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Abstract

Comparison to Ground Truth on Very Small Problems

Experimental Analysis: NIPS Corpus

» Despite recent advances in learning and inference algorithms, evaluating the predictive

performance of topic models is still painfully slow and unreliable. » A corpus of 1740 NIPS articles from 1987 — 1999. We held out a test set of 130 articles. ol '
» We propose a new strategy for computing relative log-likelihood (or perplexity) scores of » Task: compute the relative performance of learned topics, and perturbed versions of these
topic models, based on annealed importance sampling. topics (5 % random noise). 0.08} N

» The proposed method has smaller Monte Carlo error than previous approaches, leading to
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These advantages were most pronounced with a small computational budget per document. The standard AIS method for topic models (Wallach et al., 2009)
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» Set the initial and final distributions proportional to the posteriors for the two models
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Note that this approach avoids several sources of Monte Carlo error incurred by naively running _ o°
AlS for each model separately. Specifically, the naive method: AlS (difference, reverse) 95 7
Cheap runs
» estimates the denominator of a ratio even though it is a constant (=1), AIS 52 %
» uses different z’s for both models, Al_S (difference) 9 ;% Neal, R.M. 2001. Annealed importance sampling. Statistics and Computing, 11(2), 125-139.
» and is run twice, introducing Monte Carlo noise each time. AIS (difference, reverse) 96 % Wallach, H.M., Murray, |., Salakhutdinov, R., & Mimno, D. 2009. Evaluation methods for topic
Convergence check: Anneal in the reverse direction to compute the reciprocal. models. /CML.
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