface Layer for Artif i ial Ir.‘.’r'.".":l(r‘r.'..—'

— Programming languages for

Pedro Domingos

specifying models and Danicl Low
encoding domain knowledge

SYNTRESIS LECTURES ON ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING

— Typically based on first-order logic
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Probabilistic soft logic (PSL)

* A first-order logic-based SRL language

5.0. Friends(X, Y) && Friends(Y, Z) -> Friends (X, Z)

L

Predicate Logical operators

Rule weight Continuous random variables!

e Specifies a class of highly scalable continuous
graphical models called hinge-loss MRFs

49



Hinge-loss MRFs

Conditional random field over continuous random variables

/ between0 and 1

M
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Conditional random field over continuous random variables

/ between0 and 1

M
POY|X) xexp (= 3 01X, Y))
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Hinge-loss MRFs

Conditional random field over continuous random variables

/ between0 and 1

M
POY|X) xexp (= 3 01X, Y))
j=1

Feature functions are hinge loss functions )
wj (X* Y) — ma’X{lj (X* Y)* O}

¢ Hinge losses encode the
distance to satisfaction

for each instantiated rule
56

Linear function



Latent Dirichlet allocation

e For each documentd, 1.....D

]
4

e For each word token ¢, 1,..., Ny

)
4

e Draw a latent topic assignment,
2\ Discrete(0(4)

e Draw the word token,

. . . (d)
W Discrete(p*: )

)
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Latent Dirichlet allocation

e For each documentd, 1.....D

]
4

e For each word token ¢, 1,..., Ny

)
4

e Draw a latent topic assignment,
2\ Discrete(0(4)
e Draw the word token,

(d) - z.ﬁ““))

w,” ~ Discrete(¢'

e Priors: 6@ ~ Dirichlet(a) o'*) ~ Dirichlet(3)
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Latent topic networks

e For each documentd, 1.....D

4

e For each word token ¢, 1,..., Ny

4

e Draw a latent topic assignment,
zg@ ~ Discrete(9(9)

e Draw the word token,

W'Y~ Discrete(¢p=i "))

(2

P(Y|X) x exp ( - i A (X, Y))

* Priors: Hinge-loss MRFs
1 (X,Y) = [max{/;(X,Y),0}]"
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Log posterior objective function

— Zlmg Z P-r(u{d) z?(d] = k|6 ‘I’j)
d=1 i=1 k=1 LDA

D K W K log posterior
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Log posterior objective function

logPr(©®,®, YV Y® HY H|w, 8,0, XY, X@ )
D Nga

_ZZlog(ZPr (@ @ _ pp(@ ))
d—=1 i=1 LDA
D K W K log posterior
= kd u1

d=1 k=1 w=1 k=1
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Log posterior objective function

logPr(©®,®, YV Y® HY H|w, 8,0, XY, X@ )
D Nga

—ZZIDH(Z Pr(w d , —f»|f9{d} ))
d=1 i=1 LDA
D K W K log posterior
) kd u1
d=1 k=1 w=1 k=1
hAS

-y AW (@, XM vy m7O)

Hinge loss

(2]
M terms

— Z AE.E}?;;?}(@,X(E},Y{E}: H{E)) + const

7=1

62



Log posterior objective function

log Pr(©, ®, Yil] Y{EJ H{l} (2)|u.r:ﬁ,{x,X(1},X(2},A)
D Ny

_ZZma(ZPr 2D plg@ @))
d=1 i=1 LDA
D K W K log posterior

Hinge loss
terms

— Z A'{.E)*u';(.g)(@,}(@},l’{g): H(E)) + const

A

Tractability from convexity, instead of conjugacy!
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Log posterior objective function

logPr(©®,®, YV Y® HY H|w, 8,0, XY, X@ )
D Ny
~3 3 o (3 Priuf? A7 = o)
d=1 i=1 LDA
D K W K log posterior
+3°3 (o= Do) + 3 323 - D@L
d=1 k=1 w=1 k=1
M
- A @, x® Y HY)
7=1
, Hinge loss
M , terms
— Z AE.E}?;;?}(@,X(E},Y{E): H{E)) + const
7=1

Tractability from convexity, instead of conjugacy!
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Training algorithm

Expectation Maximization

— E-step: the same as for LDA
Yiar o Pl 2" = k, 01,0 P/ = k@, 1)

(k) p(dyt)

w
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Training algorithm

Expectation Maximization

— E-step: the same as for LDA

Y x Pl = k00, )P = k@, &)

k,t) np(d,t
_qﬁ(m)@( )

— I\/I-step: LDA EM lower bound minus hinge loss terms

DO Y Y +B-Dlogoly) + > O viak +a—1)log o - Z%‘dls l0g Yidrk

wk ;. w( ) — dk i idk
M M(2)
1) (1 2 2 ‘ c ‘
_ } ( )\5_ )w;(i )((I)’X(l)’Y(l)’H(l)) _ }:/\5 )?./JJ(- )(G,X(z),Y(Z),H(z))

