
Learning Instance Weights in

Multi-Instance Learning

James Foulds

This thesis is submitted in partial fulfillment of

the requirements for the degree of

Master of Science

at the

University of Waikato.

Department of Computer Science

Hamilton, New Zealand

February 2007 - February 2008

c© 2008 James Foulds

Abstract

Multi-instance (MI) learning is a variant of supervised machine learning, where each

learning example contains a bag of instances instead of just a single feature vector.

MI learning has applications in areas such as drug activity prediction, fruit disease

management and image classification.

This thesis investigates the case where each instance has a weight value determin-

ing the level of influence that it has on its bag’s class label. This is a more general

assumption than most existing approaches use, and thus is more widely applicable.

The challenge is to accurately estimate these weights in order to make predictions

at the bag level.

An existing approach known as MILES is retroactively identified as an algorithm

that uses instance weights for MI learning, and is evaluated using a variety of base

learners on benchmark problems. New algorithms for learning instance weights for

MI learning are also proposed and rigorously evaluated on both artificial and real-

world datasets. The new algorithms are shown to achieve better root mean squared

error rates than existing approaches on artificial data generated according to the

algorithms’ underlying assumptions. Experimental results also demonstrate that the

new algorithms are competitive with existing approaches on real-world problems.

i

ii

Acknowledgments

I have been incredibly lucky to live and work in a very supportive environment,

which has greatly aided me in the creation of this thesis. I am grateful for the

efforts of many people, and the encouragement from many others, without which

this thesis would have been almost impossible to complete.

Like all people who write a research thesis, I would like to thank my supervisor.

However, a greater level of thanks is due than the typical obligatory mention in

the Acknowledgments section. Dr Eibe Frank has repeatedly gone far beyond the

call of duty in supporting me in this work. He has always been there to offer

clear and insightful advice and constructive criticism, answering my emails promptly

and thoroughly even when on leave. This thesis has been greatly improved by his

suggestions and observations at all levels of detail. Eibe’s depth of knowledge and

clarity of thought is an inspiration.

The University of Waikato has provided a very good environment in which to

complete a Masters thesis in machine learning. The Department is full of great and

friendly minds, and the Machine Learning Lab is almost everything one could want

in a work environment — if only it could somehow sprout windows on its walls! The

sudden return of natural light would probably prove too much for our sun-deprived

bodies however, so perhaps this is for the best. I am grateful to both the University

and the Department for financial aid in the form of scholarships.

I thank Cathy Legg and Tim Stokes for giving me teaching assistance jobs,

and interesting conversations on a variety of topics. Thanks to Peter Reutemann

for assistance with WEKA (even on a public holiday weekend!), Dale Fletcher for

helping with access to computational resources, and Dr Mike Mayo for providing

datasets and assistance with the image processing parts of my work. Thanks to

everyone who has contributed to the WEKA data mining software suite, which has

been an essential tool in this work. It is difficult to imagine how I could have

completed this research without WEKA.

I would also like to thank my parents, Maureen and Les Foulds, for inspiration

iii

and encouragement. Thanks Mum for the free food and for not charging me rent!

Thanks Dad for all the advice, and for helping me with linear programming! Fi-

nally, a special “thank you” goes to my partner Erin Bennett, who has been a solid

foundation of support all the way through this project.

iv

Contents

Abstract i

Acknowledgments iii

1 Introduction 1

1.1 Motivations and Objectives . 2

1.2 Structure of this Thesis . 3

2 Background 5

2.1 Machine Learning . 5

2.1.1 Supervised Learning . 6

2.1.2 Other types of Learning . 7

2.2 Multi-Instance Learning . 7

2.2.1 Definition of Multi-Instance Learning 8

2.2.2 Motivations and Applications 9

2.2.3 The Standard MI Assumption 19

2.2.4 Generalized MI . 19

2.2.5 Multiple Instance vs Multiple Part Problems 20

2.2.6 Xu’s Framework for MI Learning 22

2.2.7 Weidmann’s Concept Hierarchy for Instance-Based General-

ized MI Learning . 23

2.2.8 The GMIL Assumption . 25

2.2.9 The DD-SVM / MILES Assumption 28

2.2.10 The Collective Assumption . 29

2.2.11 Multi-Instance Multi-Label Learning 30

3 Related work 31

3.1 MI learning using purpose-built algorithms 31

3.1.1 APR Formulations . 31

v

3.1.2 Diverse Density . 32

3.1.3 ConMIL . 34

3.1.4 GMIL . 36

3.2 Upgraded Single-Instance Learners 38

3.2.1 Nearest Neighbour Approaches 38

3.2.2 Decision Trees and Decision Rules 39

3.2.3 Support Vector Machine Approaches 40

3.2.4 Logistic Regression and Boosting 42

3.3 MI learning using Wrappers for Single-Instance Algorithms 44

3.3.1 Using Summary Statistics for Propositionalization 44

3.3.2 MIWrapper . 46

3.3.3 Mi-NB . 47

3.3.4 Two-Level Classification . 50

3.3.5 MILES . 51

3.3.6 DD-SVM . 57

4 MILES as a Meta-Classifier 59

4.1 Experiment Design . 59

4.1.1 Algorithms . 60

4.1.2 Datasets . 62

4.2 Experimental Results and Analysis 64

4.2.1 Parameter Tuning for the 1-Norm SVM 64

4.2.2 Comparison of Base Learners for MILES 66

4.2.3 Comparison of Other MI Algorithms 70

4.2.4 Comparison of MILES to Other Algorithms 74

4.2.5 Conclusions . 78

5 New Algorithms and Assumptions for Learning Instance Weights 81

5.1 Motivations for Learning Instance Weights 82

5.2 Upgrading the Collective Assumption To Model Instance Weights . . 84

5.3 An Iterative Framework for Learning Instance Weights 87

5.3.1 Discussion of the Algorithm 88

5.3.2 Computational Complexity of IFLIW 90

5.3.3 Evaluation on Artificial Data 93

vi

5.4 An Alternative Weighted Assumption 106

5.4.1 The Weighted Linear Threshold MI Assumption 106

5.4.2 Artificial Domain Examples 109

5.4.3 Relationship to the Weighted Collective MI Assumption . . . 110

5.5 Modifying MILES to Learn Weighted Linear Threshold Concepts . . 113

5.5.1 Computational Complexity of YARDS 116

5.5.2 Limitations of the Algorithm 119

5.5.3 Evaluation on Artificial Data 120

5.5.4 Conclusions . 131

6 Evaluation of the New Algorithms on Real-World Data 133

6.1 Experiment Design . 133

6.2 Experimental Results and Analysis 134

6.2.1 Average Performance Over All Datasets 134

6.2.2 Significant Wins and Losses vs MIWrapper 135

6.2.3 The Best Results for Each Scheme 136

6.3 Conclusions for this Study . 139

7 Conclusions and Future Work 141

7.1 Future Work . 142

7.2 Summary . 146

Appendix: Detailed Experimental Results for the New Algorithms 149

Bibliography 157

vii

viii

List of Figures

2.1 Supervised Machine Learning vs Multi-Instance Learning 8

2.2 Xu’s Framework for MI Learning . 23

2.3 Weidmann’s hierarchy of instance-based MI concepts. 26

4.1 Parameter Tuning: λ Parameter Values vs Percentage Accuracy for

the Elephant Dataset (10-Fold CV) 66

4.2 Parameter Tuning: λ Parameter Values vs Percentage Accuracy for

the Eastwest Dataset (10-Fold CV) 69

5.1 Artifical Function 0 — Decision Stump 94

5.2 Artifical Function 1 — Piecewise (Decision Tree) 95

5.3 Artifical Function 2 — Linear . 95

5.4 Artifical Function 3 — Sigmoid . 96

5.5 Weight Function — Predicted vs Actual. Iteration 0 102

5.6 Weight Function — Predicted vs Actual. Iteration 1 102

5.7 Weight Function — Predicted vs Actual. Iteration 2 103

5.8 Weight Function — Predicted vs Actual. Iteration 3 103

5.9 Weight Function — Predicted vs Actual. Iteration 4 104

5.10 Weight Function — Predicted vs Actual. Iteration 5 104

5.11 Parameter Tuning — MILES with linear kernel SVM on WLT1 . . . 123

5.12 Parameter Tuning — YARDS with C4.5 on WLT1 124

ix

x

List of Tables

4.1 Percentage Accuracy for MILES with 1-Norm SVM, Before and After

Parameter Tuning . 66

4.2 MILES: Percentage Accuracy for Non-Ensemble Base Learners 67

4.3 MILES: Percentage Accuracy for Ensemble Base Learners 67

4.4 MIWrapper: Percentage Accuracy for Non-Ensemble Base Learners . 70

4.5 MIWrapper: Percentage Accuracy for Ensemble Base Learners 70

4.6 SimpleMI: Percentage Accuracy for Non-Ensemble Base Learners . . 72

4.7 SimpleMI: Percentage Accuracy for Ensemble Base Learners 72

4.8 Percentage Accuracy For Upgraded Single-Instance and Purpose-

Built MI Algorithms . 73

4.9 Percentage Accuracy of Wrapper Algorithms — 1-Norm SVM Base

Learner . 74

4.10 Percentage Accuracy of Wrapper Algorithms — Adaboost with De-

cision Stump Base Learner (100 Trees) 75

4.11 Percentage Accuracy of Wrapper Algorithms — Random Forest Base

Learner (100 Trees) . 75

4.12 CPU Secs Training Time for Wrapper Algorithms — 1-Norm SVM

Base Learner . 76

4.13 CPU Secs Training Time for Wrapper Algorithms — Adaboost with

Decision Stump Base Learner (100 Trees) 76

4.14 CPU Secs Training Time for Wrapper Algorithms — Random Forest

Base Learner (100 Trees) . 77

4.15 The Best Result For Each Type of Scheme 78

5.1 IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data

(Classification Accuracy) . 97

5.2 IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data

(Root Mean Squared Error) . 97

xi

5.3 IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data

with Deterministic Generative Model (Classification Accuracy) 98

5.4 IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data

with Non-Deterministic Generative Model (Classification Accuracy) . 98

5.5 IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data

with Deterministic Generative Model (Root Mean Squared Error) . . 98

5.6 IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data

with Non-Deterministic Generative Model (Root Mean Squared Error) 98

5.7 IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data

with Fixed Bag Sizes (Classification Accuracy) 98

5.8 IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data

with Random Bag Sizes (Classification Accuracy) 99

5.9 IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data

with Fixed Bag Sizes (Root Mean Squared Error) 99

5.10 IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data

with Random Bag Sizes (Root Mean Squared Error) 99

5.11 YARDS vs MILES on WLT1: Classification Accuracy 121

5.12 YARDS vs MILES on WLT1: Root Mean Squared Error 121

5.13 YARDS vs MIWrapper on WLT1: Classification Accuracy 122

5.14 YARDS vs MIWrapper on WLT1: Root Mean Squared Error 122

5.15 YARDS vs MILES on WLT1 Alternative Dataset, σ2 = 104: Classi-

fication Accuracy . 125

5.16 YARDS vs MILES on WLT1 Alternative Dataset, σ2 = 104: Root

Mean Squared Error . 125

5.17 YARDS vs MIWrapper on WLT1 Alternative Dataset, σ2 = 104:

Classification Accuracy . 125

5.18 YARDS vs MIWrapper on WLT1 Alternative Dataset, σ2 = 104:

Root Mean Squared Error . 125

5.19 YARDS: Significant Wins and Losses vs MIWrapper on Weighted

Collective Artificial Data (Classification Accuracy) 127

5.20 YARDS: Significant Wins and Losses vs MIWrapper on Weighted

Collective Artificial Data (Root Mean Squared Error) 127

xii

5.21 YARDS: Significant Wins and Losses vs MILES on Weighted Collec-

tive Artificial Data (Classification Accuracy) 128

5.22 YARDS: Significant Wins and Losses vs MILES on Weighted Collec-

tive Artificial Data (Root Mean Squared Error) 128

5.23 YARDS: Significant Wins and Losses vs MILES on Weighted Collec-

tive Artificial Data with Deterministic Generative Model (Classifica-

tion Accuracy) . 130

5.24 YARDS: Significant Wins and Losses vs MILES on Weighted Collec-

tive Artificial Data with Non-Deterministic Generative Model (Clas-

sification Accuracy) . 130

5.25 YARDS: Significant Wins and Losses vs MILES on Weighted Collec-

tive Artificial Data with Fixed Bag Sizes (Classification Accuracy) . . 131

5.26 YARDS: Significant Wins and Losses vs MILES on Weighted Collec-

tive Artificial Data with Random Bag Sizes (Classification Accuracy) 131

6.1 Average Performance Over All Datasets (Classification Accuracy) . . 134

6.2 Average Performance Over All Datasets (Root Mean Squared Error) . 134

6.3 Significant Differences vs MIWrapper Over All Datasets (Classifica-

tion Accuracy) . 136

6.4 Significant Differences vs MIWrapper Over All Datasets (Root Mean

Squared Error) . 136

6.5 The Best Result For Each Scheme (Classification Accuracy) 137

6.6 The Best Result For Each Scheme (Root Mean Squared Error) 137

A.1 MILES, IFLIW and YARDS vs MIWrapper: C4.5 Base Learner

(Classification Accuracy) . 150

A.2 MILES, IFLIW and YARDS vs MIWrapper: Random Forests Base

Learner (Classification Accuracy) . 150

A.3 MILES, IFLIW and YARDS vs MIWrapper: Adaboost + C4.5 Base

Learner (Classification Accuracy) . 150

A.4 MILES, IFLIW and YARDS vs MIWrapper: Adaboost with Decision

Stump Base Learner (Classification Accuracy) 151

A.5 MILES, IFLIW and YARDS vs MIWrapper: Bagging with C4.5 Base

Learner (Classification Accuracy) . 151

xiii

A.6 MILES, IFLIW and YARDS vs MIWrapper: 2-Norm SVM with Lin-

ear Kernel Base Learner (Classification Accuracy) 152

A.7 MILES, IFLIW and YARDS vs MIWrapper: 2-Norm SVM with RBF

Kernel Base Learner (Classification Accuracy) 152

A.8 MILES, IFLIW and YARDS vs MIWrapper: 1-Norm SVM Base

Learner (Classification Accuracy) . 152

A.9 MILES, IFLIW and YARDS vs MIWrapper: Logistic Regression Base

Learner (Classification Accuracy) . 153

A.10 MILES, IFLIW and YARDS vs MIWrapper: C4.5 Base Learner (Root

Mean Squared Error) . 153

A.11 MILES, IFLIW and YARDS vs MIWrapper: Random Forests Base

Learner (Root Mean Squared Error) 153

A.12 MILES, IFLIW and YARDS vs MIWrapper: Adaboost with C4.5

Base Learner (Root Mean Squared Error) 154

A.13 MILES, IFLIW and YARDS vs MIWrapper: Adaboost with Decision

Stump Base Learner (Root Mean Squared Error) 154

A.14 MILES, IFLIW and YARDS vs MIWrapper: Bagging With C4.5 Base

Learner (Root Mean Squared Error) 154

A.15 MILES, IFLIW and YARDS vs MIWrapper: 2-Norm SVM with Lin-

ear Kernel Base Learner(Root Mean Squared Error) 155

A.16 MILES, IFLIW and YARDS vs MIWrapper: 2-Norm SVM with RBF

Kernel Base Learner (Root Mean Squared Error) 155

A.17 MILES, IFLIW and YARDS vs MIWrapper: 1-Norm SVM Base

Learner (Root Mean Squared Error) 155

A.18 MILES, IFLIW and YARDS vs MIWrapper: Logistic Regression Base

Learner (Root Mean Squared Error) 156

xiv

List of Algorithms

1 mi-NB . 49

2 MILES . 52

3 IFLIW . 89

4 YARDS . 117

xv

Chapter 1

Introduction

Multi-instance (MI) learning [Dietterich et al., 1997] is a variant of supervised ma-

chine learning that has received a considerable amount of research attention due to

both its theoretical interest and its applicability to real-world problems such as drug

activity prediction and image classification.

MI learning belongs to the supervised learning paradigm, which aims to solve

classification and regression problems by using algorithms to build models of data

based on a set of given examples. This thesis is concerned with classification prob-

lems, where each example has a classification label that assigns the example into

one of a finite number of possible categories. The goal is to “learn” a model based

on the training examples that is effective in predicting the classification labels of

future examples.

Where MI learning differs from the traditional scenario is in the nature of the

learning examples. In the traditional supervised learning scenario, each example is

represented by a fixed-length vector of features. All training examples have been

(often manually) assigned a class label, which is why the term supervised learning

is used.

However, in MI learning each example is represented by a multiset (or bag, as

computer scientists often call it) of feature vectors. In other words, each example

contains one or more feature vectors. Classification labels are only provided for

entire bags. The task is to learn a model that predicts the classification labels for

future bags.

In early MI research, strong assumptions were made regarding the relationship

between the feature vectors (known as instances) inside the bags and the label of

the bag. The restrictive nature of these assumptions was overlooked, mostly due to

the ubiquity of the musk drug activity prediction datasets [Dietterich et al., 1997],

where these assumptions are generally considered to be appropriate. However, in

1

other problem domains these assumptions do may apply, and more general assump-

tions may be needed. A significant amount of the more recent research in MI is

concerned with cases where more general assumptions hold [Xu, 2003].

This project investigates the case where we may assume that each feature vector

instance has a weight value determining the level of influence that it has on its

parent bag’s class label. This is a more general type of assumption than has been

made in most previous approaches, and may be more appropriate for some problem

domains. In particular, this type of MI assumption intuitively seems to be a good

model for the problem of content-based image retrieval.

1.1 Motivations and Objectives

Before we can apply multi-instance learning algorithms to a problem, we need to

consider the relationship between the instances and the classification labels of the

bags that contain them. This will determine which type of MI algorithm is appro-

priate. Because the performance of MI algorithms must necessarily depend upon

the interaction between instances and bag labels being compatible with the type of

MI concepts that the algorithm is capable of learning, such relationships are known

as MI assumptions [Xu, 2003].

Although many MI algorithms have been proposed in the literature, most of these

algorithms rely upon restrictive assumptions regarding the relationship between the

instances in an arbitrary bag and the class label of that bag. Since the year 2000,

there has been a trend towards the creation of algorithms that rely upon more

general MI assumptions [Xu, 2003]. However, very little research has been done

into the case where the instances have a weighted influence on the classification

labels of the bags. The purpose of this thesis is to investigate this area, with the

intention of better understanding the scenario in order to effectively create and use

tools to solve learning problems in domains where this assumption is valid.

A specific motivation for the development of algorithms that make use of this

new type of assumption is the problem domain of content-based image retrieval

(CBIR), where the task is to identify semantically relevant images in an image

library. A common approach to CBIR and other related image mining tasks is to

segment the image into multiple smaller regions (see, for example, [Burl et al., 1998],

2

[Qi et al., 2007] and [Chen et al., 2006]). This makes multiple instance learning a

good model for the data — each image can be represented by a bag of feature vectors,

where each feature vector represents information extracted from one of the smaller

regions (called segments) of the image. However, not all segments are created equal,

and some segments play a more important role in determining the semantic labels

of images than others. For example, when determining whether an image contains

a tiger, segments containing green trees are not as important as segments which

contain orange and black stripes. It is this type of interaction between instances of

varying levels of importance and bag labels that this thesis is concerned with.

Therefore, we have three objectives for this thesis:

1. Identify existing MI learning algorithms that learn weights for instances, and

empirically evaluate the effectiveness of such algorithms in a wide variety of

problem domains.

2. Precisely formalize MI assumptions where weights are used to model the notion

of varying levels of influence that instances have on bag-level class labels.

3. Propose new algorithms that are specifically tailored for learning under these

MI assumptions, and rigorously evaluate them on both artificial and real-world

datasets.

1.2 Structure of this Thesis

In this chapter we introduced the topic, provided a motivation for the work and

concrete objectives for the project. In Chapter 2, we place MI learning in its wider

context of machine learning. Different types of machine learning are briefly covered.

We then describe MI learning in greater detail. Chapter 3 details related work,

including specific details of existing algorithmic approaches to MI learning problems.

Chapter 4 presents a detailed study of one such approach that is closely related to

the new work in this thesis. Chapter 5 describes new MI assumptions and learning

algorithms based on instance weights, and also shows experimental results for these

new algorithms on artificial data. The new algorithms are empirically evaluated on

real-world problems in Chapter 6. We conclude with Chapter 7, which summarizes

the results and presents possibilities for future investigation.

3

4

Chapter 2

Background

This chapter gives an overview of machine learning, with emphasis on supervised

learning and the multi-instance learning scenario. Other types of learning are de-

scribed briefly. Multi-instance learning is defined, and the motivations for it are

explained. The different types of MI learning are described, but detailed descrip-

tions of the relevant algorithms are not discussed here; see Chapter 3 for these

details.

2.1 Machine Learning

Every day, we as humans discover new facts about our world. We interact with

the environment around us, and receive feedback through our empirical faculties

— our senses. We are able to recognize trends and can begin to anticipate the

consequences of our actions. The process that allows us to do this is called learning.

It is ubiquitous and most of us take it for granted.

Learning is a task that is normally associated with humans (and intelligent non-

human animals), hence the problem of creating machines that can learn falls within

the umbrella of artificial intelligence. While the creation of truly “intelligent” ma-

chines still seems to be a long way off, machine learning as a practical discipline is a

success story of modern artificial intelligence. Many algorithms have been discovered

that allow machines to make inferences from observed data, effectively “learning”

non-trivial facts and behaviours.

Under the guise of data mining, these algorithms have many commercial applica-

tions. Machines are far more efficient and reliable than humans at processing large

amounts of data. For this reason, learning algorithms can offer huge cost-saving and

efficiency benefits to businesses, and have successful applications in many domains

from medicine to marketing.

5

2.1.1 Supervised Learning

Supervised learning is the branch of machine learning that is concerned with algo-

rithms that can learn concepts from examples. As an input, the algorithm requires

a set of example cases, each of which has been given a label corresponding to some

important property of the example. The task of the algorithm is to build a model

that will generate accurate predictions of the labels of future examples.

With no irony intended, we will now illustrate the concept by way of a rudi-

mentary example. Suppose that we are amateur botanists, and we wish to learn to

distinguish between instances of the various species of the iris genus of flowering

plants. An expert has given us a batch of examples of some of the species of the

genus. Once we’ve seen a few examples of each, we can attempt to infer the defining

characteristics of each species. Once we’ve discovered the pattern, we can become

proficient at labeling arbitrary iris plants.

The Iris dataset from the UCI repository [Asuncion and Newman, 2007] is a

standard benchmark dataset for the evaluation of machine learning algorithms. It

contains data measured from 50 examples of each of three species of iris plants.

The collection of data representing a single example case is referred to as an

instance. Each instance contains the width and length of the petals of the cor-

responding example; these data elements are called features or attributes. Each

instance is labeled with the species that the example belongs to; this label is called

the class label, or sometimes just the class of the instance. When measured using a

standard algorithm evaluation technique (10-fold cross-validation), the widely-used

decision-tree learning algorithm C4.5 is able to learn to predict the species of iris

plants in this dataset with an accuracy of approximately 96%.

Having introduced the subject and its terminology via a simple example, we may

now formally define the standard supervised machine learning scenario. An instance

is a vector of N features concatenated with a class label, of the form {x | g(x)},
where x = {x1, x2, . . . , xN} is the feature vector and g(x) is the label of the instance.

Features and class labels are typically either elements of the real numbers (numeric

attributes) or domain-specific sets of names (nominal attributes).

The task is to find g(x), based on a given set of instances. When the class is a

nominal attribute, this process is called classification. When the class is a numeric

6

attribute, the process is called regression.

The underlying classification process g(x) is known in machine learning terminol-

ogy as a concept. g(x) may be either a function or a non-deterministic process. Given

a set of training examples to learn from, a supervised machine learning algorithm

outputs a model of the data, which is intended to be a best-guess approximation to

g(x). Such a model is known as a concept description.

This thesis is about a variation of supervised learning called multi-instance learn-

ing, which is described in Section 2.2.

2.1.2 Other types of Learning

Unsupervised learning is a type of machine learning where the instances are not

given class labels. One form of unsupervised learning, called clustering, attempts to

split the given dataset into sets of related instances, called clusters. “Relatedness”

is typically measured via some type of proximity measure, such as the Euclidean

distance between the feature vectors.

Semi-supervised learning applies to datasets where some instances are labeled,

and some are not. It can therefore be considered to be “in-between” supervised

and unsupervised learning. Labeling data is often an expensive manual process,

whereas unlabeled data can be acquired automatically and relatively cheaply in

some problem domains. Studies have shown [Nigam and Ghani, 2000] that better

classification/regression accuracy can be achieved in some problem domains by tak-

ing advantage of large sources of unlabeled data.

Reinforcement learning is a style of machine learning where the learning agent

receives feedback based on its actions. The agent then attempts to learn a policy of

behaviour that is likely to generate the greatest reward at the least cost.

2.2 Multi-Instance Learning

Multi-instance learning [Dietterich et al., 1997], also known as multiple-instance

learning, or just MI learning, is a variation on the standard supervised machine

learning scenario. The terms “multi-instance learning”, “multiple-instance learn-

ing” and “MI learning” will be used interchangeably throughout this thesis.

7

Object
Unknown

Process Result

Unknown

Process
3

Instance
Instance
Instance

...
Instance

1
2

n

ResultObject

(a)

(b)

Figure 2.1: (a) The traditional supervised machine learning scenario. (b) Multi-
instance learning. Figure based on a similar diagram by [Dietterich et al., 1997].

In standard supervised learning, each example is an instance consisting of a

vector of features, augmented with a class label. The task is to learn a function that

predicts the class label of an example, given the feature vector.

In MI learning, however, each example consists of a multiset (bag) of instances.

Each bag has a class label, but the instances themselves are not labeled. The learning

problem is to build a model based on given example bags that can accurately predict

the class labels of future bags. The difference between standard supervised learning

and multi-instance learning is illustrated in Figure 2.1.

An example will once again help to illuminate the concept. This example, called

the simple jailer problem, is due to [Chevaleyre and Zucker, 2001]. Imagine that

there is a locked door, and we have N keychains, each containing a bunch of keys.

If a keychain (i.e. bag) contains a key (i.e. instance) that can unlock the door, that

keychain is considered to be useful. The learning problem is to build a model that

can predict whether a given keychain is useful or not.

2.2.1 Definition of Multi-Instance Learning

We now present a formal definition of the MI problem. This formalization is a

refinement of those used by [Weidmann et al., 2003] and [Gärtner et al., 2002]. In

this thesis we follow the trend established by virtually all work in this field (a notable

8

exception being [Zhou and Zhang, 2006]) and assume a binary class attribute Ω =

{+,−}. Let χ be the instance space. Then an MI concept is a function νMI : N
χ →

Ω. The task in MI learning is to learn this function, based on a number of example

elements of the function.

Here, N
χ refers to the set of all functions from χ to N, which is isomorphic to

the set of all multi-subsets of χ, viewing the output of f(x) ∈ N
χ as the number of

occurrences of x in the multiset. Such functions are known as multiplicity functions,

and are a direct generalization of indicator functions for ordinary sets.

Note that this differs slightly from the formulation used by Weidmann et al.,

who define an MI concept as a function νMI : 2χ → Ω. Here, 2χ, the set of indicator

functions over χ, is isomorphic to the power set of χ, but this does not take into

account the fact that duplicate instances are allowed in a bag. Our alternative

definition of an MI concept explicitly defines the problem examples as multisets

rather than just sets. This is important for generalized MI concepts (described later

in Section 2.2.4).

2.2.2 Motivations and Applications

MI representations are applicable when examples can be naturally split into in-

stances describing the aspects of the example. There are many diverse applications

for MI learning. This section describes several of these.

Drug Activity Prediction

The original motivating application for MI learning was the drug activity predic-

tion problem [Dietterich et al., 1997]. The task is to predict whether or not a given

molecule will bind to a target “binding site” on another molecule. Drug molecules

that bind well to the target binding site are desirable because they will have the

required drug effects. However, one molecule may take on several different con-

formations (shapes) by rotating its internal bonds. If a single conformation of the

molecule can bind to the target binding site, the molecule is considered to be active.

In the musk drug activity problem, active molecules emit a “musky” odor that

is detectable by human observers. The learning problem is to predict, based on a

set of example molecules, whether a given molecule will emit the odor. Dietterich et

9

al. formulated MI learning to solve this problem. They represented each molecule

as a bag containing the different conformations that the molecule can adopt. They

showed that their MI-based approach performed better at predicting musk molecule

activity than other approaches.

Later, multi-instance learning was applied by [Scott et al., 2005] to the drug

activity prediction problem of identifying antagonist drugs, which must bind to

more than one target site in order to be labeled as positive.

Inductive Logic Programming

All Inductive Logic Programming (ILP) problems can be transformed into MI

problems [De Raedt, 1998], so this is a rich source of applications for MI learn-

ing. ILP is a type of machine learning where instances and background knowledge

are represented using logic programming (e.g. the PROLOG programming lan-

guage). ILP problems are relational and hence can be viewed as relational databases.

[Reutemann et al., 2004] show how these can be converted into MI problems by per-

forming database join operations to flatten the database into a single table.

One well-known ILP problem is the prediction of mutagenicity of molecules

[Srinivasan et al., 1994]. This problem has been successfully tackled using MI learn-

ing. Mutagenic molecules are often carcinogenic and can cause damage to DNA, so

the identification of such molecules is an important problem. In the ILP dataset,

features are recorded for both the molecules, and the atoms within the molecules.

[Chevaleyre and Zucker, 2001] formulated four different MI representations for the

problem. In all of their representations, each molecule was represented by a bag,

but the nature of the instances in the bags varied slightly between representations.

The representations are are follows:

1. Each instance represents an atom of the corresponding compound molecule.

2. Each instance represents two atoms of the corresponding compound molecule.

3. Each instance represents an atom, and also contains the molecule-level features

of the corresponding molecule.

4. Each instance represents two atoms, and also contains the molecule-level fea-

tures of the corresponding molecule.

10

Later, [Reutemann, 2004] created several alternative multiple instance represen-

tations of the mutagenesis problem:

1. Each bag contains the atoms of the corresponding compound molecule (simi-

larly to [Chevaleyre and Zucker, 2001]).

2. Each bag contains all atom-bond pairs (tuples) of the corresponding compound

molecule.

3. Each bag contains all adjacent pairs of bonds of the corresponding compound

molecule.

A similar drug activity prediction problem that has been traditionally ap-

proached using ILP is the suramin problem. Suramin analogues (chemical com-

pounds similar to the drug “suramin”) have applications as anti-cancer agents

[Braddock et al., 1994]. However, the identification of effective suramin analogues

for use as anti-cancer drugs is an expensive process due to the large search space.

Machine learning models for predicting drug activity from structure can aid in drug

design.

The problem has traditionally been approached using ILP [King et al., 1993].

Molecules are represented using the atomic structure and bond relationships simi-

larly to the mutagenicity problem. [Reutemann, 2004] converted the suramin prob-

lem into an MI problem using a table flattening operation in a similar fashion to the

mutagenesis dataset.

The East-West problem is another ILP problem that has been transformed into

an MI problem. The problem was first proposed by [Larson and Michalski, 1977],

and later extended for an ILP contest, the East-West Challenge [Michie et al., 1994].

The task is to predict whether a train is eastbound or westbound, given various

properties of the cars in the train such as size, shape and load.

The East-West Challenge version of the dataset is easily converted into an MI

problem by flattening the relational data into a single table [Reutemann et al., 2004].

The outcome of this transformation is a representation where each train is repre-

sented by a bag, with each instance in the bag describing a car belonging to that

train.

11

Fruit Disease Prediction

Fruit disease prediction fits naturally within the MI framework [Xu, 2003]. After

harvesting, fruits are usually stored in batches in a warehouse, with each batch

coming from a different orchard. However, during storage batches may exhibit

symptoms of a disease. Some batches will be more disease-prone than others, so it

is useful to be able to predict which batches are the most likely to be disease-prone.

This can easily be represented as an MI problem. One batch of fruits can be

represented as a bag, with each individual fruit being an instance. Features are

extracted from the individual fruits using non-destructive measures. Training data

is acquired by checking for observable symptoms of disease before shipment. Batches

that show evidence of the disease are labeled as “positive”, otherwise they are labeled

“negative”. Xu used this MI representation to predict disease incidence in kiwifruit.

Identifying Thioredoxin-fold Proteins

The task of identifying new proteins is conventionally approached by building hid-

den Markov models (HMMs) on the primary sequence. However, some superfamilies

of proteins such as Thioredoxin-fold (Trx-fold) have very low primary sequence con-

servation, which makes this approach ineffective [Wang et al., 2004]. Wang et al.

found that a multiple-instance learning approach performed better than the tradi-

tional HMM approach for identifying Trx-fold proteins. [Tao et al., 2004a] also later

applied MI learning techniques to the problem.

The Trx-fold superfamily of proteins plays an important role in cellular regula-

tion, and determining the nature of this superfamily is beneficial to the understand-

ing of redox processes [Wang et al., 2004]. The problem is to determine whether a

given protein is a member of the Trx-fold superfamily. Wang et al. modeled the

problem via multiple instance learning by first finding the primary sequence motif

in each sequence, and extracting a fixed-size window around the motif. They claim

that the size of their window, which contains 20 residuals upstream and 180 resid-

uals downstream from the primary sequence motif, is known to be large enough to

contain the entire Trx fold.

Wang et al. represented each protein as a bag, with feature vectors extracted

from sequences within a window as the in-bag instances. They presented three

12

different feature extraction techniques, namely motif-based alignment, secondary-

based alignment and α-β signatures.

Text Categorization

MI learning also has applications to text categorization, where the task is to assign

semantic labels to text documents. A document can be represented as an MI bag:

instances are obtained by splitting the document into smaller passages. Features

such as word occurrence frequencies can be extracted from each passage to form

instances.

[Andrews et al., 2002] applied an MI algorithm to the TREC9 dataset (also

known as OHSUMED). The dataset consists of thousands of MEDLINE articles,

each annotated with Medical Subject Heading (MeSH) terms. They split the doc-

uments into passages for their MI representation using overlapping windows with a

maximum length of 50 words. Unfortunately, they did not compare their results to

those obtained by single-instance approaches.

[Ray and Craven, 2005] used an MI representation for biomedical text-mining.

Recent advances in molecular biology have meant that much has been learnt regard-

ing the functions and properties of genes and proteins. So much literature has been

published on these topics that it is difficult for database curators to manually build

databases linking specific protein functions with relevant articles.

Gene Ontology (GO) codes representing concepts relating to cellular components,

molecular functions and biological processes are used by the biomedical community

to annotate proteins. It is useful to determine which literature articles link proteins

to GO codes. To this end, an (article, protein) pair can be annotated with a GO

code if the article links the protein to the component, function or process described

by that GO code.

Ray and Craven represent each biomedical article by an MI bag. The instances

in the bag each represent a paragraph of the document that contains both the name

of the protein and some evidence of a GO code. They consist of word-occurrence

frequencies and some extra statistical measures relating to the strength of the con-

nection between the protein and the GO code. The problem is to predict whether

the (article, protein) pair should be annotated with a given GO code.

13

Image Mining

There are many problems within the field of computer vision that multiple-instance

learning is naturally applicable to, including content-based image retrieval, object

detection and image classification. From a machine learning perspective, these prob-

lems belong to the area of image mining [Hsu et al., 2002], which encompasses the

intersection of the fields of data mining and image processing. Broadly speaking,

the general goal in each of these problems is to learn visual concepts. Image mining

problems are a major motivation and application for the work introduced in this

thesis.

Although standard supervised learning could be applied directly to learn from

global features of images, the task of learning visual concepts lends itself well to

an MI representation because the target concepts typically only occupy part of the

space of an image. Therefore, it makes sense to split the image into smaller re-

gions (segments) [Burl et al., 1998]. Then an image can be represented as a bag

of segments. Each instance in a bag contains features extracted from the corre-

sponding segment, such as colour, texture and shape information. Numerous image

segmentation techniques exist that can be used for this task.

Content-based image retrieval is a very useful image mining tool for finding

relevant content in large digital libraries and multimedia databases. The goal of

CBIR is to find semantically relevant images. This must be achieved using the

content of the image without reference to manually assigned metadata tags, which

are often unavailable. For example, finding all images containing tigers in a given

image library is a typical CBIR task.

Some CBIR methods, such as the method described in

[Manjunath and Ma, 1996], require the user to manually specify a set of pa-

rameters for a prediction model. For instance, patches of orange in the image could

be used to predict the presence of tigers. This can be both technically difficult and

time consuming for the user, however. An alternative approach is to use machine

learning to infer a predictive model from a set of examples provided by the user.

Object detection (also known as object recognition) is roughly the same problem

as CBIR, at least from a machine learning task-oriented perspective, but is differ-

ently motivated. There are two types of object detection problems: specific object

14

detection, and generic object detection. In specific object detection, the goal is to

identify images containing a specific object. Generic object detection, on the other

hand, attempts to identify objects that belong to a certain category. In weakly su-

pervised object detection, the learning program is not told which segments belong to

the background and which segments belong to the target object. Object detection is

used by artificial intelligence agents such as robots to effectively process sensory in-

put and attempt to make hypotheses about their environment, while CBIR is a task

that is performed at the request of a human user who is interested in finding images

that are semantically relevant to their own arbitrary set of criteria. Otherwise, the

two problems are identical from a machine learning perspective.

Much work has been done regarding the application of MI learning to CBIR / ob-

ject detection, including [Maron and Ratan, 1998],[Maron and Lozano-Pérez, 1998],

[Zhang et al., 2002], and [Chen et al., 2006]. CBIR problems are also used for

benchmarking MI algorithms in [Andrews et al., 2002] and [Ray and Craven, 2005].

Both CBIR and object detection/recognition are types of binary classification

problems. There are certain target images that we are interested in, and every

other image is an irrelevant negative example. In contrast, image classification

(otherwise known as image categorization) is explicitly a multi-class problem. Image

classification datasets contain images from several different categories, and the task

for the learning program is to correctly label each image according to its category.

Work on image classification using multi-instance learning includes

[Chen and Wang, 2004] and [Qi et al., 2007]. Although binary classifiers

can easily be extended to solve multi-class problems using techniques such

as one-against-all, pairwise classification, or error-correcting output codes

[Dietterich and Bakiri, 1995], algorithms that are designed to explicitly solve the

multi-class problem may perform better. Specifically, many MI algorithms use

asymmetric assumptions for binary-class data (such as the standard MI assumption,

described later in Section 2.2.3), which may not work well in a multi-class scenario.

Stock Market Prediction

Investors wish to know whether stocks will increase or decrease in value, in order

to decide whether to buy or sell stocks for the optimal return on investment. An

accurate predictive model would allow investors to make better trading decisions,

15

and thus earn more money on the share market.

Traditional supervised machine learning approaches to the problem label in-

dividual stocks based on the change in value of the stock after a fixed time T

[Maron, 1998]. Here, the length of time T is a task-dependant parameter that could

range anywhere between minutes and years. For classification, a stock is labeled as

positive if the stock price increased after time T . For regression, the stock is labeled

with the actual change in market price.

However, supervised machine learning algorithms have had limited success due

to the chaotic nature of the system. Unpredictable occurrences such as world events

and (often unfounded) rumours can cause fluctuations that are unrelated to the

actual economic strength of the stock. Despite this, some stock price fluctuations

are actually due to economically fundamental reasons; these are the types of stock

value movements that it is hoped machine learning approaches may be able to predict

[Maron, 1998].

To counter the noisy data, Maron proposed a multi-instance learning approach

for finding stocks that will increase in value due to fundamental economic factors.

At training time, positive bags are generated by collecting a fixed number of stocks

that all increased in value by the largest amount, and negative bags are generated

by collecting a fixed number of stocks that all decreased in value by the largest

amount. One positive and one negative bag are created for each time period T in

the training set.

The intention is that the multi-instance representation will allow learning algo-

rithms to handle the ambiguity as to whether a stock’s value fluctuation was due to

legitimate economic factors, or spurious external reasons. As the bag size increases,

it is more likely that a positive bag contains a truly positive instance. [Maron, 1998]

believes that although this approach is not a general “magical cure” for learning

from noisy data, the noise will vary between timesteps, while the true causes of

stock performance will remain constant.

Maron found that an MI algorithm, maxDD, performed better at the stock

activity prediction task than the predictor developed by Grantham, Mayo, Van

Otterloo & Co. (GMO), a Boston-based investment firm.

No comparison is made with single-instance learning algorithms, however, so it is

not clear whether the multi-instance representation actually improves performance

16

on noisy data as intended, and no other work seems to have been done on using

MI learning for this purpose. The artificial bag generation method also does not

guarantee that the standard MI assumption (see Section 2.2.3) used by the maxDD

algorithm actually holds true.

Robot Landmark Matching

During navigation and mapping, mobile robots need to be able to determine their

current location with respect to their internal map. This process is called local-

ization. Localization is non-trivial because of inaccuracies in effectors (e.g. wheel

slippage) and sensors, and possible errors in the internal map. Errors compound

with every movement, causing greater inconsistencies over time during the mapping

process. For this reason, especially strong localization methods are required during

mapping tasks.

Identification of landmarks is one method for implementing localization. If a

robot can identify landmarks, it can then determine its position with respect to

those landmarks. Applying machine learning to the problem, the task is to learn

whether the robot is near a given landmark. Positive examples are images (or other

sensor readings) taken near the landmark, and negative examples are images taken

when the robot is not near the landmark.

[Scott et al., 2005] represent this as a multi-instance problem, where each ex-

ample consists of a bag of points derived from sensor readings. They believe that

the multi-instance representation may be better able to represent structure infor-

mation that is lost when the dataset is flattened into a standard supervised learning

representation.

Prediction of Hard Drive Failure

Early warnings of impending hard drive failure are important to end-users, as they

provide the user with the opportunity to backup their data. Most modern hard

drives contain built-in systems designed to provide such an early warning function.

However, because drives that emit such a warning are typically required to be re-

placed under warranty conditions, it is critical for manufacturers to ensure that a

low false-alarm rate is maintained.

17

[Murray et al., 2005] formulated an MI representation of the problem, and pre-

sented a new multiple-instance learning algorithm based on the naive Bayesian

classifier (mi-NB) that was designed to work well under the low false-alarm rate

requirements of the problem domain without sacrificing computational efficiency.

The hard drives studied by Murray et al. implement Self-Monitoring And Re-

porting Technology (SMART) in order to attempt to predict impending failure.

Time-series data are collected by sampling roughly 60 different performance at-

tributes (known as “SMART attributes”), with samples taken after every two hours

of operation. The hardware stores a record of the last 300 samples. The existing

SMART failure prediction method implements a rudimentary threshold-based algo-

rithm, which the manufacturers estimate to have a failure-prediction accuracy of

only around 3-10%, while maintaining a false-alarm rate of 0.1%.

Murray et al. model the hard drive failure prediction problem via an MI repre-

sentation. They construct feature vectors, which they refer to as patterns, by first

performing feature-selection to select a subset of the SMART attributes, and then

concatenating the selected features of n consecutive samples. Here, n is a parameter

to the model. Each hard drive is represented by a bag of patterns.

Murray et al. (2005) set n = 1 in their published experimental results, i.e.

each pattern represented a single sample, with up to 300 patterns in each bag.

Their feature selection method selected 25 SMART attributes for use in learning.

Using this representation, they found that their mi-NB algorithm correctly predicted

34.5% of hard drive failures, with a false-alarm rate of 1%. This was a much higher

prediction rate than the existing SMART solution, although the false-alarm rate

was relatively high.

They also tested a single-instance support vector machine algorithm on the

dataset. Patterns, extracted from the example hard drive SMART records and

appended with class labels, were used as learning examples. The support vec-

tor machine algorithm achieved a higher failure-prediction rate (50.6%) than the

multi-instance algorithm, with zero false alarms, but was far more computationally

expensive at training time.

18

2.2.3 The Standard MI Assumption

Most early work on MI learning, notably including [Dietterich et al., 1997] and

[Maron, 1998], makes an assumption regarding the relationship between the in-

stances within a bag and the class label of the bag. Dietterich et al. considered this

assumption to be so fundamentally important that they included it as part of their

definition of multiple-instance learning. We will follow [Weidmann et al., 2003], and

refer to this assumption as the standard MI assumption.

The standard MI assumption states that each instance has a hidden class label

c ∈ Ω = {+,−}. Under this assumption, an example is positive if and only if one

or more of its instances are positive. Thus, the bag-level class label is determined

by the disjunction of the instance-level class labels.

Formally, let X = {X1, X2, . . . , Xn} ∈ N
χ be a bag containing n instances from

feature space χ. Each instance has a class label determined by some process g : χ ⇒
Ω. Let νS : N

χ ⇒ Ω be a standard MI concept, and equate “+” with the logical

constant ‘’True”, and “−” with the logical constant ‘’False”. Then:

νS(X) ⇔ (g(X1) ∨ g(X2) ∨ . . . ∨ g(Xn))

It should be noted that the standard MI assumption is asymmetric: if the positive

and negative labels are reversed, the assumption has a different meaning. Therefore,

when we apply this assumption, we need to be clear which label should be the

positive one, and which should be negative.

The standard MI assumption was adopted because it is believed to be appropriate

for the musk problem domain. In the musk problem, it is assumed that a molecule

will emit a musky smell if and only if one of its conformations emits a musky smell,

hence the standard MI assumption applies [Dietterich et al., 1997].

2.2.4 Generalized MI

Due (at least in part) to the inclusion of the standard MI assumption as part of

Dietterich et al’s definition of MI learning, it was initially adopted ubiquitously by

the fledgeling MI learning community. In more recent years, there has been a trend

towards more generalized assumptions [Xu, 2003].

In generalized MI, the standard MI assumption is dropped. Instead, other in-

19

teractions between instances and the class labels of bags are possible. While most

recent authors have (implicitly or explicitly) abandoned the standard assumption,

unfortunately many authors have not precisely stated the new assumptions that

they have used [Xu, 2003].

Gradually, the definition of multiple instance learning (as used by the machine

learning community) has grown to include generalized MI. Most recent authors

in the field have dropped the “generalized” prefix, and refer to generalized ap-

proaches as part of the multiple instance framework (see, for example, [Xu, 2003],

[Chen et al., 2006], and [Dong, 2006]). In particular, Xu explicitly extends the def-

inition of MI learning to include other assumptions.

We contend that the term “multiple-instance learning” should contrast directly

with “single-instance learning”, and connotes any type of learning where several

instances can be included within a single learning example, regardless of the as-

sumptions used. We argue, therefore, that the term should encompass generalized

MI as well as the standard MI scenario.

2.2.5 Multiple Instance vs Multiple Part Problems

Chevaleyre and Zucker make a distinction between Multiple Instance problems

(MIP) and Multiple Part problems (MPP). Under the generalized view of MI, we

consider both types of problems to be within the multi-instance framework. Unlike

Chevaleyre and Zucker, we view MPP as a type of MI problem. Regardless, it is

insightful to examine the differences between MIP and MPP.

In Chevaleyre and Zucker’s framework, MIP problems are the set of problems

where the standard MI assumption holds. In MIP, the multiple instance represen-

tation is used to describe ambiguity. Each instance in a bag represents some aspect

of the instance taken as a whole, but it is ambiguous as to which instances are

responsible for a bag’s label. Their definition for MIP is as follows:

Definition 1 (MIP) [Chevaleyre and Zucker, 2001]:

“The multiple-instance learning problem consists in learning a concept

from examples that are represented by sets of instances that describe

them, on the linearity hypothesis (i.e. the standard MI assumption).”

An example of an MIP is the musk drug activity problem. Here, each molecule

20

is represented by a set of possible conformations (shapes), each of which describe

a configuration of the entire molecule. If one configuration is positive (i.e. has a

musky smell), then the whole molecule is positive.