J=1
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Training algorithm

Expectation Maximization

— E-step: the same as for LDA

Yiar o P21 =k, 00 80)P(" = 1|0, &)

k.,t) np(d,t
_qﬁ(m)@( )

— I\/I-step: LDA EM lower bound minus hinge loss terms

Z ( Z YVidk + /8 - 1 108 (Du + Z Z Jidk + o — 1) 108 9((]) - Z Yidk log Yidk

(@ dk idk
(3

M M(2)
1) (1 2 2 ‘ c ‘
_ } ( )\5_ )U/‘;(,- )((I)’X(l)’Y(l)’H(l)) _ }:/\5 }?./JJ(- )(@,X(Q)EY(Z),H(Q))
i=1

Convex optimization! Solve in parallel using consensus ADMM 68



Weight learning

* Optimize pseudo-likelihood approximation:

P*(©,Y® HPX®) a) = [[ PO
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Weight learning

Optimize pseudo-likelihood approximation:

P*(@®.Y? H®IX® o) = 11
Ve{®.,Y(2) H?2}
Gradient:
d

3y log P*(@O.Y? HPIXP «)
d\

P(V|B(V))

(13)
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Weight learning

Optimize pseudo-likelihood approximation:

P*(©.Y? HPIXP o) = 11 P(V|B(V))
Ve{®,Y(2) H(®)}
Gradient:
l’ * *
C _log P*(O©,Y® H@IX® 4) (13)
(2)
d\

= > (EP{VIB(V)) [P ()] — i (-))

Ve{®, Y H2)}

Importance sample from the implied Dirichlet prior

71



Case study: Exploring influence in
citation networks

Influence relationships on citation edges
cites(A, B) & (influences(B, A) A QECB)) = QI(CA)
cites(A, B) & (9,&‘4) A 9,&3)) = influences(B, A)

Document-level and edge-level influence
cites( A, B) & influential( B) = influences(B, A)

cites(A, B) & influences(B, A) =  influential(B)
—influential (A)
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Case study: Modeling US Presidential
state of the Union addresses

 The US President updates Congress on the state of the Union, roughly annually
* Do these addresses depict the true, underlying state of the Union?

* Are they biased by political agendas?

SOTU(Y 2, k)

SOTU(Y 1, k)

o)
RepublicanTheta(DEC?2, k)

RepublicanTheta( DECT, k)
o)

SOTU(Y'1, k) & precedes(Y'1,Y2)

SOTU(Y2, k) & precedes(Y'1,Y2)

SOTU(Y. k)

RepublicanTheta(DEC1, k) & precedesDecade(DEC1, DEC?2)
RepublicanTheta(DEC2, k) & precedesDecade( DEC1, DEC?2)
RepublicanTheta(DEC, k) & inDecade(Y, DEC') & RepublicanPresident(Y)

(Similar rules for the other parties. .. )

L4 e 3 dy



Case study: Modeling US Presidential
state of the Union addresses

Republican party bias *‘
Democrat party bias ‘ v

Topic model O ‘ .
Address — —= ‘

State of the Union

=0 O
ogole

Time (years) =————>
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Case study: Modeling US Presidential
state of the Union addresses

Republican party bias *‘
Democrat party bias ‘ v

Topic model O ‘ .
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Case study: Modeling US Presidential
state of the Union addresses

work jobs people make Americans American care
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Case study: Modeling US Presidential
state of the Union addresses
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Case study: Modeling US Presidential
state of the Union addresses

Document Completion Fully Held-Out
Perplexity Perplexity

Latent topic
networks

LDA topic model

Dynamic topic
model

2.33 x 103

2.36 x 103

2.43 x 103

2.43 x 103

2.59 x 103

2.55x 103
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Conclusion

 We introduce latent topic networks, a versatile general-purpose
framework for building and inferring custom topic models.
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Conclusion

 We introduce latent topic networks, a versatile general-purpose
framework for building and inferring custom topic models.

* Our experimental results show that models specified in our
framework with just a few lines of code in a logical language, can
be competitive with state of the art special purpose models.

e Future directions

— Using our framework to answer substantive questions in social science.
— New language primitives, non-parametric Bayesian models,
algorithmic advances ...
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Conclusion

* We introduce latent topic networks, a versatile general-purpose
framework for building and inferring custom topic models.

* Our experimental results show that models specified in our
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— Using our framework to answer substantive questions in social science.

— New language primitives,
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Conclusion

* We introduce latent topic networks, a versatile general-purpose
framework for building and inferring custom topic models.

* Our experimental results show that models specified in our
framework with just a few lines of code in a logical language, can
be competitive with state of the art special purpose models.

* Future directions

— Using our framework to answer substantive questions in social science.

— New language primitives,
algorithmic advances ...

Thank you for your attention *