On the other hand, MPP problems, according to Chevaleyre and Zucker, are

problems in which each bag describes the smaller parts of the example. The standard

MI assumption is not required in MPP. Under MPP, the instances do not describe

aspects of the entire example as in MIP. MPP multiple-instance representations do

not represent ambiguity of the whole. Instead, each instance in a bag represents

some smaller part of the example. Chevaleyre and Zucker define MPP as:

Definition 2 (MPP) [Chevaleyre and Zucker, 2001]:

“The multiple-part learning problem consists in learning a concept from

examples that are represented by sets of instances that describe their

parts, without the linearity hypothesis.”

Strictly speaking, this definition should be slightly modified to describe MPP

examples as multisets rather than sets. Some more recent MPP models, such as

threshold-based MI and the collective assumption (see Sections 2.2.7 and 2.2.10,

respectively) allow repetition of instances in a bag. Defining the concept in terms

of multisets allows these models to fit within the framework, while staying true to

the spirit of the original definition.

The generalized jailer problem is an example of an MPP problem. Each bag

describes a keychain containing a bunch of keys. There is a locked door which is

secured by one or more locks. Positive bags are keychains that contain keys that

are compatible with all locks on the door. In this problem, each instance describes

a key. The instances do not describe the entire example, but instead each describe

a smaller part of the example.

In this thesis, we hold a generalized view of MI, which includes all types of

learning where examples are multisets of feature vectors, regardless of the assump-

tions used. Therefore, we consider both MIP and MPP to be part of the broader

class MI. However, when designing algorithms, it is important to consider the differ-

ences between MIP and MPP problems. Each type of problem may have different

requirements in order to learn successfully in that domain.

21

2.2.6 Xu’s Framework for MI Learning

[Xu, 2003] presented a framework for categorizing MI algorithms with respect to

the overall approach and assumptions used. Xu’s framework (summarized in Figure

2.2) divides MI learning solutions into instance-based approaches and metadata-based

approaches.

Instance-based approaches make the assumption that instances have hidden class

labels. The set of hidden instance-level class labels may or may not correspond to

the set of bag-level class labels. Methods in this category typically try to estimate a

function that assigns class labels to instances, and then use that function to make a

prediction at the bag level. All methods that use the standard MI assumption come

under this category. Other instance-based assumptions are possible, however. Some

of these will be discussed in the following sections.

Methods that use the metadata approach reply on the assumption that the class

labels of bags are determined by some meta-level information that describes the

example. Algorithms of this type generally apply a transformation that maps bags

into a new single-instance feature space, where the features consist of some metadata

extracted from the bag. A single-instance learning algorithm can then be applied

to the instances in this space in order to make predictions.

Most metadata algorithms are “data-oriented” in that the metadata is extracted

directly from the data. In Xu’s hierarchy, the alternative to data-orientation is the

model-oriented approach, where some model is built on the data, and the metadata

is extracted from this model rather than the original dataset.

Data-oriented approaches are further subdivided into “fixed-metadata” ap-

proaches, which assume that the instances in a bag are a fixed set of elements

associated with that bag, and “random-metadata” approaches, where the assump-

tion is made that the instances are random samples from an underlying distribution.

Under this assumption, each bag is actually defined by an instance-space probability

distribution, of which the in-bag instances are merely a sample. Random metadata

approaches typically map bags into a single-instance feature space that represents

an estimate of the parameters of the bag’s probability distribution.

22

Instance−based

Other
Assumptions

MI learning

The MI

Approaches

Assumption
Model−oriented Data−oriented

Metadata−based

Approaches

Fixed Random
MetadataMetadata

Figure 2.2: Xu’s Framework for MI Learning. Based on a similar diagram in
[Xu, 2003].

2.2.7 Weidmann’s Concept Hierarchy for Instance-Based

Generalized MI Learning

[Weidmann et al., 2003] formulated a hierarchy of generalized instance-based as-

sumptions for multi-instance learning. The hierarchy consists of the standard MI

assumption and three types of generalized MI assumptions, each more general than

the last.

To illustrate the three types of generalized MI assumptions, we will follow

[Weidmann, 2003] and use an extended version of Chevaleyre and Zucker’s sim-

ple jailer problem (discussed earlier in Section 2.2). Recall that in the simple jailer

problem, each bag is a keychain containing several keys, and a bag is considered to

be useful (i.e. positive) if one or more of its keys can unlock a specific door.

Presence-based MI Assumption

In presence-based MI learning, the assumption is that a bag is positive if and only if

there exist one or more instances in the bag that belong to a set of required instance-

level concepts (i.e. have the required hidden instance-level class labels). This can

be visualized as a version of the jailer problem where there are multiple locks on the

23

door. To unlock the door, we need at least one key that can open each type of lock

on the door.

Formally, let vPB : N
χ ⇒ Ω be a presence-based MI concept, let Ĉ ∈ C be the

set of required concepts, and let ∆ : N
χ × C ⇒ N be the function that outputs the

count of the number of occurrences of a concept in the bag. Then:

vPB(X) ⇔ ∀c ∈ Ĉ : ∆(X, c) ≥ 1

It should be noted that the standard MI assumption is a special case of presence-

based MI, where |Ĉ| = 1, i.e. there is just one required concept.

Threshold-based MI Assumption

The threshold-based MI assumption states that a bag is positive if and only if there

are at least a certain number of instances in the bag that belong to each of the

required concepts. Each concept can have a different threshold. In terms of the

jailer problem, this is similar to the presence-based MI jailer problem except that

multiple copies of each type of lock are allowed, and keys are consumed during the

unlocking process. If there are n copies of a certain lock, then we need at least n

keys of the appropriate type to unlock it. Anybody who has played the old Microsoft

puzzle game Chip’s Challenge [Microsoft Game Studios, 1990] will be very familiar

with this type of problem!

To state the threshold-based assumption formally, let us use the same lexicon as

before, and let vTB : N
χ ⇒ Ω be a threshold based MI concept. Then we have:

vTB(X) ⇔ ∀ci ∈ Ĉ : ∆(X, ci) ≥ ti

where ti ∈ N is the lower threshold for concept i.

Count-based MI Assumption

Under the count-based MI assumption, there is a maximum and a minimum number

of instances from each of the required concepts which must be observed in order for

a bag to be positive. Imagine this as the threshold-based jailer problem, except that

there is also a stingy jailer who despises wastefulness, and will not allow anybody

to open the door if they have too many keys of any particular type.

24

Formally, let vCB : N
χ ⇒ Ω be a count-based MI concept. Then

vTB(X) ⇔ ∀ci ∈ Ĉ : ti ≤ ∆(X, ci) ≤ zi

where ti ∈ N is a lower threshold for concept i, and zi ∈ N is an upper threshold

for concept i.

The Concept Hierarchy

[Weidmann, 2003] showed that these assumptions formed a hierarchy of generality,

where standard MI ⊂ presence-based ⊂ threshold-based ⊂ count-based (see Figure

2.3 for an illustration).

Therefore, in theory at least, a strong MI learner designed to work under a

general assumption should still be able to solve an MI problem where one of the less

general assumptions applies. For instance, a strong algorithm designed to use the

count-based assumption should work well on a dataset where the generative model

is presence-based. See Figure 2.3 for a visual representation of the hierarchy.

2.2.8 The GMIL Assumption

[Scott et al., 2005] introduced a new MI assumption based on theoretical results

from geometric pattern recognition. We will refer to this assumption as the GMIL

assumption. In this model, there is a set of target points C = {c1, c2, . . . , ck}. A bag

is positive if and only if it contains instances sufficiently close to at least r points,

out of the k target points.

Scott et al. extend this model to also include a set of repulsion points C̄ =

{c̄1, c̄2, . . . , c̄k′}. In the extended model, for a bag to be positive it may only contain

instances that are close to at most s of the repulsion points.

The model can be understood with reference to the ranked half-Hausdorff met-

ric using the weighted infinity norm. The Hausdorff metric (see, for example,

[Edgar, 1990]) provides a measure of distance between two bags of points, and is

commonly used in computer vision applications. The sets of target points and re-

pulsion points can be viewed as “ideal bags”, where positive bags are within a ranked

half-Hausdorff distance of some threshold γ from the ideal positive bag, and at least

a ranked half-Hausdorff distance of γ′ away from the ideal negative bag.

25

Standard MI

Presence−based MI

Threshold−based MI

Count−based MI

Figure 2.3: Weidmann’s hierarchy of instance-based MI concepts.

26

The Hausdorff distance between bags P and Q is defined to be the largest dis-

tance from either a point in P to its closest point in Q, or from a point in Q to

its closest point in P , whichever is larger, under some norm. However, this is not

robust against noise, so the ranked Hausdorff metric is used: instead of using the

largest distance, the sth largest distance is used. Scott et al. compute the distance

from the bag to the model (i.e. the half -Hausdorff metric), but not vice-versa, as it

is assumed that the model is accurate and will not contain extraneous points.

Scott et al. used the weighted infinity norm as the instance-level distance mea-

sure required to compute the Hausdorff distance. The infinity norm defines the

length of a vector (or point) as ‖x‖∞ = max(|x1|, |x2|, . . . , |xn|), the largest absolute

value of its components. The weighted infinity norm allows scaling of the vector

components, such as for normalization.

The ranked half-Hausdorff metric using the weighted infinity norm can be stated

formally as

max
q∈Q

s
{

min
p∈P

{‖p − q‖∞}
}

,

where maxs is the sth max, P is a bag, Q is the set of target points, and “−”

denotes standard vector subtraction. Let a bag P be positive if and only if the above

equation evaluates to at most γ. Then a target concept is a set of k = |Q| axis-

parallel target boxes, and a bag is positive if and only if it contains points within at

least r = k − s of the k target boxes.

To also include a set Q̄ of k′ axis-parallel repulsion boxes, we must also check

that the following formula evaluates to at least γ′, which is another constant:

min
q∈Q̄

s′
{

min
p∈P

{‖p − q‖∞}
}

.

Under this extended model, for a bag to be positive, it must also contain points

within at most s′ of the k′ repulsion boxes.

In terms of Weidmann’s hierarchy, Scott et al.’s MI formulation, without repul-

sion points, is the same as presence-based MI when boxes are viewed as instance-level

concepts and the minimum threshold r is equal to the number of target points k.

When r 6= k, Scott et al.’s model is a more general concept than presence-based MI.

Weidmann’s threshold and count-based MI concepts generalize presence-based MI

27

concepts in a different fashion to Scott et al’s model, and neither is strictly more

general than the other.

Count-based MI concepts can model repulsion points by setting the maximum

instances for some instance-level concepts to zero. However, count-based and

threshold-based concepts cannot model the case where only r out of k concepts

must be present for a bag to be positive. Scott et al’s model cannot represent prob-

lems where the number of instances belonging to specific constant must be within a

given range (as in threshold and count-based MI), as only concept presence rather

than concept counts are included in the model.

2.2.9 The DD-SVM / MILES Assumption

The DD-SVM [Chen and Wang, 2004] and MILES [Chen et al., 2006] algorithms

also use a generalized MI assumption where bag-level class labels are determined

by some relationship to the distance from each of a set of target points. Although

the authors of DD-SVM and MILES note that their algorithms do not follow the

standard MI assumption, they do not explicitly describe their new assumptions.

This section attempts to isolate the common assumptions between these algorithms

and thus describe the types of MI concepts that the algorithms attempt to learn.

The DD-SVM / MILES assumption is related to [Scott et al., 2005]’s GMIL as-

sumption, in that distance from a set of target points is used to determine bag

labels. However, “distance” is defined differently, and the r-of-k threshold is not

used. Instead, a single-instance base learner is used to determine the relationship

between proximity to target points and bag-level class labels.

DD-SVM and MILES each define a feature-space mapping where bags are trans-

formed into a single-instance space with attributes representing the closeness of the

bag to specific target points in the original instance space. The two algorithms each

use a different “closeness” measure and have a different method of selecting target

points. As we are currently discussing assumptions rather than algorithms, we will

not cover these details here. The reader is referred to Sections 3.3.6 and 3.3.5 for

algorithmic details of DD-SVM and MILES, respectively.

The relationship between the “distance from target point” features and bag-level

class labels is arbitrary under the DD-SVM / MILES assumption. The assumption

28

is merely that bag-level labels can be determined entirely from the distance features.

In practice, the algorithms determine this relationship by building a single-

instance base learner (typically a support vector machine) on the transformed feature

space. By using a powerful enough base learner, Scott et al. type attraction and

repulsion points can be modeled under this assumption.

2.2.10 The Collective Assumption

Under the standard MI assumption, only a few special instances (those with a “pos-

itive” label) can have any influence on the class label. In contrast, the collective

assumption [Xu, 2003] is an MI assumption where all instances in a bag contribute

equally to the bag’s label.

The collective assumption, designed as a general alternative to the standard MI

assumption, was not precisely defined in [Xu, 2003]. However, all of the algorithms

presented by Xu that were designed to use this assumption actually depend on the

same specific generative model. We will therefore use the term collective assumption

to refer to this specific model.

The collective assumption is motivated by a probability-theoretical view of the

nature of multi-instance bags. Under this view, a bag is not a finite collection of

fixed elements (as is generally assumed), but instead is a sample of an underlying

population specific to that particular bag. Here, a bag can be modeled as a prob-

ability distribution Pr(X|b) over the instance space, where the observed instances

were generated by random sampling from that distribution.

Instances are assumed to be assigned class labels according to some (typically

unknown) probability function (or nondeterministic probabilistic process) g(x) =

Pr(Y |x). Under the collective assumption, the bag-level class probability function

is determined by the expected class value of the population of that bag. Let c be a

class label ∈ Y = {0, 1}, and let b be a bag. Then

Pr(c|b) = EX [Pr(c|x)|b] =

∫

X

Pr(c|x)Pr(x|b) dx .

To compute this exactly, we must know Pr(x|b), the probability distribution for

the bag. However, this is generally not known in practice so we need to use the

sample provided by the instances in the bag:

29

Pr(c|b) =
1

nb

nb
∑

i=1

Pr(c|xi) ,

where nb is the number of instances in the bag. In the limit, as the sample size

approaches infinity, the sample version of the equation will approach the population

version. Xu developed statistical algorithms for learning this kind of probabilis-

tic concept, and also investigated a simple heuristic algorithm called MIWrapper

(see also [Frank and Xu, 2003]). Section 3.3.2 has a detailed description of that

algorithm.

2.2.11 Multi-Instance Multi-Label Learning

In traditional supervised learning, multi-class learning problems contain more than

two classification categories. Each learning instance belongs to exactly one of these

categories. An extension to this is multi-label learning, where the categories are

not mutually exclusive, so that each instance may belong to several class categories

[Schapire and Singer, 2000].

[Zhou and Zhang, 2006] formalized multi-instance multi-label learning (MIML),

where each multi-instance bag may be associated with multiple class labels. In

their formulation, MIML concepts are of the form fMIML : 2χ → 2Y , where χ is the

instance space, and Y is the set of class categories. Given our interpretation of multi-

instance examples as bags (multisets) rather than sets, we modify this definition to

be fMIML : N
χ → 2Y (see Section 2.2.1 for more information on this notation).

In MIML, it is clear that the standard MI assumption is not directly applicable,

as that assumption is dependent on the learning task being a binary classification

problem. Other assumptions regarding the relationships between the instances and

the bag-level labels are required for MIML. This is an area that (to the best of

our knowledge) has not yet been explored in the literature. Zhou and Zhang did

not explicitly state the assumptions used in their work, although their MIMLBoost

algorithm uses [Xu and Frank, 2004]’s MI boosting algorithm, and thus implicitly

relies on a multi-label version of the collective assumption.

30

Chapter 3

Related work

Since multi-instance learning was formulated by Dietterich et al. in 1997, many MI

learning algorithms have been proposed. In fact, many MI problem domains have

motivated entirely new algorithms designed to solve those specific types of problems.

This chapter presents an overview of the algorithms in the MI literature.

MI algorithms can be broadly divided into three categories: purpose-built algo-

rithms designed specifically to learn MI concepts, upgraded single-instance learners

that have been modified to learn directly from multi-instance data, and wrapper al-

gorithms that convert MI problems into single-instance problems, thereby allowing

existing single-instance learners to be applied directly. The approaches explored in

this thesis fall mainly into the latter category. The wrapper approaches are more

closely related to the new algorithms presented in this thesis, and thus will be de-

scribed in more detail.

3.1 MI learning using purpose-built algorithms

This section provides a brief description of the main purpose-built MI algorithms.

The emphasis will be on background information and high-level descriptions of the

algorithms, rather than precise formulations.

3.1.1 APR Formulations

[Dietterich et al., 1997] presented the very first MI learning algorithms, which were

designed to solve the MI problem under the standard multiple-instance assumption.

Specifically, the algorithms were designed to work well for the musk drug activity

prediction problem.

The algorithms attempt to build a single axis-parallel hyper-rectangle (APR)

that identifies the “positive” region of instance space. A hyper-rectangle is a gener-

31

alization of a rectangle to an arbitrary number of dimensions. Axis-parallel hyper-

rectangles can be viewed as conjunctions of if-then rules on the feature values. At

classification time, any bag that contains an instance within the hyper-rectangle is

labeled as positive, as per the standard MI assumption.

Dietterich et al. formulated three types of algorithms for learning APR-type

standard MI concepts: basic APR algorithms, outside-in algorithms and inside-out

algorithms. Basic APR algorithms start by building a rectangle that covers all of the

instances in all of the positive bags. This rectangle is likely to contain many false-

positives, so various methods are employed to attempt to shrink it while retaining

as many instances from positive bags as possible. Outside-in algorithms also start

with a large rectangle and attempt to shrink it, but the standard MI assumption is

more directly taken into account. These algorithms are designed to ensure that the

resulting APR contains at least once instance from each positive bag. Inside-out

algorithms start with a rectangle around a single instance, and attempt to “grow”

the rectangle outwards.

The most effective APR method on the musk data was Iterative Discrimination,

an inside-out APR algorithm. This algorithm has three main procedures: grow,

discrim and expand. The algorithm starts by grow ing a hyper-rectangle over all

features with tight bounds on the positive instances. Then it discriminates between

the features, selecting a subset of features that best distinguishes between positive

and negative instances. The grow procedure is repeated, using only the selected fea-

tures. The algorithm iterates, alternating between growing and discriminating until

it converges on a stable hyper-rectangle. However, this creates a very conservative

rectangle which does not generalize very well. So another step was added to expand

the hyper-rectangle in order to increase the probability that new positive instances

are contained within the APR.

3.1.2 Diverse Density

The diverse density framework ([Maron, 1998], [Maron and Lozano-Pérez, 1998]) is

a probabilistic approach to MI learning under the standard assumption. Diverse

density is a measure of the probability that a point in instance space is the positive

target point (assuming that there is only one target point) given the bags in the

32

training dataset. This can be written as:

DD(x) = Pr(x = t|B+
1 , . . . , B+

n , B−
1 , . . . , B−

m),

where x ∈ χ is a point in instance space, and t is the target concept. The diverse

density of a point is computed based on the number of different positive bags that

have instances close to that point, and how far away the instances from negative

bags (which are all assumed to be negative instances according to the standard

MI assumption) are from that point. The word “diverse” is used to emphasize the

fact that the instances must come from different bags in order to contribute to the

measure.

Since a single target point is assumed, the goal of a learning algorithm within the

diverse density framework is to find the point with the maximum diverse density.

Assuming that the bags are conditionally independent given the target concept, and

further assuming uniform prior probabilities for the target, this can be computed as

arg max
x

∏

1≤i≤n

Pr(x = t|B+
i)

∏

1≤j≤m

Pr(x = t|B−
j).

Of course, the probability terms in this equation need to be defined in order to

compute this. Maron (1998) proposes two models for estimating the probability that

a point is the target concept given a bag. One is the noisy-or model, which uses a

probabilistic version of the logical or operator, and the other is the most-likely-cause

model, which selects the instance in a positive bag that has the highest probability

of being positive.

Maron and Lozano-Perez provide an algorithm (which we will call maxDD) that

attempts to find the target concept by maximizing the diverse density over the

instance space. As it is not feasible to search the entire instance space for the point

with the greatest diverse density, a gradient ascent method is used. Restarts are

performed at every instance from a positive bag, because positive instances cause

the diverse density peaks, and therefore presumably the target concept is close to

some of those instances.

[Zhang and Goldman, 2002] later formulated the algorithm EM-DD, which is a

variant on the maxDD algorithm that is based on the expectation-maximization

(EM) approach. Although EM-DD uses the same theoretical framework as maxDD,

33

it has a different method for finding the most likely target point.

The algorithm starts with an initial guess h of the target concept, obtained by

selecting a point from a positive bag as in maxDD. It then performs an iterative

procedure consisting of an expectation step followed by a maximization step. The

expectation step selects an instance from each positive bag that is most likely to be

the cause of that bag’s label given the current hypothesis h, using the most-likely-

cause estimator from maxDD. Then, the maximization step performs a gradient

ascent search based on the selected instances (similarly to maxDD) to find a new

h′ that maximizes DD(h′). The current hypothesis h is reinitialized to h′. The EM

loop is repeated until convergence.

EM-DD has a computational efficiency advantage over maxDD. The maxDD

algorithm uses a softmax function in place of a max function because it is differen-

tiable as required by the gradient ascent search, which increases the computational

complexity of the algorithm. Because EM-DD selects only a single instance from

each bag during the expectation step, computing the max function becomes triv-

ial and the expensive softmax computation can be avoided. This also causes the

algorithm to scale well with increasing bag size.

The authors of EM-DD initially reported improved performance over maxDD

on the musk data, but this was disputed by later authors. [Andrews et al., 2002]

pointed out that the original formulation of EM-DD selected the best hypothesis

based on error rate on the test data instead of the training data, and so the reported

results were optimistic. They corrected this error, and found that the algorithm’s

accuracy was not actually superior to maxDD. However, the algorithm is still notable

for its improved computational efficiency over maxDD.

3.1.3 ConMIL

[Qi et al., 2007] presented an MI algorithm, Concurrent MIL (ConMIL), that is de-

signed to use concurrency relations between instance-level concepts to solve MIL

problems. The algorithm searches for a class probability function pi(x) over in-

stance space which best represents the concept concurrency relations observed in

the training data. Bag level predictions are made using this instance-level probabil-

ity distribution function according to the standard MI assumption.

34

The algorithm is motivated by the idea that the concurrency of certain instance-

level concepts may be important for MI classification. For instance, in an image

classification task, images of beach scenes may be defined as images that contain

both sea regions and sand regions. However, as we will see, ConMIL uses the

standard MI assumption for bag-level prediction, and thus fails to make full use of

this concurrency relation information.

For the ConMIL algorithm, concurrency relations in the training data are viewed

as an order-n tensor, where n is the maximum order of the concurrency relations

considered. For example, {sand ∧ sea} is an order-2 concurrency relation, while

{sand∧ sea∧ people∧ sky} is an order-4 concurrency relation. Tensors are abstract

mathematical objects that generalize the concepts of scalars, vectors and matrices

to higher dimensions. An order-n tensor can be represented as an n-dimensional

array. Qi et al. define the concurrent tensor T as

Ti1,i2,··· ,in , p(Ii1 ∧ Ii2 ∧ · · · ∧ Iin) ,

where Ix (1 ≤ x ≤ nI = the total number of instances) is an instance from the

training data. Here, p(Ii1∧Ii2∧· · ·∧Iin) represents the probability of the concurrence

of n instances Ii1 , Ii2, Iin in the same positive bag. This concurrent probability is

computed using multiplication as a fuzzy connective to replace the logical operator

“∧” [Yager, 1980], and a noisy-or model [Maron, 1998].

ConMIL uses a quasi-Newtonian gradient descent search to find the instance-

level class probability function pi(x) that minimizes a least-squares cost function

with respect to similarity to the concurrency tensor T . At classification time, the

predicted instance-level class probabilities are used to make bag-level predictions

according to the standard MI assumption. A softmax function is used to make this

prediction.

The ConMIL algorithm is related to the work presented in this thesis in that

it tries to use information on the relationships between instance-level concepts to

make bag-level predictions. However, since it uses the standard MI assumption,

these relationships are not actually directly used at prediction time. In this way, it

does not directly make use of concept concurrency information to make predictions

at all. Concurrency information is used to learn an instance-level posterior class

35

probability function, but predictions are made using only the posterior probability

function, without reference to the concurrency relationships.

For example, suppose in an image classification task a concurrence has been

detected between sea regions and sand regions in images of beach scenes. ConMIL

uses this concurrence to help compute the probability that a sea region belongs to

a beach, and the probability that a sand region belongs to a beach. Now, suppose

that the ConMIL classifier is used to make a prediction on an image containing

a sea region and a sand region. In order to classify the image, ConMIL uses the

predicted probabilities that sea and sand regions each independently belong to a

beach scene, but it does not use the probability that an image containing both sea

and sand regions is a beach scene.

A potential direction of future research would be to try to identify instance-level

concepts at classification time, and compare these to the concurrency probabilities

stored in the concurrency tensor in order to make predictions. In this way, the

concurrency information that ConMIL already computes could be used to make

predictions, rather than discarding the information at prediction time in favour of a

posterior probability function and the standard MI assumption, which do not make

use of concept concurrency relations.

3.1.4 GMIL

[Scott et al., 2005] 1 formulated the GMIL generalized MI assumption, where a bag

is positive if and only if it contains instances sufficiently close to at least r of k

possible target points, and sufficiently close to at most s′ of k′ repulsion points.

Given the distance measure used, “sufficiently close” is equivalent to being within

an appropriately sized axis-parallel box of the target (or repulsion) point. See Section

2.2.8 for more detail on this MI assumption.

Their first algorithm for learning this type of concept was called GMIL-1. The

algorithm explicitly enumerates all possible axis-parallel boxes. It creates a single-

instance feature space with boolean attributes for each box, signifying whether a

bag contains an instance within that box. To reduce the dimensionality of this

space, boxes that cover the same instances are grouped together, and only one

1Originally published in 2003 as a technical report at the University of Nebraska, Lincoln.

36

representative box for each group is used.

The training bags are mapped into the feature space, and the single-instance al-

gorithm Winnow [Littlestone, 1987] is trained on the transformed dataset. Winnow

is similar to the Perceptron algorithm for learning single-layer neural networks, but

it updates its weights multiplicatively instead of additively. This causes a faster con-

vergence rate, in particular when many attributes are irrelevant (such as for GMIL).

The Winnow algorithm is used here because (according to Scott et al.) it is known

to be able to learn r-of-k type functions.

The task of enumerating all axis-parallel boxes is exponential in the number of

dimensions, which makes GMIL-1 very inefficient. GMIL-2 [Tao and Scott, 2004] is

an attempt to improve the computational and memory efficiency of the algorithm.

The algorithm is roughly the same as GMIL-1, but it selects groups of boxes in a

different way. First, GMIL-2 reduces the number of instances to consider by selecting

a subset of representative instances, Ψ. Then it constructs groups by considering

the boxes represented by the bounding box of each possible subset of Ψ. A breadth-

first search approach is used to attempt to efficiently find the sets of groups that

are geometrically valid, i.e. all instances within the bounding box of the group are

contained within the group.

Although GMIL-2 is far more efficient than GMIL-1, it still suffers from lim-

ited scalability [Tao et al., 2004a]. In a further attempt to improve the algorithm’s

computational complexity, Tao et al. presented a kernel-based reformulation of the

GMIL learning problem. The kernel, k∧, allows a support vector machine to be ap-

plied directly to the problem (see Section 3.2.3). As the computation of k∧ belongs

to the complexity class #P-complete and thus suffers from severe scalability issues

that quickly make the problem intractable as the problem size increases, the authors

presented a fully-polynomial randomized approximation scheme (FRAPS) for it.

A new kernel based on k∧, called kmin, was later created in [Tao et al., 2004b].

The kmin kernel extends the GMIL model to handle Weidmann’s count-based MI

concepts (described in Section 2.2.7). Tao et al. found that the kmin kernel algorithm

performed better than k∧ at CBIR tasks and identifying trx-fold proteins.

37

3.2 Upgraded Single-Instance Learners

A common approach to multiple-instance learning is to upgrade single instance

learners to handle the MI learning task. The supervised learning literature provides

many single-instance learning algorithms that are well-supported both theoretically

and empirically, and these algorithms can provide a solid foundation from which

to formulate MI algorithms. Often a single-instance learner can be upgraded to

handle a multi-instance task with only minor changes to the algorithm, so this saves

on design time as well. Upgraded supervised learning algorithms include k-nearest

neighbours, support vector machines, decision trees, logistic regression and boosting.

3.2.1 Nearest Neighbour Approaches

In single-instance supervised learning, the nearest neighbour algorithm makes clas-

sification predictions by labeling instances with the class label of the closest instance

in the training data (under some norm, such as the Euclidean distance). The algo-

rithm can be made more robust by taking into account not just the nearest instance,

but the k-nearest instances. Predictions are made via a majority vote of the k neigh-

bours’ class labels. The k-nearest neighbour method is here abbreviated as k-NN.

The most straightforward way to upgrade k-NN to MI learning is to define a norm

(distance measure) for MI bags. Then the k-NN algorithm can be applied directly.

For this MI norm, [Wang and Zucker, 2000] used the ranked Hausdorff Distance

(described earlier in Section 2.2.8). They found that the majority vote method used

by standard k-NN often produced sub-optimal results in the MI setting. To improve

on this, Wang and Zucker tried two variations on the multi-instance k-NN method.

The first proposed algorithm was Bayesian-KNN, which replaces the majority

vote of the k neighbours with a probabilistic method, where the most likely class

label is estimated via an application of Bayes’ theorem.

Citation-KNN is the other modified nearest neighbour approach proposed by

Wang and Zucker. The method is based on a theoretical framework from the field

of library and information science, which defines relevance between documents (es-

pecially research papers) as related to reference and citation relationships. Under

this view, if a research paper cites an earlier work (known as the reference), that

paper is said to be related to the earlier paper. Similarly, a paper that is cited by a

38

later publication (the citer) is considered to be related to the later work.

Wang and Zucker use the citation metaphor to describe nearest neighbour rela-

tionships. Under this scheme, the R-nearest neighbours of a bag are viewed as the

R-nearest references. To define the C-nearest citers, first consider the neighbour

ranking function Rank(b′, b). If b is the nth neighbour of b′, then Rank(b′, b) returns

n. The C-nearest citers of b are the C bags that return the lowest neighbour ranking

for b.

To classify an instance, Citation-KNN collects the R-nearest references and the

C-nearest citers, and returns a positive prediction if and only if there are strictly

more positive instances than negative instances in the combined reference/citer col-

lection. Ties are broken in favour of negative predictions because positive bags may

contain negative instances that may have erroneously affected the classification in

favour of a positive label, whereas the reverse is not possible under the standard MI

assumption.

3.2.2 Decision Trees and Decision Rules

[Chevaleyre and Zucker, 2001] presented upgraded MI versions of several standard

decision tree and decision rule learning algorithms. Decision tree learners formulate

the hypothesis space as a tree of decisions, that typically involve comparing an

attribute value with a specified constant. The tree is generally built in a top-down

recursive fashion.

When learning a decision tree, the challenge is to determine which attributes

to make a decision on, and where to place the split-point for that decision. Many

modern decision tree learning algorithms, such as ID3 [Quinlan, 1986] and C4.5

[Quinlan, 1993], use information gain to select the attributes and split-points. In-

formation is a measure from information theory which roughly represents the amount

of information (measured in bits) that would be required to determine whether an

instance is positive or negative, given that the instance reached that node in the tree.

The information gain between a parent node and its child is the information required

at the parent, minus the information required at the child [Witten and Frank, 2005].

Information gain is calculated using a concept called entropy. Chevaleyre and

Zucker formulated a version of entropy for MI data, and were thus able to upgrade

39

both ID3 and C4.5 into the multi-instance framework with very little extra modifi-

cation.

They also used a similar strategy for upgrading decision rule learners. The de-

cision rule representation is an alternative to the decision tree, where an arbitrary

set of logical rules determines the classification of an instance. Many decision rule

algorithms learn rule sets via a covering approach, where rules are added incremen-

tally, with each new rule covering some instances that have not yet been covered

by the previously added rules. By defining a notion of coverage for multi-instance

data, Chevaleyre and Zucker were able to upgrade the covering decision rule learning

algorithms AQ, CN2 and CHARADE.

3.2.3 Support Vector Machine Approaches

Support vector machine (SVM) algorithms [Cortes and Vapnik, 1995] are a popular

approach for single-instance learning. These algorithms attempt to learn a sepa-

rating hyperplane that divides instance space into positive and negative regions. A

hyperplane is a generalization of the notion of a line in Euclidean plane geometry,

and a plane in 3-dimensional geometry. A line in Euclidean plane geometry divides

the plane into two regions, one on either side of the line. A plane has a similar

function in 3-dimensional space. Intuitively, a hyperplane has the same function

in an arbitrarily-dimensioned space. The hyperplane learned by a support vector

machine provides a decision boundary for classification.

SVM algorithms attempt to learn a maximum margin hyperplane, where the hy-

perplane separates the training instances but is as far away from both the positive

and negative training instances as possible. When applied directly to instance-

space, the hyperplane learnt by an SVM algorithm is a linear decision boundary.

However, this model is not sophisticated enough for some problem domains. For

instance, a linear decision boundary cannot represent the exclusive-or (XOR) func-

tion from propositional logic. Fortunately, more complex decision boundaries can

be represented by hyperplanes in higher-dimensional spaces, where features are de-

rived from combinations of the attributes in the original feature space. Instances

are mapped into the higher-dimensional spaces, and the decision boundary in the

higher-dimensional space is used for classification.

40

A further advance was the development of kernel functions for support vector

machines. Kernel functions obviate the need to actually perform the mapping into

the higher dimensional space (and subsequently more expensive computations in

that space) by simulating the inner product of vectors in that space. It turns out that

the inner product is the only operation required to build the separating hyperplane,

so by computing the kernel function in the original feature space, the hyperplane

for the higher-dimensional space can be computed without actually performing the

mapping.

To apply the SVM approach to multi-instance learning, [Gärtner et al., 2002]

formulated two kernel functions for MI data: the MI Kernel, which is based on the

set kernel [Haussler, 1999] and the Minimax Kernel, which involves mapping bags

into a space consisting of minimum and maximum values for each feature.

Later, [Andrews et al., 2002] developed the mi-SVM, which is a reformulation

of the support vector machine problem for multi-instance data. The algorithm

is designed to learn under the standard MI assumption. The mi-SVM builds a

hyperplane over instance space which attempts to include at least one instance from

each positive bag in the positive halfspace, and place all instances from negative

bags in the negative halfspace, while still maintaining a maximum margin under

these constraints.

[Andrews et al., 2002] also formulated the MI-SVM (note the difference in capi-

talization), which defines a bag-level margin. The algorithm maximizes the margin

between the bags of instances and the hyperplane. Andrews et al. believe that

the MI problem requires the more fundamental revision of support vector machines

that their formulations provide, as opposed to Gärtner et al.’s approach which only

modifies the kernel while leaving the SVM formulation otherwise unchanged.

For multi-instance multi-label data (described in Section 2.2.11),

[Zhou and Zhang, 2006] use a bag-level constructive clustering approach to

convert the dataset into a single-instance multi-label format, and apply the multi-

label support vector machine algorithm (MLSVM) to the transformed dataset.

This algorithm is called MIMLSVM.

Other approaches using support vector machines for multi-instance learning in-

clude DD-SVM [Chen and Wang, 2004] and MILES [Chen et al., 2006]. Both of

these algorithms convert MI problems into single-instance problems by mapping

41

bags into single-instance feature spaces, and then apply support vector machine

algorithms to the transformed dataset. Although the authors of these algorithms

define them in terms of the support vector machine base learners, the choice of

base learner is not crucial and in fact any other single-instance learning algorithm

could be used instead. For this reason, we classify DD-SVM and MILES as wrapper

algorithms, and discuss them in more detail in Section 3.3.

3.2.4 Logistic Regression and Boosting

[Xu and Frank, 2004] presented multi-instance upgrades for the logistic regression

and boosting algorithms, based on the collective assumption (described in Section

2.2.10), where each instance contributes equally and independently to the class label

of its bag.

Logistic regression is a statistical method often employed for single-instance

learning, where a linear model is built on a transformed version of the target variable.

The transformation used is the logit transformation, which converts a probability

into the logarithm of the odds of that probability.

In the single-instance case, the algorithm computes the instance-level class prob-

abilities, which are not so easy to determine in multiple instance learning due to class

labels only being provided at the bag level. However, the bag-level class probability

function is easily computed under the collective assumption, and the instance-level

probability function can be estimated from this by maximizing the binomial log-

likelihood.

Xu and Frank used two variants of the collective assumption: in one version,

the class label of a bag is determined by the geometric mean, and in the the other

version the class label is determined by the arithmetic mean. In the case of the

geometric mean, the algorithm effectively just converts the problem into a single-

instance logistic regression problem, where each bag is represented by the mean of

the instances in the bag. Unfortunately, this simplification does not apply when the

arithmetic mean is used.

Boosting [Freund and Schapire, 1996] is a meta-learning algorithm that was de-

veloped based on work from computational learning theory. However, later analysis

from a statistical perspective [Friedman et al., 1998] explained the algorithm as ad-

42

ditive logistic regression. Effectively, the algorithm estimates the log-odds function

(as in logistic regression) based on an additive model. Given the relationship be-

tween the algorithms, Xu and Frank were able to upgrade the Adaboost.MI boosting

algorithm using roughly the same method as for logistic regression.

[Zhou and Zhang, 2006] later formulated a method called MIMLBoost, which

applies Xu and Frank’s MI boosting method to multi-instance multi-label problems.

MIMLBoost transforms the data into multi-instance multiclass data (where multiple

class categories are allowed, but the categories are mutually exclusive) and directly

applies Xu and Frank’s method to the transformed dataset.

Note that these upgraded boosting algorithms can also be considered to be wrap-

per algorithms, as any single-instance learning algorithm capable of handling in-

stance weights can be used as the base learner.

Another method for applying boosting algorithms to MI learning was investi-

gated by [Auer and Ortner, 2004]. They presented a weak multi-instance algorithm

to be used as a base learner for the standard Adaboost algorithm. Unlike Frank

and Xu’s approach, which uses single-instance base learners for the boosting algo-

rithm, Auer and Ortner’s method uses a multi-instance base classifier. The boosting

algorithm is otherwise unchanged.

Auer and Ortner’s weak MI learner finds a ball (i.e. hypersphere) that is designed

to separate the positive bags from the negative bags. If any instance of a bag is

within the ball, the bag is labeled as positive, otherwise it is labeled as negative. The

method is designed to find the optimal ball with respect to classification accuracy

on the training data. If the infinity norm ‖.‖∞ is used for the distance measure, the

balls become hypercubes. Auer and Ortner presented a variation of the algorithm

using the infinity norm, which grows some dimensions of the hypercube into a larger

hyper-rectangle. As before, the optimal hyper-rectangle is computed with respect

to classification accuracy on the training data.

43

3.3 MI learning using Wrappers for Single-

Instance Algorithms

Another approach to MI learning is to build general algorithms which are capable

of applying any arbitrary single-instance learner to MI data. We call these methods

“wrapper” algorithms, as they wrap around a given single-instance learning algo-

rithm to create a new MI algorithm. Unlike the methods discussed in the previous

section, the single-instance learner is not modified in any way. Instead, some pro-

cess (known as a propositionalization method) is used to create a version of the

data to which the supervised learning algorithm can be applied. The output of the

single-instance algorithm is used in some way to generate bag-level predictions.

Multi-instance wrapper algorithms can be applied to both instance-based and

metadata-based MI concepts (see Section 2.2.6). For instance-based MI concepts,

the assumption is that instances are labeled via some process, and these labels

determine the bag-level class labels. Wrapper algorithms that learn instance-based

concepts typically apply single-instance learning directly to the instances inside the

training bags. At prediction time, bag-level labels are assigned based on whatever

MI assumption is used, such as the standard MI assumption.

In contrast, bag-level class labels for metadata-based MI concepts are assumed

to be determined by a process in some single-instance feature space consisting of

metadata extracted from the bags. Wrapper algorithms that learn this type of

concept typically map each bag into the metadata-based feature space via some

transformation, and then learn a single-instance model on the transformed feature

space. Each instance in the metadata-based feature space corresponds to a bag.

The single-instance base learner can then directly provide bag-level class labels.

The new research presented in this thesis is mainly concerned with wrapper

approaches to MI learning. Therefore, existing wrapper approaches are discussed

here in greater algorithmic detail than the other types of MI algorithms.

3.3.1 Using Summary Statistics for Propositionalization

Multi-instance learning problems can be easily converted into single-instance prob-

lems by replacing each bag with a feature vector consisting of summary statis-

44

tics derived from the instances in that bag. This method originates from a

similar approach to propositionalization for relational data known as RELAGGS

[Krogel and Wrobel, 2002]. We will follow [Dong, 2006], and refer to the sum-

mary statistics approach as Simple MI. An implementation of the version of the

approach described by Dong resides in the WEKA data mining software suite

[Witten and Frank, 2005].

Simple MI is, as the name suggests, a very simple method for applying single-

instance learners to MI problems. This algorithm learns simple metadata-type con-

cepts. First, each bag is mapped into a single-instance feature space consisting

of summary statistics for that bag. A propositional learner is then applied to the

instances in the transformed feature space. At classification time, new bags are

mapped into the metadata feature space, and predictions are made by merely out-

putting the prediction of the single-instance learner for the transformed version of

the bag.

Dong described three versions of Simple MI, each of which differs only in the

type of summary statistics used for the single-instance feature space. The first two

methods merely average the values of the instances in a bag for each dimension, using

either the arithmetic and the geometric mean. Formally, the two methods can be

defined as follows: if b is a bag with instances from feature space χ = (x1, x2, . . . , xn),

then b is mapped to (x̄1, x̄2, . . . , x̄n), where x̄ is the arithmetic (or geometric) mean

of the instances in the bag.

The third option is called the “minimax” method. Here, the min-

imum and maximum values of each variable are recorded for each

bag. This method is equivalent to Gärtner et al.’s minimax kernel

[Gärtner et al., 2002]. Using the same notation as before, each bag b is mapped

to (min x1, min x2, . . . , min xn, max x1, max x2, . . . , max xn). The new feature space

contains 2n dimensions.

The main advantage of Simple MI is that it is extremely fast. The computation

of the feature-space transformations are almost trivial, and the single-instance base

learner only has to learn from as many instances as there were bags in the training

set, regardless of how many instances were contained inside the bags. Of course,

this simple model is not able to represent some types of problems. However, Dong

found that Simple MI (with appropriate base learners) performs surprisingly well

45

on many datasets, even outperforming all of the special-purpose MI algorithms that

were investigated in some cases.

3.3.2 MIWrapper

MIWrapper [Frank and Xu, 2003] is another simple wrapper approach that is very

competitive with other MI algorithms on many benchmark datasets, including the

musk problem. The algorithm uses the collective assumption [Xu, 2003], where each

instance in a bag contributes equally and independently to the label of the bag.

The first step for MIWrapper is to collect all of the instances from all of the bags,

and label each of them with the label of the bag that they came from. This effectively

creates a propositional (i.e. single-instance) dataset. The algorithm then weights all

of the instances so that each bag has equal total weight. A single-instance learner

is applied to this propositional dataset. At classification time, the single-instance

learner predicts class probabilities for all of the instances in the bag. The output

is merely the average (arithmetic or geometric) of the predicted instance-level class

probabilities.

The weighting method used by MIWrapper is designed to treat all examples

in the training data equally. Therefore, each bag is given the same total weight,

regardless of the number of instances in the bag. The simplest way to implement

this would be to set all instances from each bag i (containing ni instances) to be 1
ni

.

However, this can create large numbers of instances with very small instance weights,

which some algorithms (such as the C4.5 decision tree learner) do not handle very

well. Frank and Xu solve this problem by multiplying the weights of each of the

instances by a constant factor, so that the total weight of all the instances is equal to

the number of instances in all of the training bags. The resulting weight assignment

for instance j from the ith bag is:

wij =
m

N
× 1

ni

, (3.1)

where m is the total number of instances, and N is the number of bags.

Using the arithmetic mean at prediction time, the output is exactly the “sample”

version of the collective assumption formula:

46

Pr(c|b) =
1

nb

nb
∑

i=1

Pr(c|xi) ,

where c is a class value, b is a bag, nb is the number of instances in bag b, and

xi is an instance in bag b.

The simple heuristic for finding the instance-level labels is unlikely to be correct

in practice, and therefore is likely to introduce bias. However, Frank and Xu em-

pirically showed that regardless of this, MIWrapper is often able to make accurate

predictions, as it manages to find a good decision boundary. Other methods for

estimating instance-level class labels would be a possible avenue for future research.

3.3.3 Mi-NB

The mi-NB algorithm [Murray et al., 2005] was designed for the hard-drive failure

prediction problem (see Section 2.2.2), where an extremely low false-positive rate

is required. Hard drives that are predicted as positive (i.e. failed or about to fail)

generally must be replaced by the manufacturer under warranty conditions, so a

large number of false positives would be very expensive. Therefore, the algorithm is

designed to maintain a very low false-positive rate. The acronym “mi-NB” stands

for multiple-instance naive Bayes. However, any other single instance learner that

outputs class probabilities could be used as the base learner for the algorithm.

Murray et al. defined the initial state of the algorithm in terms of the hard-drive

failure prediction problem. In their representation, hard-drives are represented by

bags of drive status information feature vectors (SMART records) from time-series

data recorded automatically by the hard-drives. They set the class labels of the

most recent instances from failed drives (i.e. the status of the drives immediately

before they failed) to be positive, and all other instances to be negative. Thus, very

few instances will be positive, resulting in a low initial false-alarm rate. For other

problem domains, some other heuristic would be required to initialize class values.

After the initial instance-level class values are set, an iterative procedure is ap-

plied. First, a naive Bayes model is built on all of the instances. The instances are

then relabeled according to the predictions of this model. However, after relabeling,

for each positive training bag that is misclassified (according to the standard MI

assumption that a bag is positive if and only if it contains a positive instance), the

47

instance with the highest probability estimate for the positive class is relabeled as

positive. The procedure is repeated until some stopping criterion is met, such as

the false-positive rate exceeding a maximum value, or a certain number of iterations

having been performed.

At classification time, all instances in a test bag are labeled by the naive Bayesian

classifier. The bag-level classification is made using the standard MI assumption:

bags are labeled as positive if and only if they contain a positive instance.

The naive Bayesian classifier used by mi-NB is an extremely simple statistical

model. Naive Bayes often provides surprisingly high classification performance,

despite the fact that a key assumption for the model (namely that the features

are conditionally independent of each other given the class) is very rarely true in

practice.

It should be noted that mi-NB could actually use a different classifier instead

of naive Bayes for the base learner, and thus we classify it as a wrapper approach.

However, because the base learner must be rebuilt after every iteration, the authors

recommend that naive Bayes be used for computational efficiency reasons, at least

for the hard-drive problem. Unlike most classifiers, naive Bayes can be efficiently

updated when some instance class labels have been modified. Other base learners

would need to be recomputed from scratch.

It appears that Murray et al. were concerned that the algorithm be very efficient

as it may have to run on a hard-drive’s very modest built-in processor. However,

we believe that training time should not be an issue, because the algorithm need

not be trained online on the hard-drive. Only the classification step need be per-

formed on the hard-drive itself, and then for only a single bag (itself). Therefore,

algorithms that are slow at training time but very efficient at classification time,

such as support vector machines, could be used instead for the hard-drive problem.

It is well known that naive Bayes produces poor class probability estimates when

the conditional independence assumption does not hold, so the use of other base

learners would be a promising area for research. Recent work on model compres-

sion [Buciluǎ et al., 2006], where a machine learning model is simplified for use on

devices with limited processing power or resources, could also be applied in this

situation. See Algorithm 1 for a pseudocode representation of mi-NB, reinterpreted

as a general-purpose multi-instance wrapper algorithm.

48

Algorithm 1 mi-NB

D = the set of training bags
C = all instances in the bags in D
L = a single-instance base learner
FAdesired = the desired false-alarm rate

train(D)
Initialize class labels for C in some domain-specific way that provides a very low
false-alarm rate
L.train(C)
for all Ci ∈ C do

Ci.setClassV alue(L.classify(Ci)) //Classify instance Ci using L
FA = bag-level false alarm rate on training data
while FA < FAdesired do

// For all misclassified positive bags
for all Di.getClass() = 1, L.classify(Dij) = 0 ∀Dij ∈ Di do

j∗ = arg maxj L.probabilityOfPositiveClass(Dij)
Dij∗.setClassV alue(1) //Reclassify instance as positive

L.train(C)
for all Ci ∈ C do

Ci.setClassV alue(L.classify(Ci)) //Classify instance Ci using L
FA = bag-level false alarm rate on training data

classify(B), B = {xi : i = 1, · · · , |B|} a test bag
// Classifies B according to the standard MI assumption
for all xi ∈ B do

if L.classify(xi) = 1 then
return 1

return 0

49

3.3.4 Two-Level Classification

The Two-Level Classification (TLC) algorithm [Weidmann et al., 2003] is designed

to learn the type of MI concepts that are described in Weidmann’s concept hierarchy

(see Section 2.2.7 for details).

These MI concepts consist of a set of instance-level concepts that are related in

some way to the bag-level concepts. Following the tradition in the MI literature, the

bag-level learning problem is a binary classification problem. However, there may

be an arbitrary number instance-level concepts. It is assumed that bag-level class

labels are determined by the counts of each instance-level concept in a bag.

TLC learns in a two-step process. The first step learns instance-level concepts

using a decision tree. The tree is built on all of the instances in all of the bags in the

training data, with class labels set to the labels of the parent bags. Instances are

weighted in the same way as MIWrapper (using Equation 3.1), so that each bag to

has the same weight and the total of the weights sums to the number of instances.

Information gain is used for test selection. A simple prepruning heuristic is applied,

where nodes are not split further when the sum of the instance weights in that node

is less than two. No other pruning methods are applied.

Each node in the tree is considered to represent a concept. Then each bag is

converted into a single-instance representation, with an attribute for every node in

the tree (i.e. each concept), the value of which is set to the number of instances

that reach that node in the decision tree.

The second step learns bag-level concepts, based on the instance-level concepts

discovered in the first step. A single-instance learning algorithm is applied to the

transformed data. The same mapping is performed at classification time, and the

bag-level predictions are made by the single-instance learner.

A further (optional) refinement to the algorithm is to use attribute selection to

try to eliminate the attributes that do not contribute to the instance-level classifica-

tion problem learned by the decision tree. Weidmann et al. used the attribute selec-

tion procedure from [Kohavi and John, 1997], which evaluates a subset of features

using cross-validation. They used backward selection, starting with all attributes

and eliminating ones that worsen the performance of the algorithm. The evaluation

is performed at the bag-level using both levels of the TLC algorithm. Obviously,

50

this process is very computationally expensive.

Weidmann et al. found that the TLC method (using boosted decision stumps

as the base learner) was very competitive on the musk data, and also performed

extremely well on artificial datasets where generative models from Weidmann’s con-

cept hierarchy were used.

3.3.5 MILES

Multiple-Instance Learning via Embedded Instance Selection (MILES)

[Chen et al., 2006] is an approach to MI learning based on the diverse den-

sity framework. MILES embeds bags into a single-instance feature space, and

applies the 1-norm support vector machine algorithm to the transformed dataset.

However, other single-instance learning algorithms could be used in place of the

1-norm SVM, so we classify the algorithm as a wrapper approach.

Most earlier diverse density-based algorithms have used the standard MI as-

sumption and further assume the existence of a single target point. MILES relaxes

these assumptions. Instead, a symmetric assumption is used, where multiple target

points are allowed, which may be related to either positive or negative bags. Under

this assumption, and using the most-likely-cause estimator from the diverse density

framework, Chen et al. define a measure that estimates the probability that a point

is a target point given a bag, regardless of the bag’s class label:

Pr(x|Bi) ∝ s(x, Bi) = max
j

exp

(

− ‖xij − x‖2

σ2

)

, (3.2)

where xij are the instances in bag Bi, and σ is a predefined scaling factor. Note

that s(x, Bi) can be interpreted as a measure of similarity between a bag and an

instance, which is determined by the instance and the closest instance in the bag.

At this stage, the question remains as to how to find the target points. For the

sake of computational feasibility, MILES uses the assumption that the target points

can be approximated by instances in the training bags. In other words, each instance

is a candidate for a target point. The candidates are represented as features in an

instance based feature space Fc. Each bag in the training set is mapped into Fc via

the mapping

51

Algorithm 2 MILES

D = the set of training bags
C = all instances in the bags in D
L = a single-instance base learner
σ = the scaling factor, a parameter to the algorithm

MILES transform(B)

for (every instance xk in C) do
d = minj ‖xj − xk‖
the kth element of m(B) is s(xk, B) = e

−d2

σ2

return m(B)

train(D)
F = an empty set of instances
for (every bag Bi = {xij : j = 1, · · · , ni} in D) do

t = MILES transform(Bi)
t.setClassLabel(Bi.getClassLabel())
F = F ∪ {t}

L.train(F) // Can optionally perform feature selection here also

classify(B), B = {xj : j = 1, · · · , ni} a test bag
t = MILES transform(B)
return L.classify(t)

m(Bi) = [s(x1, Bi), s(x
2, Bi), · · · , s(xn, Bi)]

T , (3.3)

where xi ∈ C is an instance from the set C of all instances in all of the training

bags. If the class labels c ∈ Ω of the bags are appended, the space (Fc|Ω) is a single-

instance feature space to which standard supervised machine learning algorithms can

be applied. The output of this classifier can be used to provide bag-level class labels

for future data. The pseudocode of the MILES algorithm is provided in Algorithm

2.

Chen et al. used the 1-norm SVM algorithm as the base classifier, due to the high

dimensionality of the feature space. The 1-norm SVM is reasonably efficient com-

putationally at learning from high-dimensional datasets because it can be trained

using linear programming, and is known to generally set most feature weights to zero,

which effectively performs feature selection. This saves on performing an additional

feature-selection process, which may be computationally expensive.

52

1-Norm Support Vector Machines

Support vector machines (SVMs) were introduced earlier in the thesis, in Section

3.2.3. The reader should refer to that section for a brief introduction to support

vector machine algorithms. The 1-norm SVM (see, for example, [Zhu et al., 2003])

is a variant on the standard support vector machine that uses an alternative metric

for computing the ridge penalty. We will discuss here in more detail the 1-norm

SVM formulation used by Chen et al. for MILES.

Recall that support vector machines construct a hyperplane over the instance

space. The hyperplane is used as a decision boundary, which divides the space into

a positive and a negative halfspace. This can be represented mathematically as

y = sign(wTm + b) ,

where y ∈ Ω = {+,−} is the classification label output by the SVM, m is

an instance in the feature space Fc, and w and b are model parameters. Note that

wTm+b is a linear equation. This equation determines the location of the hyperplane

that separates the instance space. The sign function determines which side of the

hyperplane m is on, and labels the output accordingly.

Support vector machine algorithms are designed to find the maximum margin

hyperplane, which is placed at equal distance from both the positive and negative

sets of instances, thus attaining the largest margin between it and the training

points. This can be achieved by finding w∗ and b∗, the optimum values of w and b

with respect to minimizing the regularized training error:

λP [.] + εtraining ,

where P [.] is a regularizer, λ is the regularization parameter, and εtraining is

the training error. The training error is often defined as the total of the losses that

each instance m introduces via a hinge loss function:

ε = max{1 − y(wTm + b), 0} .

The regularizer is used to prevent overfitting by penalizing overly complex mod-

els. In standard SVM formulations, the regularizer is the squared 2-norm (Euclidean

53

norm) of the weight vector, ‖w‖. Under this formulation, the problem of finding

the maximum-margin classifier can be formulated as a quadratic programming (QP)

problem. This problem can be solved using standard QP optimization packages, or

special-purpose QP solving algorithms that are optimized for support vector ma-

chines, such as Sequential Minimal Optimization [Platt, 1998].

However, Chen et al. use the 1-norm SVM formulation for MILES. Here, the

regularizer is the 1-norm (Manhattan length) of the weight vector. The 1-norm

penalty causes more weights to be set to zero than the 2-norm, and thus the 1-norm

SVM is also known as the sparse SVM. The 1-norm penalty can be written as:

‖w‖1 =
∑

k

|wk| .

Using the 1-norm of w as the regularizer, the optimization problem becomes a

linear programming (LP) problem. LP problems involve optimizing a linear equation

under a set of linear constraints. They can generally be solved more quickly than

quadratic programming problems.

There is an additional minor restriction on LP problems in that all of their

variables must be greater than zero. However this condition is easily met by replacing

any potentially negative variables with a pair of variables, where one is subtracted

from the other. In the case of the 1-norm SVM, the weight vector w may contain

negative values, and so is replaced by w = u − v, where uk, vk ≥ 0. Let ε and

η be the hinge losses for the l+ positive instances and the l− negative instances,

respectively, and let µ be a parameter that can be used to bias towards the minor

class if the data is skewed. Recall that λ is the regularization parameter, which is

an input parameter to the model. Then the 1-norm SVM can be formulated as the

following linear program:

54

min
u,v,b,ε,η

λ

n
∑

k=1

(uk + vk) + µ

l+
∑

i=1

εi + (1 − µ)

l−
∑

j=1

ηj

s.t. [(u − v)T m+
i + b] + εi ≥ 1, i = 1, · · · , l+,

− [(u − v)T m−
j + b] + ηj ≥ 1, j = 1, · · · , l−,

uk, vk ≥ 0, k = 1, · · · , n,

εi, ηj ≥ 0, i = 1, · · · , l+, j = 1, · · · , l− .

Interpretation of MILES as Learning Instance Weights

Chen et al. describe MILES from a feature selection point of view. However, when

features correspond to instances, feature selection is effectively the same as instance

selection. In this section, we show how MILES can be interpreted as learning in-

stance weights, and thus is closely related to the new models and algorithms pre-

sented in this thesis.

MILES builds a 1-norm SVM over the instance-based feature space (Fc|Ω). The

1-norm SVM learns the weight vector w∗, which assigns a weight value to each

feature, the absolute value of which determines the level of influence that the feature

has on the classification label.

In Fc, each feature represents an instance from a training bag. Since each feature

is given a weight by the 1-norm SVM, each instance in the training data is effectively

given a weight. From this point of view, it is easy to see that MILES ascribes weights

to each instance in the training data.

Although MILES finds weights for the training instances, and uses this to de-

termine the level of influence of different parts of instance space, it does not create

a well-defined weight function over instance space. The similarity function s(x, B)

between a training instance and a bag is influenced only by the instance in B that is

the closest to the training instance x. If an instance in B is never the closest instance

in the bag to a training instance, it will have no effect on the bag’s classification

label.

In order to better understand what is going on here, let us temporarily circumvent

the problem by considering a bag B that contains only a single instance, x ∈ χ.

55

Consider an instance xk from the training data. The instance xk influences the

weight of x via a radial influence function (w∗[k])e
−d2

σ2 , where w∗[k] is the weight

assigned to xk by the SVM, d is the distance from xk to x and σ is a predetermined

scaling constant. The classification y of the bag B is determined by the SVM’s

linear classification function:

y = sign(w∗T .m(x) + b∗)

= sign((
∑

k

w∗[k].e
−‖xk−x‖2

σ2) + b∗)

= sign(wf(x) + b∗), wf(x) = (
∑

k

w∗[k].e
−‖xk−x‖2

σ2) .

Here, wf(x) is the influence that the instance x has on the class label of the bag,

which is otherwise determined by the constant b∗. In this sense, it is an instance

weight. Because w∗, b∗, e, σ and the training instances xk ∈ C = {xk : k = 1, · · · , n}
are all constants, wf is clearly a function over the instance space.

However, when extra instances are added to the bag, the contribution of each

instance to the class label is no longer dependent only on the feature values of that

instance. Recall that the computation of m(B) (using Equation 3.3) involves the

similarity function s(xk, B). The similarity function (Equation 3.2) includes a maxj

term over all of the instances in the bag, which produces a value related only to the

instance in B that is closest to the candidate target point xk.

Because of this maximization step, the contribution that an instance has towards

a bag’s class label depends on the other instances in the bag as well. An instance

that is not the closest in the bag to xk will not contribute at all to the value for

feature k. In this case, wf is not a function over χ, as it depends on B as well. Thus

it can be seen that for MILES, the level of influence an instance has on the bag’s

class label depends not only on the weights learned at training time, but also on the

other instances in the bag.

MILES learns instance weights for training instances, and correspondingly learns

a radial influence function for each training point. In this sense, it can be said to

learn instance weights. But even though each instance has its own influence function

over instance space, these functions are combined in a bag-dependent way, resulting

56

in a bag-dependent weight function wf(x) : χ × B → R from the Cartesian product

of instance space χ and bag space B to the real numbers.

In contrast, in this thesis we formulate a type of MI concept where the weight of a

point is determined only by the attribute values of that point, and is not dependent

on the rest of the bag. In other words, wf(x) : χ → R is a function over instance

space. Chapter 5 introduces a new algorithm based on MILES that learns such a

weight function.

3.3.6 DD-SVM

The diverse density support vector machine (DD-SVM) algorithm

[Chen and Wang, 2004] is a predecessor to MILES that was designed by the

same authors. Chen et al. (2006)’s experimental results show that MILES is

much more efficient than DD-SVM in terms of computational complexity, while

maintaining similar or better classification accuracy and increased robustness to

label noise.

Despite a very high degree of similarity between the approaches, the connection

between DD-SVM and MILES is not mentioned in [Chen et al., 2006]. Here, we fill

this gap in the literature by describing the similarities between MILES and DD-

SVM, and detailing the points of difference.

Like MILES, DD-SVM performs a feature space mapping, where the distance

from a target point to the closest instance in a bag is represented as an attribute

in a single-instance feature space. Each bag is mapped into this feature space,

effectively converting the problem into a single-instance one. A standard support

vector machine is then applied (as opposed to the 1-norm SVM used by MILES).

However, any single-instance learning algorithm could have been applied instead of

the SVM, so we view the algorithm as a wrapper approach.

The key difference to MILES is the selection of instance prototypes for use as

attributes in the feature space mapping. MILES uses every instance in the training

bag as an instance prototype. However, in DD-SVM, instance prototypes are local

maxima in the diverse density function. Similarly to the maxDD algorithm, each

positive instance is used as a starting point for an optimization procedure (in this

case a quasi-Newtonian search) that finds a local maximum, which is selected as a

57

candidate instance prototype. As DD-SVM is designed to disregard the standard

MI assumption, an optional extra step is to reverse the class labels and repeat this

process. The candidate instance prototypes are filtered for distinctness, and those

with diverse density below a given threshold are discarded.

Another small difference is the similarity function between bags and instance

prototypes. In DD-SVM, the similarity function is minj=1,...,Ni
‖xij −x‖w, where xij

are the instances in the bag, x is the instance prototype and w is a weight vector

determining the importance of each feature. Here, the absolute value of the distance

is used directly in the computation, whereas a Gaussian function is used in MILES.

Chen and Wang use a standard 2-norm SVM for DD-SVM’s single-instance base

learner, as opposed to the 1-norm SVM used in MILES. Because the instance pro-

totypes are filtered for distinctness and size of diverse density, the feature space is

generally smaller than the feature space for MILES. For this reason, the sparseness

property of the 1-norm was presumably not considered necessary.

The main computational advantage that MILES has over DD-SVM is the avoid-

ance of the expensive optimization procedure over the diverse density function, which

must be performed for every single instance in DD-SVM. Chen et al’s experiments

with MILES show that this optimization step is unnecessary.

This is a very interesting result. If candidate target concepts can be represented

directly by the instances in the training bags instead of diverse density maxima

without loss of classification performance, this modification could prove to be ex-

tremely effective for the maxDD algorithm also. By restricting the search for diverse

density maxima to instances from positive bags, the expensive gradient ascent op-

timization procedure could be avoided. Given MILES’ good performance without

the optimization step, we conjecture that the maxDD algorithm will work well using

this heuristic, despite the vastly reduced computational complexity. We intend to

investigate this in the future.

As well as the computational improvement with respect to DD-SVM, Chen et

al. additionally showed empirically that MILES is more robust with respect to label

noise than the earlier method. Because of these superiorities enjoyed by MILES

compared to DD-SVM, we will not consider DD-SVM any further.

58

Chapter 4

MILES as a Meta-Classifier

This chapter presents an empirical study of the performance of the MILES algorithm

using a variety of single-instance base learners on a diverse set of real-world datasets.

For comparison, we also provide experimental results for other MI algorithms. The

goal of the study is to compare the relative performance of different base learners

for MILES, and to compare MILES to existing MI algorithms.

Although Chen et al. (2006) provide some empirical results of the algorithm on

the musk datasets and for an image categorization problem, these results all use the

1-norm SVM as the base learner. In fact, Chen et al. actually include the 1-norm

SVM as part of the definition of MILES, although they do mention briefly that other

base learners are possible.

In this chapter we view the algorithm as a meta-classifier that can wrap around

an arbitrary single-instance learner. When other base learners are used instead of

the 1-norm SVM, instance weights may not be learned explicitly. However, due to

the instance-based feature space representation used by MILES, alternative base

learners will still implicitly determine which areas of instance space are important,

as they must infer some connection between attributes (which correspond to points

in instance space) and class labels. Hence, these learners should be able to solve

similar types of learning problems, and thus are of interest for this thesis.

4.1 Experiment Design

An extensive set of experiments was performed on a number of multi-instance

datasets, using a wide range of MI algorithms and single-instance base learners. The

experiments were performed using the WEKA workbench [Witten and Frank, 2005].

Each algorithm was evaluated on each dataset via repeated 10-fold cross-

validation (CV). n-fold cross-validation is a standard statistical evaluation technique

59

where the dataset is divided into n subsets of equal size, called folds. The algorithm

is repeatedly trained on the instances in n − 1 of the folds, with the remaining fold

used as the test set. The results are averaged over the n executions. We performed

ten repeats of the 10-fold CV, and averaged the results over all of the repeats.

Performance was measured using classification accuracy. We tested for

significant differences between algorithms using the corrected resampled t-test

[Nadeau and Bengio, 2003] with significance level α = 0.05.

4.1.1 Algorithms

The implementations provided in WEKA were used for all of the MI algorithms and

single-instance base learners, with the exception of MILES and the 1-norm SVM

which were implemented specifically for the experiment1. The default parameters

in WEKA were used for each algorithm unless otherwise specified. A list of the

algorithms follows, with very brief descriptions provided.

• MISMO Support vector machine algorithm using the MI polynomial ker-

nel [Gärtner et al., 2002], trained with the Sequential Minimal Optimization

[Platt, 1998] method (see also Section 3.2.3).

• mi-SVM The Maximum Pattern Margin support vector machine formulation

[Andrews et al., 2002] (see also Section 3.2.3).

• Citation KNN Citation K-Nearest Neighbours [Wang and Zucker, 2000], using

one citer and one reference, and the rank-1 Hausdorff Distance (see also Section

3.2.1).

• EMDD The Expectation-Maximization Diverse Density

[Zhang and Goldman, 2002] algorithm (see also Section 3.1.2).

• Adaboost + Opt. Ball Ten iterations of Adaboost.M1

[Freund and Schapire, 1996] with the Optimal Ball [Auer and Ortner, 2004]

weak MI base learner (see also Section 3.2.4).

1The implementations of MILES and the 1-norm SVM will be included in future versions of
WEKA.

60

• MIBoost Adaboost.M1 upgraded for MI learning [Xu and Frank, 2004]. A

simple information-gain based decision tree learner implemented as REPTree

in WEKA was used as the base learner. Automatic pruning was turned off,

and trees were instead restricted to a depth of 3 levels. Ten boosting iterations

performed (see also Section 3.2.4).

• MILR Logistic regression upgraded for MI learning [Xu and Frank, 2004], us-

ing the standard MI assumption based on the noisy-or model [Maron, 1998]

(see also Section 3.2.4).

• MIWrapper The MIWrapper algorithm [Frank and Xu, 2003] using the arith-

metic average of the instance-level class probabilities for estimating bag-level

class probabilities (see also Section 3.3.2).

• SimpleMI Propositionalization [Dong, 2006] by replacing each bag with the

arithmetic average of its instances (see also Section 3.3.1).

• MILES Multiple-Instance Learning via Embedded Instance Selection

[Chen et al., 2006], with σ2 = 8 × 105 as used by Chen et al. for the musk2

dataset (see also Section 3.3.5).

The following single-instance base learners were used for MIWrapper, SimpleMI

and MILES:

• C4.5 The standard C4.5 [Quinlan, 1993] decision tree induction algorithm.

• RandomForest The Random Forest [Breiman, 2001] ensemble decision tree

algorithm, with 100 trees.

• Adaboost + C4.5 The Adaboost M1 ensemble method with C4.5 as the base

learner, ten iterations.

• Adaboost + D. Stump The Adaboost M1 ensemble method with a decision

stump (1-level decision tree) as the base learner, 100 iterations.

• Bagging + C4.5 The Bagging [Breiman, 1996] ensemble method with an un-

pruned C4.5 decision tree as the base learner, 10 iterations.

61

• SMO (LIN) Support vector machine trained via sequential minimal optimiza-

tion [Platt, 1998], using a linear kernel. Logistic models were fitted to the

outputs to achieve better probability estimates.

• SMO (RBF) Support vector machine trained via sequential minimal optimiza-

tion [Platt, 1998], using a radial basis function kernel. Logistic models were

fitted to the outputs to achieve better probability estimates.

• 1-Norm SVM The 1-norm support vector machine as formulated by

[Chen et al., 2006], with λ = 10−4, µ = 0.5. The selection of the λ value is

explained in Section 4.2.1. The linear programming optimization was solved

by the LPSolve2 software package.

• Logistic Multinomial logistic regression, using a ridge estimator

[le Cessie and van Houwelingen, 1992].

4.1.2 Datasets

The datasets used in this experiment correspond to a large subset of the application

domain problems described in Section 2.2.2. The reader is referred to that section for

more detail on the problem domains and the multi-instance representations used.

The datasets are described very briefly here, with the names of the datasets (as

labeled in the results tables) italicized for convenience.

Drug Activity Prediction

The musk1 and musk2 datasets are the MUSK data used in [Dietterich et al., 1997].

Each bag represents a molecule, and the task is to predict whether the molecule emits

a musky odour.

Inductive Logic Programming

Eastwest is the train direction prediction problem from the East West Challenge

ILP contest [Michie et al., 1994]. Each bag represents a train, and the task is to

predict whether the train is Eastbound or Westbound. Westeast is exactly the same

problem as eastwest, except that the class labels are reversed. This is an interesting

2Publicly available for download from http://sourceforge.net/projects/lpsolve

62

variation because eastwest is compatible with the standard MI assumption, while

westeast is not [Dong, 2006].

The mutagenicity prediction problem [Srinivasan et al., 1994] was also used in

the experiments. Three representations proposed by [Reutemann, 2004] for trans-

forming the mutagenesis ILP problem into a multi-instance problem were used.

These representations were briefly described earlier in Section 2.2.2. The datasets

are labeled mutagenesis-atoms, mutagenesis-bonds and mutagenesis-chains.

The suramin dataset [Braddock et al., 1994] is another ILP-based drug activity

prediction problem, where the task is to detect suramin analogues that can act as

anti-cancer agents.

Identifying Thioredoxin-fold Proteins

The thioredoxin dataset is the thioredoxin-fold protein identification task proposed

by [Wang et al., 2004]. In this problem, the aim is to identify proteins belonging to

the thioredoxin-fold protein superfamily.

Content-based Image Retrieval

Two sets of image data for CBIR tasks were used, each containing three different

target image categories. These image databases provided six different image retrieval

problems — one for each image category.

The first image database was originally provided by [Andrews et al., 2002], and

contains MI bags representing photographs of elephants, foxes and tigers. The im-

ages were originally from the Corel dataset (published by COREL corporation), and

were preprocessed and segmented using the Blobworld system [Carson et al., 1999].

Features from the segments were extracted, representing colour, texture and shape

information. A problem dataset was created for each target animal, containing bags

representing 100 images of the target animal and 100 randomly selected images of

other animals.

The second CBIR dataset was the GRAZ02 [Opelt et al., 2006] dataset, contain-

ing images of bikes, cars and people. The target objects in this dataset are not always

prominent in the image, may be occluded, and vary in scale. Furthermore, the im-

ages were carefully selected with respect to background, so that similar backgrounds

63

occur for all image categories. A dataset was created for each image category, con-

taining target images and a similar number of counter-class images that contained

no bikes, cars or people.

[Mayo, 2007] extracted 72 features derived from the Ohta colour space represen-

tation of the images. The features included the mean, median, mode, minimum,

maximum, standard deviation, skewness and kurtosis values of each of the three

components of the Ohta colour space representation, and a normalized histogram

of the frequency of pixels within 16 intensity ranges for each of the Ohta space

components. Although Mayo only describes a single-instance representation in the

2007 publication, he also created a multiple-instance representation of this dataset

by segmenting the images into equal-sized blocks, and applying the above feature

extraction process to each block. This is the data used for the experiments here.

4.2 Experimental Results and Analysis

This section presents the results of the experiments, and discusses their implications.

The initial parameter tuning for MILES with the 1-norm SVM is described. A

comparison of base learners for MILES is provided, and finally MILES is compared

with the other wrapper algorithms, purpose-built MI algorithms and upgraded MI

versions of single-instance algorithms.

4.2.1 Parameter Tuning for the 1-Norm SVM

Given the number of algorithms and datasets investigated, detailed parameter tuning

for all of the MI algorithms and base classifiers was infeasible. With the exception

of the 1-norm SVM, the classification schemes used in the experiment had fairly

robust parameter values already provided by the default settings in their WEKA

implementations. However, because the 1-norm SVM was implemented specifically

for these experiments, a reasonable value for the regularization parameter λ was not

known in advance.

Initially the value provided by [Chen et al., 2006] for the musk2 dataset was used

(λ = 0.45), with musk2 being the larger of the two musk datasets. Unfortunately,

MILES with the 1-norm SVM algorithm using this λ value produced poor results

64

on many datasets — in particular, the image classification datasets and the ILP

eastwest / westeast problems. On these datasets, all of the attribute weights for

the linear model learned by the SVM were set to zero. The result was typically a

classifier that was only able to achieve 50 % accuracy according to the 10 × 10-fold

cross-validation results, i.e. no better than chance.

In contrast to these observed results, [Chen et al., 2006] state that MILES is

relatively stable with respect to the σ and λ parameters. However, they did not

evaluate MILES on such a wide variety of datasets, which may be the reason for this

discrepancy. Note also that in our implementation the freely available open-source

LPSolve linear programming software package was used to solve the LP problem

for the 1-norm SVM, while Chen et al. used the commercial package CPLEX 9.0.

It is possible that a commercial LP solver such as CPLEX would not suffer from

this particular issue, as the commercial software may have superior numeric stability

over the open-source solution.

In any case, a new λ value was required. Because the experiments were performed

using the cross-validation evaluation method, there were no separate training or

validation datasets available to use for parameter tuning. Instead, parameter tuning

for λ was performed on the elephant dataset. Six candidate values of λ were each

tested via a single ten-fold cross-validation, with the first value being λ0 = 0.1, using

the step procedure λi+1 = λi/10. It was found that λ = 10−4 and λ = 10−5 gave the

minimum ten-fold cross-validation error rate on this dataset. The value λ = 10−4

was selected because it corresponds to heavier regularization, and a smaller number

of non-zero coefficients. The results of the parameter tuning experiment are shown

in Figure 4.1. A comparison between the results for the original value of λ and the

tuned value is provided in Table 4.1.

It should be noted that the results reported for the elephant dataset may be

slightly optimistic, given that the test data for this dataset was used for parameter

tuning. However, given that only a small number of values were tried, the bias

should be fairly small. Another problem is that the decision to perform parameter

tuning was made after seeing the results on all of the datasets. This is also, in a

small way, “peeking” at the test data. These issues should be kept in mind when

interpreting the results for MILES with the 1-norm SVM.

65

Figure 4.1: Parameter Tuning: λ Parameter Values vs Percentage Accuracy for the
Elephant Dataset (10-Fold CV)

0

20

40

60

80

100

10−6 10−5 10−4 10−3 10−2 10−1

P
er

ce
n
ta

ge
A

cc
u
ra

cy

λ value (log10 scale)

rsrs

rs

rsrs

rs

Table 4.1: Percentage Accuracy for MILES with 1-Norm SVM, Before and After
Parameter Tuning

Dataset Before tuning After tuning
(λ = 0.45) (λ = 10−4)

musk1 85.1± 10.8 83.2±11.7
musk2 87.5± 9.7 90.4± 9.3
eastwest 50.0± 0.0 50.0± 0.0
westeast 50.0± 0.0 50.0± 0.0
mutagenesis-atoms 66.5± 2.3 77.4± 9.3 ◦
mutagenesis-bonds 66.5± 2.3 73.1±13.0
mutagenesis-chains 66.5± 2.3 77.0± 9.0 ◦
suramin 65.0± 45.2 65.0±45.2
thioredoxin 88.1± 5.1 88.1± 5.1
elephant 50.0± 0.0 84.3± 8.7 ◦
fox 50.0± 0.0 61.0± 9.5 ◦
tiger 50.0± 0.0 82.0± 8.5 ◦
bikes 74.0± 4.8 76.1± 5.0
cars 68.8± 4.3 66.5± 5.5
people 70.8± 4.5 71.1± 4.9
◦, • statistically significant improvement or degradation vs λ = 0.45

4.2.2 Comparison of Base Learners for MILES

A major goal of the experiment was to compare different base learners for MILES,

particularly with respect to the 1-norm SVM. The results of this part of the exper-

iment are displayed in Tables 4.2 and 4.3.

It was found that the 1-norm support vector machine was competitive against the

other base learners on all datasets except eastwest and westeast, with no other non-

ensemble base learner consistently performing significantly better than it. However,

the 2-norm support vector machines were superior on the GRAZ02 problems, using

both the linear and the radial basis function kernels. Also, Adaboost with decision

66

Table 4.2: MILES: Percentage Accuracy for Non-Ensemble Base Learners

Dataset 1-Norm C4.5 SMO SMO Logistic
SVM (LIN) (RBF)

musk1 83.2±11.7 84.1±11.9 86.6± 9.9 76.1±14.6 84.8±11.3
musk2 90.4± 9.3 82.5±12.1 88.6±10.1 76.3±11.7 • 85.8±11.0
eastwest 50.0± 0.0 50.0± 0.0 54.0±33.1 80.0±24.6 ◦ 64.5±29.6
westeast 50.0± 0.0 50.0± 0.0 54.5±32.6 80.0±24.6 ◦ 68.5±33.1
mutagenesis-atoms 77.4± 9.3 80.8± 8.1 81.5± 8.2 82.7± 8.8 ◦ 83.8± 7.2
mutagenesis-bonds 73.1±13.0 77.1± 9.8 81.3± 9.7 79.1± 8.8 80.2± 8.8
mutagenesis-chains 77.0± 9.0 79.3± 9.5 77.6± 8.2 76.6± 9.6 73.5± 9.4
suramin 65.0±45.2 65.0±45.2 65.0±45.2 65.0±45.2 65.0±45.2
thioredoxin 88.1± 5.1 84.3± 7.1 69.0±10.6 • 87.1± 2.4 87.1∗± 3.9
elephant 84.3± 8.7 77.5± 9.2 83.9± 8.0 52.8± 5.7 • 79.6± 9.1
fox 61.0± 9.5 56.8±11.2 61.8± 9.4 54.8± 5.6 63.6± 8.9
tiger 82.0± 8.5 69.7± 9.3 • 80.8± 8.8 63.8± 6.1 • 80.0± 9.2
bikes 76.1± 5.0 72.5± 5.7 80.5± 4.7 ◦ 77.2± 4.5 72.4± 4.8 •
cars 66.5± 5.5 62.6± 4.7 72.5± 4.9 ◦ 71.0± 4.6 ◦ 63.9± 4.9
people 71.1± 4.9 69.8± 5.8 74.9± 4.9 ◦ 75.3± 4.5 ◦ 66.9± 5.0 •
◦, • statistically significant improvement or degradation vs 1-norm SVM
∗ We were unable to allocate enough memory to run MILES + Logistic on the thioredoxin dataset.
This result was obtained using an alternative logistic regression algorithm, implemented as
SimpleLogistic in WEKA. The algorithm uses LogitBoost to learn a logistic regression model.
See [Landwehr et al., 2003] for more information.

Table 4.3: MILES: Percentage Accuracy for Ensemble Base Learners

Dataset 1-Norm Adaboost Random Adaboost Bagging
SVM + D. Stump Forest + C4.5 + C4.5

musk1 83.2±11.7 88.0±11.6 87.0±11.4 85.8±12.0 86.0±11.5
musk2 90.4± 9.3 83.2±11.5 81.7±11.2 • 83.2±11.3 83.7±11.5
eastwest 50.0± 0.0 81.0±24.4 ◦ 80.0±24.6 ◦ 50.0± 0.0 50.5± 5.0
westeast 50.0± 0.0 81.0±24.4 ◦ 80.0±24.6 ◦ 50.0± 0.0 50.5± 5.0
mutagenesis-atoms 77.4± 9.3 83.9± 8.6 82.0± 8.2 79.5± 8.5 80.5± 7.7
mutagenesis-bonds 73.1±13.0 86.3± 7.4 ◦ 79.7±10.5 80.1± 9.9 77.4± 8.9
mutagenesis-chains 77.0± 9.0 86.0± 8.0 ◦ 80.4± 9.2 80.8± 8.1 79.8± 9.1
suramin 65.0±45.2 65.0±45.2 65.0±45.2 65.0±45.2 62.0±46.1
thioredoxin 88.1± 5.1 89.3± 4.0 87.7± 2.7 85.6± 6.4 88.2± 4.6
elephant 84.3± 8.7 80.9± 7.7 82.3± 8.2 81.5± 8.9 84.0± 8.3
fox 61.0± 9.5 61.6±10.9 64.9±10.2 59.4±11.6 61.4±10.3
tiger 82.0± 8.5 80.5± 8.9 78.6± 9.0 75.4± 9.3 75.7± 8.4
bikes 76.1± 5.0 78.0± 5.0 79.2± 4.4 78.0± 4.5 77.7± 5.1
cars 66.5± 5.5 71.6± 4.1 ◦ 71.7± 4.0 ◦ 69.3± 5.0 70.5± 4.9
people 71.1± 4.9 75.6± 4.6 ◦ 77.5± 4.3 ◦ 75.4± 4.8 ◦ 76.6± 4.7 ◦
◦, • statistically significant improvement or degradation vs 1-norm SVM

stumps had no significant losses and several wins versus the 1-norm SVM.

The 2-norm SVM with the RBF kernel was the only support vector machine

approach that performed well on the eastwest / westeast problems. It was not con-

sistently strong, however, with sub-par performance on the musk and corel datasets.

The 2-norm support vector machine with the linear kernel was very competitive with

the 1-norm method, except for a poor result on the thioredoxin problem.

These results indicate that the 1-norm support vector machine may have no

classification performance advantage over its 2-norm cousins as a base learner for

MILES. In the observed experimental results, the sparsity property of the 1-norm

SVM did not translate into consistently superior classification accuracy, despite the

high dimensionality of the datasets produced by the MILES transformation.

67

The eastwest and westeast datasets were problematic for many MILES base

learners, with half of the schemes performing little or no better than chance on

these problems, although several schemes achieved accuracies of around 80%. Note

that the results were similar or identical for both datasets, regardless of the base

learner. This is as expected, given that MILES is designed to use a symmetric

generalized MI assumption.

MILES’ performance was consistent on the suramin problem. All base learning

schemes achieved an accuracy of 65.0% on this dataset, except for Bagging with

C4.5, where an accuracy value of 62.0% was observed. The small size of the dataset

at least partially explains the consistency between schemes — it contains only 11

bags, albeit with many instances in each of those bags.

The ensemble methods were the strongest performers overall. Adaboost with

decision stumps and random forests were the standout schemes in the MILES ex-

periments, with six and four significant wins against the 1-norm SVM respectively.

Although the 1-norm SVM was seven percentage points ahead of Adaboost for

musk2, the difference was not statistically significant, while the random forests base

learner incurred a significant loss against the 1-norm SVM on this dataset. Adaboost

with decision stumps had higher percentage accuracy results than random forests

on nine datasets and lower accuracy on five datasets, but none of those differences

were statistically significant.

The strong performance of Adaboost.M1 with decision stumps is interesting,

given the relationship between this model and the support vector machine model

recommended by Chen et al (2006). Like support vector machines, the hypothesis

learnt by Adaboost.M1 is a weighted linear threshold, i.e. a model of the form:

v(x) = sign

(

∑

t

αtht(x)

)

.

For Adaboost.M1, the hts are so-called weak learners. When decision stumps

are used, each ht corresponds to an attribute that the decision stump weak learner

splits on. In this case, the choice of attributes for the decision stumps to split on is

effectively attribute selection, similarly to the selection of attributes with non-zero

weights made by the 1-norm support vector machine. The αts determine the im-

portance of the corresponding decision stump, and therefore the importance of the

68

Figure 4.2: Parameter Tuning: λ Parameter Values vs Percentage Accuracy for the
Eastwest Dataset (10-Fold CV)

0

20

40

60

80

100

10−6 10−5 10−4 10−3 10−2 10−1

P
er

ce
n
ta

ge
A

cc
u
ra

cy

λ value (log10 scale)

rsrsrsrs

rs

rs

attribute selected by that decision stump. Thus, the αts are effectively attribute

weights, and perform a similar function to the attribute weights learned by the sup-

port vector machine model. Just as for the SVM, these attribute weights correspond

to instance weights for the training instances, due to the instance-based nature of

the feature space generated by the MILES transformation.

MILES with the 1-Norm SVM on Eastwest

Given that MILES with the 1-norm SVM as the base learner performed poorly on the

eastwest / westeast problems, a separate parameter tuning experiment was used to

investigate whether the result was due to a fundamental limitation in the algorithm,

or merely an incorrect value for the λ parameter for these problems. The λ parameter

was varied between 10−1 and 10−6 using the step procedure λi+1 = λi/10, and the

resulting classifiers were each evaluated using a single 10-fold cross-validation.

It was found that MILES with the 1-norm SVM achieved 80.0% accuracy when λ

was set to 10−5 — a very similar result to the best-performing MILES base learners

on this dataset. This percentage accuracy result of 80.0% was duplicated in a 10 ×
10-fold cross-validation experiment on both eastwest and westeast datasets. Thus,

it appears that MILES with the 1-norm SVM is capable of learning this type of

problem when appropriate parameter values are used. The results of the parameter

tuning experiment are displayed in Figure 4.2.

69

Table 4.4: MIWrapper: Percentage Accuracy for Non-Ensemble Base Learners

Dataset 1-Norm C4.5 SMO Logistic SMO
SVM (LIN) (RBF)

musk1 83.6±11.7 84.3±11.7 86.9±11.8 78.9±12.5 80.8±12.2
musk2 78.6±13.1 80.1±11.3 81.2±11.8 81.7±12.7 82.8±11.8
eastwest 47.0±28.3 52.0±35.5 53.0±33.2 61.5±33.2 68.0±29.7
westeast 47.5±29.6 49.5±32.2 53.0±33.2 61.5±33.2 68.0±29.7
mutagenesis-atoms 66.5± 2.3 76.4± 8.3 ◦ 66.5± 2.3 66.5± 2.3 66.5± 2.3
mutagenesis-bonds 66.5± 2.3 80.7± 8.9 ◦ 66.5± 2.3 67.2± 3.3 66.5± 2.3
mutagenesis-chains 66.7± 2.6 84.9± 7.2 ◦ 68.0± 3.8 70.6± 6.5 69.6± 3.5 ◦
suramin 65.0±45.2 65.0±45.2 35.0±45.2 65.0±45.2 35.0±45.2
thioredoxin 87.1± 2.4 87.8± 2.7 87.1± 2.4 87.1± 2.4 87.1± 2.4
elephant 83.4± 8.0 80.3± 7.7 84.5± 8.7 84.0± 8.6 82.0± 8.4
fox 58.9± 9.6 64.1±10.6 59.2± 9.5 58.4±10.2 57.2±10.4
tiger 77.7± 8.1 77.4± 9.2 80.5± 8.0 78.4± 8.3 81.0± 8.0
bikes 81.9± 3.9 78.8± 4.6 • 81.5± 4.1 82.2± 3.8 76.8± 4.3 •
cars 72.3± 4.9 67.7± 5.3 • 70.8± 4.6 71.8± 4.9 66.6± 5.1 •
people 79.5± 4.3 78.4± 4.2 79.6± 4.3 78.7± 4.2 76.0± 4.4 •
◦, • statistically significant improvement or degradation vs 1-norm SVM

Table 4.5: MIWrapper: Percentage Accuracy for Ensemble Base Learners

Dataset 1-Norm Random Adaboost Adaboost Bagging
SVM Forest + C4.5 + D. Stump + C4.5

musk1 83.6±11.7 87.3±10.8 86.8±11.1 84.7±10.7 86.6±11.0
musk2 78.6±13.1 81.0±11.4 82.7±11.8 79.7±10.6 81.5±11.6
eastwest 47.0±28.3 54.0±31.5 56.0±33.5 69.0±26.4 54.0±34.6
westeast 47.5±29.6 55.0±31.4 57.5±34.4 69.0±26.4 53.5±35.0
mutagenesis-atoms 66.5± 2.3 81.9± 8.5 ◦ 77.4± 8.1 ◦ 66.5± 2.3 79.7± 8.2 ◦
mutagenesis-bonds 66.5± 2.3 83.1± 8.7 ◦ 82.2± 8.3 ◦ 73.2± 8.4 ◦ 82.9± 8.5 ◦
mutagenesis-chains 66.7± 2.6 84.2± 7.5 ◦ 85.1± 7.8 ◦ 74.0± 7.7 ◦ 85.3± 7.6 ◦
suramin 65.0±45.2 65.0±45.2 65.0±45.2 65.0±45.2 65.0±45.2
thioredoxin 87.1± 2.4 87.9± 2.6 88.0± 2.6 87.1± 2.4 87.9± 2.6
elephant 83.4± 8.0 87.1± 6.9 84.2± 8.1 85.5± 7.3 84.1± 7.7
fox 58.9± 9.6 64.6± 9.6 62.6± 9.8 65.7± 9.6 65.7± 8.8
tiger 77.7± 8.1 84.3± 8.1 ◦ 81.0± 8.1 81.8± 8.5 81.7± 9.4
bikes 81.9± 3.9 82.2± 4.2 81.8± 4.5 79.2± 4.6 • 82.5± 4.0
cars 72.3± 4.9 74.8± 4.6 71.4± 4.9 71.3± 4.8 74.3± 4.5
people 79.5± 4.3 82.6± 4.0 ◦ 81.5± 4.0 79.5± 4.3 81.8± 3.9 ◦
◦, • statistically significant improvement or degradation vs 1-norm SVM

4.2.3 Comparison of Other MI Algorithms

As well as investigating the behaviour of MILES with different base learners, the

other goal of this study was to compare MILES to other state-of-the-art multi-

instance learning algorithms. Of particular interest is the performance of MILES

relative to the other single-instance wrapper algorithms. Before we compare the

other MI learning algorithms to MILES, we consider the performance of these other

algorithms separately.

MIWrapper

Reasonable classification performance was observed for MIWrapper on all datasets

except eastwest and westeast. The experimental results for MIWrapper with various

base classifiers are shown in Tables 4.4 and 4.5.

70

The non-ensemble base learners for MIWrapper all performed similarly to each

other, although the results for C4.5 were significantly superior to the others on

the three representations of the mutagenesis problem. The support vector machine

with the radial basis function kernel and C4.5 both performed worse than the other

non-ensemble base learners on the GRAZ02 image datasets.

All of the ensemble base learners performed better than the 1-norm SVM baseline

on the mutagenesis datasets, but there were few other significant differences. Con-

sidering that C4.5 was the best performing non-ensemble MIWrapper base learner

for mutagenesis, and that all of the ensemble methods used tree-based ensembles,

the superiority of the ensemble methods on this dataset may be at least partially due

to the decision-tree representations used, rather than the advantages of the ensemble

techniques themselves.

The eastwest and westeast datasets proved to be a challenge for MIWrapper,

with the majority of base learners achieving little more than 50% accuracy. The

support vector machine with the RBF kernel and Adaboost with decision stumps

produced the highest accuracy on these datasets at 68.0% and 69.0%, respectively.

The reversal of the class labels between eastwest and westeast made little difference

for MIWrapper.

None of the base learners performed better than the typical result of 65% accu-

racy on the suramin dataset, and a disastrous result of 35% accuracy was observed

for both of the two-norm SVM algorithms. The choice of base learner made virtually

no difference for the thioredoxin problem, with all MIWrapper classifiers performing

at around 87% accuracy.

Summary Statistics for Propositionalization (SimpleMI)

Despite the simplicity of the method, propositionalization by replacing each bag

with a feature vector containing the arithmetic averages of the attributes for all of

its instances (denoted here as SimpleMI) proved to be very effective on all of the

datasets. The results for SimpleMI are presented in Tables 4.6 and 4.7. The 1-norm

SVM base classifier was used as a baseline for comparison.

Even more than for MILES, the 1-norm SVM was very competitive as a base

learner for SimpleMI. It suffered no significant losses against any other non-ensemble

base learner except for C4.5, which achieved a spectacular 95% accuracy on the

71

Table 4.6: SimpleMI: Percentage Accuracy for Non-Ensemble Base Learners

Dataset 1-Norm C4.5 SMO SMO Logistic
SVM (LIN) (RBF)

musk1 81.8±12.0 82.0±14.1 87.2±10.3 76.9±12.8 73.4±13.2
musk2 77.5±12.9 73.8±13.6 81.1±12.0 74.5±12.7 72.2±13.4
eastwest 63.0±33.0 95.0±15.1 ◦ 57.0±34.1 66.5±31.0 54.5±36.3
westeast 63.0±33.0 95.0±15.1 ◦ 57.5±33.6 66.5±31.0 54.5±36.3
mutagenesis-atoms 75.5± 9.3 78.9± 9.4 69.5± 7.7 • 67.3± 8.1 • 67.5± 8.9 •
mutagenesis-bonds 84.7± 8.9 81.6± 8.0 74.5± 9.2 • 73.2± 8.3 • 83.2± 8.8
mutagenesis-chains 78.8± 8.0 78.9± 8.1 79.4± 7.9 76.8± 9.1 78.5± 8.5
suramin 65.0±45.2 31.5±44.2 • 74.0±41.7 73.0±42.3 74.0±41.7
thioredoxin 87.0± 2.5 87.0± 2.4 86.5± 4.3 86.7± 3.3 87.6± 4.6
elephant 81.6± 9.5 78.3± 8.6 80.3± 9.8 62.7±11.3 • 73.3±10.4 •
fox 54.3±10.1 61.8±11.4 55.9±10.1 57.3± 9.8 55.9±11.3
tiger 79.3± 9.3 76.9± 9.9 79.3± 9.5 71.0±10.0 • 75.7± 8.5
bikes 81.6± 4.4 76.7± 5.3 • 83.4± 4.4 75.1± 4.4 • 81.9± 4.6
cars 71.7± 5.1 68.5± 5.0 70.9± 5.1 65.8± 4.6 • 71.5± 5.0
people 76.6± 4.6 75.1± 4.2 79.3± 3.9 75.8± 4.6 76.8± 4.7
◦, • statistically significant improvement or degradation vs 1-norm SVM

Table 4.7: SimpleMI: Percentage Accuracy for Ensemble Base Learners

Dataset 1-Norm Bagging Adaboost Adaboost Random
SVM + C4.5 + D. Stump + C4.5 Forest

musk1 81.8±12.0 81.9±13.8 83.2±12.3 84.5±13.9 84.3±12.1
musk2 77.5±12.9 78.4±11.9 78.7±11.9 77.1±12.9 81.0±11.4
eastwest 63.0±33.0 86.5±23.4 ◦ 80.0±31.8 80.5±27.4 77.5±27.9
westeast 63.0±33.0 86.5±23.4 ◦ 81.5±31.5 80.5±27.4 80.0±25.6
mutagenesis-atoms 75.5± 9.3 80.8± 8.1 80.3± 8.4 81.0± 8.6 80.9± 7.6
mutagenesis-bonds 84.7± 8.9 84.8± 8.7 85.8± 7.7 84.7± 8.6 85.8± 8.3
mutagenesis-chains 78.8± 8.0 82.0± 9.2 81.2± 8.8 81.5± 8.2 83.5± 9.0
suramin 65.0±45.2 47.0±48.1 53.0±48.1 47.0±47.6 45.0±47.9
thioredoxin 87.0± 2.5 86.1± 3.5 86.2± 5.3 84.8± 6.2 86.6± 3.7
elephant 81.6± 9.5 83.4± 8.9 86.5± 8.1 84.1± 7.8 87.3± 7.4
fox 54.3±10.1 64.5±10.3 ◦ 67.0±10.5 ◦ 63.7± 9.2 ◦ 63.7± 9.6
tiger 79.3± 9.3 81.1± 9.6 82.5± 8.7 81.5± 8.8 82.9± 8.8
bikes 81.6± 4.4 82.0± 4.8 80.3± 4.9 81.6± 4.6 83.4± 4.0
cars 71.7± 5.1 74.2± 4.5 74.4± 4.4 73.5± 4.1 76.5± 4.2 ◦
people 76.6± 4.6 79.1± 4.2 79.0± 4.8 78.9± 5.2 81.5± 3.9 ◦
◦, • statistically significant improvement or degradation vs 1-norm SVM

eastwest and westeast datasets. Although SimpleMI with the 1-norm SVM achieved

no significant wins against the ensemble base learners, it also suffered very few losses.

An exception to this is was the fox dataset, where the 1-norm SVM base learner

only achieved 54.3% accuracy.

Interestingly, the ensemble base learners had virtually identical performances to

each other, with a maximum of two significant wins and losses between any given

pair of schemes.

Although SimpleMI with bagged C4.5 as the base learner exhibited a nine-

percent lower accuracy than when plain C4.5 was used on eastwest / westeast, this

difference was not statistically significant due to the small size of the dataset. Fur-

thermore, the schemes are not directly comparable as the bagged version used an

unpruned C4.5 classifier, while pruning was enabled for the plain C4.5.

72

Table 4.8: Percentage Accuracy For Upgraded Single-Instance and Purpose-Built
MI Algorithms

Dataset EMDD Citation MISMO mi-SVM Adaboost MILR MIBoost
KNN + Opt.Ball + REPTREE

musk1 85.2±11.6 83.3±11.2 77.0±13.6 75.9±13.6 • 70.7±13.3 • 73.4±16.1 • 84.5±11.5
musk2 84.7±10.1 75.6±11.3 • 80.2±11.9 71.8±13.8 • 79.5±12.4 77.0±13.2 79.7±11.0
eastwest 68.5±27.2 44.5±35.5 70.0±31.8 61.5±23.4 71.5±30.4 64.0±37.7 59.0±34.4
westeast 31.5±24.3 50.0±31.0 70.0±31.8 ◦ 39.5±28.7 29.0±24.8 39.5±35.0 61.0±33.0 ◦
muta-a 69.6±10.9 72.6± 9.8 67.2± 8.4 66.5± 2.3 72.0± 8.9 72.3± 8.7 77.8± 8.6
muta-b 72.4±12.0 73.3± 8.2 82.5± 9.1 ◦ 66.5± 2.3 71.9± 9.9 75.8± 9.5 84.4± 7.8 ◦
muta-c 70.4±12.5 77.7± 9.7 81.6± 7.9 ◦ 66.5± 2.3 69.2± 7.5 77.3± 9.3 82.3± 9.0 ◦
suramin 49.0±47.7 65.0±45.2 65.0±45.2 65.0±45.2 65.0±45.2 63.0±45.8 65.0±45.2
thiored. 88.5± 5.8 83.5± 5.4 87.1± 2.4 87.1± 2.4 90.3± 5.5 85.4± 5.4 87.3± 4.3
elephant 75.2±10.0 50.0± 0.0 • 81.5± 9.6 78.9± 9.3 72.0±10.3 79.8± 9.0 82.8± 8.6 ◦
fox 59.4±10.7 50.0± 0.0 • 53.4±11.5 48.6± 8.2 • 54.6±10.1 59.0±10.5 66.3± 9.5
tiger 73.1±10.1 50.0± 0.0 • 80.5± 8.5 ◦ 81.5± 9.6 65.2±10.2 75.7± 8.5 82.2± 9.5 ◦
bikes 78.3± 6.4 51.0± 0.3 • 81.6± 4.8 83.5± 3.9 ◦ 78.6± 4.2 82.6± 5.2 80.6± 4.6
cars 72.1± 5.6 52.5± 0.0 • 71.6± 5.2 60.8± 6.3 • 72.2± 4.7 71.5± 4.9 71.5± 5.0
people 77.2± 4.9 55.0± 0.2 • 77.2± 4.5 72.8± 4.5 • 74.4± 4.5 75.0± 5.3 78.9± 4.4

◦, • statistically significant improvement or degradation vs EMDD

Purpose-Built and Upgraded Single-Instance Algorithms

The purpose-built and upgraded single-instance algorithms, i.e. the “non-wrapper”

MI approaches, were considered together. EMDD, a computationally more efficient

refinement of the classic maxDD algorithm, was used as the baseline scheme for the

non-wrapper approaches.

It should be noted that the MIBoost algorithm can in fact be viewed as a wrap-

per, since different single-instance base learners can be selected for boosting. Here,

it is viewed as an upgraded single-instance learner. The base learner was selected ac-

cording to the optimal result found in Dong’s comparison of multi-instance learning

algorithms [Dong, 2006]. The results for the “non-wrapper” algorithms are summa-

rized in Table 4.8.

The only algorithms to consistently perform better than the baseline EMDD

algorithm were the MI kernel algorithm MISMO, and MIBoost. Citation-KNN and

the maximum pattern margin support vector machine mi-SVM were statistically

worse than EMDD on several datasets. Citation-KNN’s poor overall performance

was largely due to the image datasets, where it failed to perform significantly better

than chance in all cases. Adaboost with Optimal Ball and MILR were statistically

even with the baseline on all datasets except musk1.

A point of interest is the westeast problem, where disastrous performance was

observed from all of the algorithms that relied upon the standard MI assumption,

despite generally reasonable results on eastwest — a problem that is identical except

73

Table 4.9: Percentage Accuracy of Wrapper Algorithms — 1-Norm SVM Base
Learner

Dataset MILES SimpleMI MIWrapper
musk1 83.2±11.7 81.8±12.0 83.6±11.7
musk2 90.4± 9.3 77.5±12.9 • 78.6±13.1 •
eastwest 50.0± 0.0 63.0±33.0 47.0±28.3
westeast 50.0± 0.0 63.0±33.0 47.5±29.6
mutagenesis-atoms 77.4± 9.3 75.5± 9.3 66.5± 2.3 •
mutagenesis-bonds 73.1±13.0 84.7± 8.9 ◦ 66.5± 2.3
mutagenesis-chains 77.0± 9.0 78.8± 8.0 66.7± 2.6 •
suramin 65.0±45.2 65.0±45.2 65.0±45.2
thioredoxin 88.1± 5.1 87.0± 2.5 87.1± 2.4
elephant 84.3± 8.7 81.6± 9.5 83.4± 8.0
fox 61.0± 9.5 54.3±10.1 58.9± 9.6
tiger 82.0± 8.5 79.3± 9.3 77.7± 8.1
bikes 76.1± 5.0 81.6± 4.4 ◦ 81.9± 3.9 ◦
cars 66.5± 5.5 71.7± 5.1 ◦ 72.3± 4.9 ◦
people 71.1± 4.9 76.6± 4.6 ◦ 79.5± 4.3 ◦
◦, • statistically significant improvement or degradation vs MILES

that the positive and negative bag-labels are reversed. This indicates that eastwest

is consistent with the standard MI assumption and westeast is not [Dong, 2006].

It demonstrates that standard MI assumption-based algorithms are not generally

robust against class label reversal.

4.2.4 Comparison of MILES to Other Algorithms

The wrapper algorithms were compared with respect to classification accuracy and

training time. Tables 4.9 – 4.14 show the results for the wrapper algorithms with

several base learners selected as representative strong schemes: the 1-norm SVM,

Adaboost with decision stumps (100 trees) and random forests (100 trees).

Comparison to Other Wrappers: Accuracy

In terms of classification accuracy, MILES exhibited only one significant win against

the corresponding SimpleMI classifier over all three base learning schemes. There

were no significant differences between MILES and SimpleMI for the boosted deci-

sion stumps (Table 4.10), but SimpleMI was superior for the three GRAZ02 datasets

using the other two single-instance base classifiers (Tables 4.9 and 4.11).

MILES and MIWrapper were even using the 1-norm SVM base learner, with three

significant wins and losses each (Table 4.9). MILES was superior to MIWrapper on

the mutagenesis datasets for boosted decision stumps (Table 4.10), while MIWrapper

performed better than MILES on three image datasets when using random forests

(Table 4.11).

74

Table 4.10: Percentage Accuracy of Wrapper Algorithms — Adaboost with Decision
Stump Base Learner (100 Trees)

Dataset MILES SimpleMI MIWrapper
musk1 88.0±11.6 83.2±12.3 84.7±10.7
musk2 83.2±11.5 78.7±11.9 79.7±10.6
eastwest 81.0±24.4 80.0±31.8 69.0±26.4
westeast 81.0±24.4 81.5±31.5 69.0±26.4
mutagenesis-atoms 83.9± 8.6 80.3± 8.4 66.5± 2.3 •
mutagenesis-bonds 86.3± 7.4 85.8± 7.7 73.2± 8.4 •
mutagenesis-chains 86.0± 8.0 81.2± 8.8 74.0± 7.7 •
suramin 65.0±45.2 53.0±48.1 65.0±45.2
thioredoxin 89.3± 4.0 86.2± 5.3 87.1± 2.4
elephant 80.9± 7.7 86.5± 8.1 85.5± 7.3
fox 61.6±10.9 67.0±10.5 65.7± 9.6
tiger 80.5± 8.9 82.5± 8.7 81.8± 8.5
bikes 78.0± 5.0 80.3± 4.9 79.2± 4.6
cars 71.6± 4.1 74.4± 4.4 71.3± 4.8
people 75.6± 4.6 79.0± 4.8 79.5± 4.3 ◦
◦, • statistically significant improvement or degradation

Table 4.11: Percentage Accuracy of Wrapper Algorithms — Random Forest Base
Learner (100 Trees)

Dataset MILES SimpleMI MIWrapper
musk1 87.0±11.4 84.3±12.1 87.3±10.8
musk2 81.7±11.2 81.0±11.4 81.0±11.4
eastwest 80.0±24.6 77.5±27.9 54.0±31.5
westeast 80.0±24.6 80.0±25.6 55.0±31.4
mutagenesis-atoms 82.0± 8.2 80.9± 7.6 81.9± 8.5
mutagenesis-bonds 79.7±10.5 85.8± 8.3 83.1± 8.7
mutagenesis-chains 80.4± 9.2 83.5± 9.0 84.2± 7.5
suramin 65.0±45.2 45.0±47.9 65.0±45.2
thioredoxin 87.7± 2.7 86.6± 3.7 87.9± 2.6
elephant 82.3± 8.2 87.3± 7.4 87.1± 6.9
fox 64.9±10.2 63.7± 9.6 64.6± 9.6
tiger 78.6± 9.0 82.9± 8.8 84.3± 8.1 ◦
bikes 79.2± 4.4 83.4± 4.0 ◦ 82.2± 4.2 ◦
cars 71.7± 4.0 76.5± 4.2 ◦ 74.8± 4.6
people 77.5± 4.3 81.5± 3.9 ◦ 82.6± 4.0 ◦
◦, • statistically significant improvement or degradation vs MILES

75

Table 4.12: CPU Secs Training Time for Wrapper Algorithms — 1-Norm SVM Base
Learner

Dataset MILES SimpleMI MIWrapper
musk1 0.3± 0.0 0.1±0.0 • 1.9± 0.2 ◦
musk2 21.2± 3.2 0.1±0.0 • 509.6±135.6 ◦
eastwest 0.0± 0.0 0.0±0.0 • 0.0± 0.0
westeast 0.0± 0.0 0.0±0.0 • 0.0± 0.0 ◦
mutagenesis-atoms 2.2± 0.2 0.0±0.0 • 0.7± 0.0 •
mutagenesis-bonds 10.2± 0.7 0.0±0.0 • 7.1± 0.6 •
mutagenesis-chains 17.5± 1.7 0.1±0.0 • 16.9± 1.0
suramin 0.4± 0.0 0.0±0.0 • 0.9± 0.1 ◦
thioredoxin 86.6± 5.1 0.0±0.0 • 816.4± 41.4 ◦
elephant 5.8± 0.5 0.3±0.0 • 18.7± 3.2 ◦
fox 9.7± 0.7 0.4±0.0 • 28.2± 2.6 ◦
tiger 5.4± 0.4 0.3±0.0 • 16.8± 1.6 ◦
bikes 240.5±13.1 4.0±0.3 • 350.7± 14.5 ◦
cars 423.9±14.6 6.6±0.4 • 631.3± 33.6 ◦
people 219.5± 9.4 3.8±0.2 • 296.6± 10.9 ◦
◦, • statistically significant degradation or improvement vs MILES

Table 4.13: CPU Secs Training Time for Wrapper Algorithms — Adaboost with
Decision Stump Base Learner (100 Trees)

Dataset MILES SimpleMI MIWrapper
musk1 4.3± 0.3 3.0±0.1 • 4.7± 0.2 ◦
musk2 284.7±41.5 3.5±0.0 • 151.8±19.0 •
eastwest 0.2± 0.1 0.0±0.0 • 0.2± 0.0
westeast 0.2± 0.1 0.0±0.0 • 0.2± 0.0
mutagenesis-atoms 17.9± 0.2 0.1±0.0 • 0.7± 0.0 •
mutagenesis-bonds 53.5± 0.6 0.2±0.0 • 3.1± 0.1 •
mutagenesis-chains 88.1± 0.8 0.2±0.0 • 10.2± 0.2 •
suramin 3.7± 0.3 0.0±0.0 • 1.7± 0.1 •
thioredoxin 624.2± 6.7 0.1±0.0 • 32.2± 0.4 •
elephant 36.5± 0.4 3.7±0.1 • 15.8± 0.2 •
fox 34.0± 0.4 3.3±0.9 • 14.7± 0.1 •
tiger 30.4± 0.4 1.8±0.3 • 13.7± 0.1 •
bikes 451.2± 1.3 12.3±0.2 • 66.3± 0.3 •
cars 524.7± 0.5 5.2±0.0 • 73.4± 0.3 •
people 385.1± 0.4 4.5±0.0 • 58.7± 0.2 •
◦, • statistically significant degradation or improvement vs MILES

Comparison to Other Wrappers: Training Time

SimpleMI always had the shortest training time of the three methods, for all datasets

and base learners (Tables 4.12 – 4.14). This is unsurprising, given that the method

only generates one instance for each training bag, without increasing the dimen-

sionality of the feature space. Although MILES also generates one instance per

training bag, the dimensionality of the feature space is almost always much higher,

as the number of attributes is equal to the total number of instances in the training

bags. In contrast, MIWrapper generates one instance for every instance in every

bag, leaving the dimensionality of the feature space unchanged.

The relative computational efficiency of the training procedures for MILES and

MIWrapper depends on both the base learner and the dataset. Tables 4.12 and 4.13

show that MILES was typically faster than MIWrapper with the 1-norm SVM base

76

Table 4.14: CPU Secs Training Time for Wrapper Algorithms — Random Forest
Base Learner (100 Trees)

Dataset MILES SimpleMI MIWrapper
musk1 3.5± 0.2 1.5±0.1 • 7.3± 0.4 ◦
musk2 269.1±40.3 1.7±0.1 • 121.5±12.8 •
eastwest 0.3± 0.0 0.1±0.0 • 0.6± 0.0 ◦
westeast 0.3± 0.0 0.0±0.0 • 0.6± 0.0 ◦
mutagenesis-atoms 27.2± 0.6 0.3±0.0 • 3.4± 0.1 •
mutagenesis-bonds 76.0± 1.6 0.3±0.0 • 11.3± 0.3 •
mutagenesis-chains 110.4± 2.0 0.4±0.0 • 25.6± 0.7 •
suramin 4.9± 0.4 0.0±0.0 • 6.5± 0.4 ◦
thioredoxin 472.0± 7.5 0.2±0.0 • 91.2± 2.2 •
elephant 33.5± 0.5 5.3±0.2 • 46.8± 0.9 ◦
fox 35.1± 0.5 6.4±0.2 • 53.8± 1.0 ◦
tiger 28.2± 0.4 3.7±0.0 • 36.1± 0.7 ◦
bikes 427.5± 2.9 11.4±0.2 • 90.3± 0.7 •
cars 538.2± 3.4 9.0±0.1 • 112.7± 1.0 •
people 364.4± 5.9 6.6±0.1 • 97.1±29.1 •
◦, • statistically significant degradation or improvement vs MILES

classifier, while MIWrapper was almost always faster when boosted decision stumps

were used. When using random forests, the two methods were roughly even overall

in terms of statistical wins and losses, but MILES was far slower than MIWrapper

on a number of problems, while MIWrapper’s losses were generally more modest.

Overall Comparison of Classification Accuracy

To compare the different approaches, the classification accuracy of the best variants

of MILES, the purpose-built/upgraded single instance algorithms, MIWrapper and

SimpleMI are shown in Table 6.5.

Interestingly, the best results for each type of scheme were seldom more than

a few percentage points different from each other. Notable exceptions to this are

the eastwest / westeast datasets, where the best MILES classifier was around ten

percentage points ahead of the best MIWrapper classifier and the best non-wrapper

scheme, and SimpleMI was fourteen percentage points ahead of the best MILES

scheme. There was also a difference of around nine percentage points between the

best MILES classifier and the best SimpleMI classifier on the musk2 dataset, and

a difference of around eight percentage points in the case of MILES and MIWrap-

per. Note that the σ value for MILES used in these experiments was selected by

[Chen et al., 2006] based on tuning experiments on a subset of the musk2 dataset,

so the results for MILES on that dataset may be slightly optimistic.

Adaboost with decision stumps was the dominant base learner for MILES, being

the best (or best-equal) scheme for eight of the fifteen datasets. MIBoost was the

77

Table 4.15: The Best Result For Each Type of Scheme
Dataset Best % Best % Best % Best %

MILES Upgraded/P.B. MIWrapper SimpleMI
musk1 Adaboost 88.0 EMDD 85.2 Random 87.3 SMO 87.2

+ D. Stump Forest (POLY)
musk2 1-Norm 90.4 EMDD 84.7 SMO 82.8 SMO 81.1

SVM (RBF) (POLY)
eastwest Adaboost 81.0 Adaboost 71.5 Adaboost 69.0 C4.5 95.0

+ D.Stump + Opt.Ball + D. Stump
westeast Adaboost 81.0 MISMO 70.0 Adaboost 69.0 C4.5 95.0

+ D.Stump + D. Stump
mutagenesis-atoms Adaboost 83.9 MIBOOST 77.8 Random 81.9 Random 80.9

+ D. Stump + REPTREE Forest Forest
mutagenesis-bonds Adaboost 86.3 MIBOOST 84.4 Random 83.1 Random* 85.8

+ D. Stump + REPTREE Forest Forest
mutagenesis-chains Adaboost 86.0 MIBOOST 82.3 Bagging 85.3 Random 83.5

+ D. Stump + REPTREE + C4.5 Forest
suramin 1-Norm* 65.0 Citation* 65.0 1-Norm* 65.0 SMO* 73.0

SVM KNN SVM (Poly)
thioredoxin Adaboost 89.3 Adaboost 90.3 Adaboost 88.0 Logistic 87.6

+ D. Stump + Opt.Ball + C4.5
elephant 1-Norm 84.3 MIBOOST 82.8 Random 87.1 Random 87.3

SVM + REPTREE Forest Forest
fox Random 64.9 MIBOOST 66.3 Adaboost* 65.7 Adaboost 67.0

Forest + REPTREE + D. Stump +D.Stump
tiger 1-Norm 82.0 MIBOOST 82.2 Random 84.3 Random 82.9

SVM + REPTREE Forest Forest
bikes SMO 80.5 mi-SVM 83.5 Bagging 82.5 Random* 83.4

(LIN) + C4.5 Forest
cars SMO 72.5 Adaboost 72.2 Random 74.8 Random 76.5

(LIN) + Opt.Ball Forest Forest
people Random 77.5 MIBOOST 78.9 Random 82.6 Random 81.5

Forest + REPTREE Forest Forest
∗ Scheme was best-equal with one or more other schemes.

strongest overall method from the purpose-built / upgraded single-instance category,

and the random forests algorithm was the best overall base learner for MIWrapper

and SimpleMI.

4.2.5 Conclusions

The goals of the study were to compare base learners for MILES, and to compare

MILES to other state-of-the-art MI algorithms. The results indicate that the 1-norm

SVM is not generally superior to the standard 2-norm SVM as a base learner for

MILES, despite the sparsity property that was claimed to be important for the high-

dimensional feature space created by the MILES transformation [Chen et al., 2006].

Moreover, although the 1-norm SVM was a competitive base learner for MILES in

the experiment, Adaboost with decision stumps exhibited the strongest performance

overall.

The results also show that when appropriate base learners are used, MILES is

competitive in classification performance with any purpose-built algorithm or up-

graded single-instance learner considered in the experiments. However, the simpler

78

MIWrapper and SimpleMI methods almost always perform just as well as MILES.

Furthermore, it appears that SimpleMI is always significantly superior to MILES

in terms of CPU training time. MIWrapper often has shorter training times than

MILES, but this depends on the base learner and the dataset used. To achieve good

classification accuracy in a wide variety of cases, random forests can be recommended

as a base learner for MIWrapper and SimpleMI.

Perhaps the most interesting result of the experiments is the effectiveness of the

extremely simple propositionalization methods SimpleMI and MIWrapper in com-

parison to MILES. The results also confirm their good performance with respect

to the sophisticated purpose-built algorithms and upgraded single-instance learners

[Dong, 2006]. It appears to be an open problem for the multiple-instance learning

community to find “true” MI algorithms that are superior to these simple proposi-

tionalization techniques, or to find problems where the existing MI algorithms are

more effective than propositionalization.

79

80

Chapter 5

New Algorithms and Assumptions

for Learning Instance Weights

All multi-instance learning algorithms depend on some particular assumption re-

garding the relationship between the instances in a bag and that bag’s class label

[Xu, 2003]. These MI assumptions determine the type of multi-instance concepts

that can be learnt by algorithms that use those assumptions. Different assumptions

are appropriate for different problem domains. For instance, the standard MI as-

sumption is believed to be appropriate for the musk problem [Dietterich et al., 1997].

This chapter presents two new MI assumptions that are designed to model the

notion of varying levels of influence that instances have on bag-level class labels.

One model is based on the collective MI assumption, and the other is inspired by

linear classification techniques for single-instance learning. We consider these types

of assumptions to be more appropriate for some problem domains than existing

MI assumptions, particularly for the domain of content-based image retrieval and

other image mining tasks. The assumptions are general enough to be applicable

to problems where either the standard MI assumption or the collective assumption

hold.

We also describe new “wrapper”-type algorithms to learn MI concepts under

these weight-based assumptions. By varying the single-instance base learners for the

wrapper algorithms, a wide variety of MI concepts can be learned. The algorithms

are evaluated on artificial data in this chapter. A comprehensive evaluation of the

new algorithms using real-world data is performed in Chapter 6.

81

5.1 Motivations for Learning Instance Weights

The goal of the new MI assumptions introduced in this chapter is to model MI

concepts where different parts of instance space have different levels of influence on

bag-level class labels. The general idea is that each point in instance space “pulls”

bag-level classification towards a specific class, and some areas of instance space

have a stronger “pull” than others.

This model is motivated by the content-based image retrieval problem (CBIR).

Recall that in CBIR, the task is to identify relevant images based on their content.

In the typical multiple-instance learning representation of the problem, each image

is represented by feature vectors extracted from segments of the image. See Section

2.2.2 for more information on this problem.

The standard MI assumption is not guaranteed to hold for CBIR. For example,

consider the task of finding all images of beach landscapes. There is no single item

contained in a segment of a beach scene that defines it as belonging to the “beach”

category. Instead, we would expect to find a number of items that each contribute

to the likelihood that the image is a beach scene, such as sand, ocean, sky, tufts of

grass, beach balls, palm trees, sandcastles, and so on.

Also, some unrelated items such as skyscrapers, icebergs or spaceships may de-

crease the likelihood that an image is a beach scene. Some items influence the class

label more than others. For instance, the presence of sand and ocean segments

would strongly increase the probability that an image is a beach landscape, but the

presence of people in the image would not have a great impact on the class label.

Our new MI assumptions are designed to model this type of interaction between

instances and bag labels.

Admittedly, the interactions between segments and class labels in real-world

CBIR tasks may often be more sophisticated than those that can be represented

by the proposed type of model. However, as more powerful assumptions are used,

the concept space becomes larger, and thus optimal concept descriptions may be

harder to find. Our MI assumptions are designed to be a good compromise on

model complexity.

Two artificial problem domains are now provided to illustrate the type of con-

cepts that the new MI assumptions are intended to model. The first domain is called

82

Trial. Imagine that a person, hereby referred to as X, is on trial for the murder of

Y. Suppose that there are a finite number of possible pieces of evidence, denoted

Ei, 1 ≤ i ≤ n. There are several pieces of evidence for and against a guilty conviction

for X. The obvious question is posed: should X be convicted of the murder?

Clearly, X should only be convicted if the evidence for his or her guilt outweighs

the evidence for his innocence. The word “outweighs” gives away the crucial nature

of the scenario: the concept of weight can be used to model the strength of a piece

of evidence towards a given verdict. The weight of each piece of evidence can be

predicted via the outcomes of earlier murder cases.

The Trial problem can be formulated as an MI problem as follows: A murder case

is represented by a bag. The instances within the bags are one-dimensional feature

vectors, where the single feature is a nominal attribute with n values designating

the presence of a piece of evidence Ei. The task is to determine whether X is guilty

for a given murder case, based on a given set of precedent murder cases.

We may assume that each piece of evidence has a weight associated with it

determining the relevance of the evidence for or against a guilty verdict. A learning

program must predict these weights in order to make accurate predictions. Thus we

can see that MI instance weights can be used to model the notion of relevance of

evidence. Note that this artificial problem is for illustrative purposes only, and the

author in no way endorses the use of this model in a real courtroom situation.

The second illustrative problem is called Scholarship. In this problem, an ambi-

tious young student has submitted applications for a number of academic scholar-

ships, each with similar levels of competitiveness. For simplicity, we will assume that

each scholarship is equally difficult to obtain. Now, each scholarship application is

endorsed by several referees, who have each written one reference for the student.

To ensure that the referees can be completely candid, the student is not allowed to

view any of the references. The referees are all busy academics who do not have

time to write different references for each scholarship application, so the student

knows that all references from a given referee are identical.

Now, the student is in a difficult situation, as she wants to obtain as many

scholarships as possible, but she does not know which references will give her the

best chance of success. However, she can attempt to estimate the effectiveness of

each reference based on the results of previous applications.

83

We can formulate the problem as follows: Each scholarship application is repre-

sented by a bag. Each instance in a bag corresponds to a reference. The instance

space can be described by a single nominal variable, as in the Trial case. Each ref-

erence influences the outcome of the scholarship application by a specific amount,

towards a specific outcome. The learning task is to predict what effect each reference

has on the success of the application, in order to make optimal choices of references

for future applications.

In this case, it is critical that the learning model outputs instance weight esti-

mates, because the predicted instance weights are more useful than the resulting

classifier. Although it is nice to know whether a scholarship application is likely

to be successful, even more important is the knowledge of which references are the

most beneficial. From this example domain it can be seen that instance weights are

useful for modeling the influence of an instance on an outcome.

5.2 Upgrading the Collective Assumption To

Model Instance Weights

This section presents a generalization of the collective assumption that includes a

weight function over instance space. The collective assumption states that each

instance in a bag contributes equally and independently to that bag’s class label.

Recall the class probability equation for the collective assumption:

Pr(c|b) = EX [Pr(c|x)|b] =

∫

X

Pr(c|x)Pr(x|b) dx ,

where c is a class label, and b is a bag. As stated earlier, in practice Pr(x|b) is

estimated from the sample provided by the instances in the bag:

Pr(c|b) =
1

nb

nb
∑

i=1

Pr(c|xi) ,

where nb is the number of instances in b. We now extend this model by incor-

porating a weight function into the collective assumption:

Pr(c|b) =
1

∑nb

i=1 w(xi)

nb
∑

i=1

w(xi)pr(c|xi) , (5.1)

84

where w(x) : χ → R
+ is a weight function from instance space to the positive

real numbers that determines the level of influence that an instance has on the bag-

level class label. This model is called the weighted collective MI assumption. The

weighted collective assumption asserts that each instance contributes independently

but not necessarily equally to the class label of the bag.

The weighted collected assumption, as stated in Equation 5.1, is a probabilistic

model. Sometimes, however, we may wish to represent a deterministic generative

model. This can be achieved within the weighted collective assumption framework

by modifying the model to always label a bag with the “most likely” class accord-

ing to the probability function described in Equation 5.1. In the case of binary

classification, this corresponds to:

vdw(B) = sign(t), t =
1

∑nb

i=1 w(xi)

nb
∑

i=1

w(xi)pr(+|xi) − 0.5 . (5.2)

Here, t is the decision variable, the sign of which determines the classification

outcome. The case of t = 0 can be decided arbitrarily — we elect to break ties

in favour of the positive class, although there is no particular justification for this

choice.

This MI assumption (in both the probabilistic and deterministic forms) is more

powerful than the collective assumption because it allows some instances to be ig-

nored when determining bag-level class labels. The collective assumption gives all

instances in a bag the same weight, which means that every instance must be taken

into account, and irrelevant instances may bias the class probability estimates in

some problem domains. For instance, the collective assumption cannot model the

standard MI assumption, where only a few (positive) examples affect the class labels

of bags. Under the weighted collective assumption, we can very closely approximate

the standard MI assumption by giving positive instances a large weight and setting

all other weights to values close to zero.

For a more concrete example, imagine that we are interested in the CBIR task

of finding images of tigers in an image library. The distribution of the image library

is skewed, so that the prior probability of an arbitrary image containing a tiger is

85%. A new image contains a segment with a pair of eyes in it. However, let’s also

imagine that our library consists entirely of images of terrestrial animals, and thus

85

every image in the library contain eyes.

From the prior probabilities, we know that the probability of an image containing

eyes belonging to the class tiger is 85%, due to the skewed nature of the database.

But the “eyes” concept has no discriminating power, and thus should be disregarded,

despite the high probability of a positive example given an instance belonging to

that concept. Using the collective assumption we are unable to model this case

correctly, as this irrelevant feature must be taken into account.

In another CBIR scenario, suppose that beach scenes are the target concept.

Here, the probability that a segment containing an image of a tree belongs to a

beach scene is quite low, and the probability that a segment containing an image of

some sand belongs to a beach scene is quite high. However, tree segments are almost

irrelevant compared to beach segments — many tree segments will not prevent the

image from being a beach scene as long as some sand segments are still present. To

represent this properly, it is necessary to give tree segments small weights, and sand

segments relatively large weights.

The weighted collective assumption can also be used to model the Trial and

Scholarship scenarios. For Trial, the class probability function represents the degree

of likelihood that X murdered Y given a piece of evidence, and the weight function

represents the importance of that piece of evidence on the verdict. For instance,

a witness may claim that they saw X commit the murder. This piece of evidence

would be associated with a high probability for the guilty outcome. However, if there

were video camera footage that clearly identifies the murderer as another person,

all other evidence would be irrelevant.

In the Scholarship scenario, the class probability function represents the degree

to which the referee recommends the applicant, and the weight function represents

the level of importance that the scholarship selection committee attributes to the

reference, which may be determined by the reputation of the referee.

86

5.3 An Iterative Framework for Learning In-

stance Weights

When learning predictive models under the weighted collective MI assumption, the

model parameters to be learnt are the weight function w(x), and the instance-level

class probability function pr(c|x). When these parameters are known, bag-level class

probabilities can then be generated using Equation 5.1 (or Equation 5.2).

We propose a heuristic wrapper approach for estimating these functions, based

on the MIWrapper algorithm described in Section 3.3.2. The algorithm is called

Iterative Framework for Learning Instance Weights (IFLIW).

Similarly to MIWrapper, instance-level class labels for training instances are esti-

mated by simply applying the bag-level labels to all instances, and the instance-level

class probability function is estimated using a single-instance learning algorithm.

The challenge, however, is to estimate the weight function. An iterative method

is applied, where instance weights of the training data are updated according to

an update function. The iteration continues until a stopping criterion is met. The

weight function is then estimated using a regression model built on the training

instance weights.

Possible stopping criteria include predictive performance on the training data or

a hold-out validation dataset, or a fixed number of iterations. Exploratory results

suggested that a performance-measuring stopping criterion can cause premature ter-

mination of the iteration, as performance sometimes drops slightly before continuing

to increase. Hence, using a fixed number of iterations is the option used in the re-

mainder of this thesis. The number of iterations is a parameter to the algorithm,

and represents a trade-off between computation time and closeness of fit to the data.

In each iteration, the update function modifies the instance weights by multi-

plying them by exp(info gain(pr(c|x))), where info gain is the information gain of

pr(c|x), the class probability distribution for the instance x predicted by the single-

instance base classifier relative to the prior class probabilities computed from the

class frequencies in the training data. The instance weights are then normalized, so

that the total weight of all of the instances in all of the bags sums to the number

of instances. Intuitively, this gives higher weights to the instances whose predicted

class probabilities contain the most information.

87

In order to make use of the updated instance weights, in each iteration the

single-instance classifier is rebuilt on a version of the weighted training instances

with weights normalized so that each bag has the same total weight, and the sum

of all of the instance weights is equal to the number of instances. This “per bag”

normalization is performed on a copy of the data so that the instance weights learned

by the algorithm remain bag-independent. The only requirement is that the base

learner can understand instance weights.

When the weights have been learned, a single-instance regression model is built

on the training instances, using the instance weights as the class values. This regres-

sion model is used to estimate the weight function w(x). At prediction time, bag-

level class probabilities are computed using Equation 5.1, with the single-instance

regression model and the single-instance classifier (from the last iteration) used to

estimate w(x) and pr(c|x) respectively.

For implementation reasons, the above approach is modified so that the natural

logarithms of the instance weights are stored and manipulated, instead of the raw

weights themselves. The regression model learns the log-weights instead of the

raw weights, and the log-weights are converted to raw weights at prediction time.

This helps to improve numeric stability, and also avoids the problems caused by

negative values being predicted by some regression algorithms. The pseudocode for

the algorithm is provided in Algorithm 3. Entropy is assumed to be computed based

on natural logarithms, and all procedure parameters are passed by reference.

5.3.1 Discussion of the Algorithm

IFLIW attempts to learn weighted MI concepts by approximating the instance-level

weight function w(x) and class probability function pr(c|x) using a single-instance

regression learner R and a single instance classifier L, respectively. In this sense,

it is a wrapper algorithm, which makes use of single instance learners to learn MI

concepts.

The method for learning pr(c|x) is borrowed from the MIWrapper algorithm. The

MI training dataset is transformed into a single-instance training set for classifier L

by appending bag-level class labels to all of the instances in all of the training bags.

This is a heuristic solution that necessarily introduces bias, but is often a good

88

Algorithm 3 IFLIW

D = the set of training bags
L = a single-instance base learner
R = a single-instance regression learner
µ = the number of iterations, a parameter to the algorithm

train(D)
C = all instances in the bags in D, labeled with bag-level class labels
classPriors[] = the bag-level prior probabilities for the classes, based on D
for (each instance i ∈ C) do

i.lnWeight = 0 // corresponds to a true weight of 1
normalizeWeightsPerBagAndLearnClassifier(C, L)
for (numIterations = 0, numIterations < µ, numIterations++) do

updateWeightsInLogSpace(C, L)
normalizeWeightsPerBagAndLearnClassifier(C, L)

F = copy of C with class of each instance i set to i.lnWeight and weight set to 1
R.learnRegressionModel(F)

normalizeWeightsPerBagAndLearnClassifier(C, L)
E = a copy of C
for (each i ∈ E) do

oldBagWeights[i.parentBagID]+= exp(i.lnWeight)
for (each i ∈ E) do

i.weight = exp
(

ln(|C|
|D|

)− ln(oldBagWeights[i.parentBagID])+i.lnWeight
)

L.train(E)

updateWeightsInLogSpace(C, L, classPriors[])
for (each instance i ∈ C) do

probs[] = L.predictClassProbabilities(i)
update = entropy(classPriors)− entropy(probs) // calc info gain
i.lnWeight = i.lnWeight() + update // because this is in log space, the true

weight is effectively multiplied by exp(info gain)
oldSum =

∑

i∈C exp(i.lnWeight)
for (each instance i ∈ C) do

i.lnWeight = ln(|C|) − ln
(

oldSum
)

+ i.lnWeight // normalize log weights

classify(B), B = {xi : i = 1, · · · , |B|} a test bag
for (each instance xi ∈ B) do

lnWeight = R.regressionPrediction(xi)
instProbs[] = L.predictClassProbabilities(xi)
for (j = 0, j < numClasses; j++) do

probs[j]+=exp(lnWeight) × instprobs[j]
oldSum =

∑

i probs[i]
for (j = 0, j < numClasses; j++) do

probs[j] = 1
oldSum

× probs[j] // normalize probs to sum to 1
return probs

89

enough approximation to allow even the simple MIWrapper algorithm to achieve

high accuracy predictions on real-world data [Xu, 2003]. The main benefits of this

approach are simplicity and computational efficiency.

The weight function is initially learnt only for the instances in the training bags.

The entire weight function w(x) is represented by a regression model trained on

the instances in the training bags. Choosing an appropriate regression base learner

allows the algorithm to represent a wide variety of weight functions. The search

for the weight function is then reduced to the search for appropriate weights on the

training instances.

The resulting search space is generally very large, as the dimensionality grows

linearly with the number of instances in the training bags. In general, a brute-

force approach is out of the question. For the sake of computational feasibility, a

heuristic approach is required to find a good assignment of instance weights to model

the weight function.

The iterative procedure that IFLIW uses for finding instance weights is effectively

a guided heuristic search. In each iteration, the instances whose predicted class

probabilities give the most information relative to the prior probabilities are given

higher weights, and vice-versa. Normalization is performed to help keep the weights

in a reasonable numeric range. The new weights are taken into account in each

iteration by rebuilding the base classifier using a copy of the instances with weights

normalized so that each bag has the same total weight.

In this way, as the iterative process continues, the instances that are the most

useful in prediction are given large weight values, and instances that do not con-

tribute to classification are given small weight values. If the base learner is powerful,

there is a risk of overfitting to the data when too many iterations are performed.

The number of iterations, µ, can be varied to allow for an appropriate closeness

of fit to the data. Note that IFLIW with µ = 0 is equivalent to the MIWrapper

algorithm.

5.3.2 Computational Complexity of IFLIW

In this section, we informally show an upper bound on the computational com-

plexity of IFLIW’s build and classification routines with respect to the number of

90

instances in the training bags, given some fairly unrestrictive assumptions. Here,

the dimensionality of the feature space and the number of classes are both viewed as

constants — i.e., we assume that the computational complexities of all base learners

and subroutines can be described in terms of the number of instances in the bags in

the training set.

Theorem 5.3.1. Let n = the number of instances in all of the bags in D

= |C| = |E| = |F |, L.train(E) ∈ O(l(n)), R.train(F) ∈ O(r(n)) and

L.predictClassProbabilities(x) ∈ O(p(n)) Assume that L and R use all of the data,

i.e. l(n), r(n) ∈ Ω(n). Then IFLIW.train(D) ∈ O(µ(np(n) + l(n)) + r(n)).

Proof. Collecting the instances in all of the bags and labeling them with bag level

class labels is clearly O(n). Similarly for computing the class priors. The initial-

ization of the log weights is also O(n). Temporarily ignoring the core part of the

algorithm, the creation of F is O(n). The regression model must be constructed in

the last step — this is O(r(n)). Each of these operations occurs once, so disregarding

normalizeWeightsPerBagAndLearnClassifier(C, L) and the mainfor loop, the

algorithm is

O(n + n + n + n + r(n))

∈ O(4n + r(n))

∈ O(n + r(n))

∈ O(r(n)) (since r(n) ∈ Ω(n)).

We will now compute the complexity of the routine

normalizeWeightsPerBagAndLearnClassifier(C, L). The creation of

E, a copy of C, is O(n). Assuming that parent bag IDs have been

cached and can be computed in O(1) time, the two for loops in the

routine are both O(n). By definition, L.train(C) ∈ O(l(n)). So the

normalizeWeightsPerBagAndLearnClassifier(C, L) routine is

91

O(n + n + n + l(n))

∈ O(3n + l(n))

∈ O(n + l(n)

∈ O(l(n)) (since l(n) ∈ Ω(n))

Next, we compute the complexity of updateWeightsInLogSpace(C, L).

L.predictClassProbabilities() is O(p(n)) by definition. The computation of en-

tropy is O(1) under our assumption that the number of classes is a constant.

The update of the log weight is also O(1). The first loop iterates n times, and

so is O(n(p(n) + 2) ∈ O(np(n)). The computation of oldSum is O(n), and

so is the normalization loop. So the updateWeightsInLogSpace(C, L) routine is

O(np(n) + 2n) ∈ O(n(p(n) + 2)) ∈ O(np(n)).

Returning to the train() procedure, the main for loop iterates µ times, and each

iteration is O(l(n)+np(n). Therefore the for loop is O(µ(l(n)+np(n))). Combining

the loop and the remainder of the algorithm, ILFIW.train(D) ∈

O(µ(np(n) + l(n)) + l(n) + r(n))

∈ O((µ + 1)(np(n) + l(n)) + r(n))

∈ O(µ(np(n) + l(n)) + r(n)) .

For example, consider the case where the single-instance classification base

learner is C4.5 without using subtree replacement for pruning, and the regres-

sion base learner is additive regression with decision stumps. The computa-

tional cost l(n) of building a C4.5 decision tree without subtree replacement is

is O(n log n) [Witten and Frank, 2005]. If we assume (as Witten and Frank do)

that the depth of the tree is O(log n), the complexity of the classification rou-

92

tine p(n) must also be O(log n). The cost of the creation of a decision stump is

O(n log n), and additive regression merely multiplies this by a constant factor, so

r(n) ∈ O(n logn). So with these base learners, the complexity of IFLIW.train(D)

is O(µ(n log(n) + n log n) + n log n) ∈ O(µn logn).

Theorem 5.3.2. Let R.regressionPrediction(x) ∈ O(e(n)), B be a bag, and |B| =

m. Then IFLIW.classify(B) ∈ O(m(e(n) + p(n))).

Proof. The first for loop executes m times. In each iteration of that loop, a re-

gression prediction and a classification prediction are made; these are O(e(n)) and

O(p(n)), respectively. As the number of classes is viewed as a constant, the loop

over the classes is O(1). So the first for loop is O(m(e(n) + p(n))).

The computation of oldSum and the normalization loop are O(numClasses) ∈
O(1) by assumption, and the return statement is also O(1). Therefore, the

classify() procedure is

O(m(e(n) + p(n)) + 3)

∈ O(m(e(n) + p(n)))

Continuing with the example scenario used to illustrate the previous result, we

know that the complexity of the classification routine for a decision stump is O(1).

Additive regression multiplies this by a constant factor which has no impact on the

big-Oh bounds for the routine, so we have e(n) ∈ O(1). Then, the complexity of

IFLIW’s classification routine using C4.5 (without subtree replacement) and additive

regression with decision stumps is O(m(1 + log n)) ∈ O(m log n).

5.3.3 Evaluation on Artificial Data

In order to investigate the effectiveness of the algorithm, 64 artificial datasets were

generated using the weighted collective assumption. The instance space for each

dataset consisted of a single numeric attribute x ∈ [−1, 1]. The class probability

function pr(x) and the weight function w(x) were varied over the following four

functions:

93

Figure 5.1: Artifical Function 0 — Decision Stump

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

f(
x
)

x

• decision stump: f(x) =











1 x = 0.7

0.2 otherwise

• piecewise (decision tree): f(x) =







































1 x < −0.5

0.2 −0.5 ≤ x < 0

1 0 ≤ x < 0.5

0.5 otherwise

• linear f(x) = 0.3x + 0.5

• sigmoid f(x) = 1 − (1/(1 + exp(10x)))

Graphs for each of the functions are provided in Figures 5.1 to 5.4. Also varied

were the determinism of the class labels and the size of the bags. In the case of

deterministic classification, the class label of each bag was set to the most likely

class according to Equation 5.2. Otherwise, bag-level class labels were assigned

randomly according to the computed bag-level probability distribution described by

Equation 5.1. When bags sizes were deterministic, each bag contained exactly five

instances, otherwise the size of each bag was randomly selected between one and

five instances. Each dataset contained 150 bags. Varying these parameters, a total

of 4 × 4 × 2 × 2 = 64 different datasets were generated.

94

Figure 5.2: Artifical Function 1 — Piecewise (Decision Tree)

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

f(
x
)

x

Figure 5.3: Artifical Function 2 — Linear

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

f(
x
)

x

95

Figure 5.4: Artifical Function 3 — Sigmoid

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

f(
x
)

x

IFLIW was evaluated on the artificial datasets using the single-instance base

learners from the MILES experiment. Additive regression with 100 decision stumps

was used as the regression learner. The number of iterations for IFLIW was set to 20.

Ten repeats of 10-fold cross validation were performed on each dataset using each

base learner, and statistical significance was determined using a pairwise resampled

corrected t-test with significance level α = 0.05. The MIWrapper algorithm was

used as a baseline in the experiments.

Apart from classification accuracy, the root mean squared error (RMSE) was

used to measure the quality of the probability estimates generated. The RMSE is

defined as:
√

∑

ij(pij − aij)2/n, where for all test bags Bi ∈ {B1, · · · , Bn} and for

all class labels cj ∈ {c1, · · · , cm}, pij is the predicted probability that Bi belongs to

class cj , and aij = 1 if and only if Bi belongs to class cj, otherwise aij = 0.

Because of the squaring of the error terms, a property of the root mean squared

error measure is that it gives more weight to large errors than to small ones. The

results for IFLIW relative to MIWrapper for the two performance measures are

summarized in Tables 5.1 and 5.2.

When executing the experiments, a difficulty was encountered with the random

forests algorithm when used as a base learner for both the IFLIW and MIWrapper

MI algorithms. On some datasets, trees of such great depth were created that

the learning program crashed due to a lack of stack space. Although the WEKA

implementation of the random forests algorithm is widely used and well tested, it

96

Table 5.1: IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data
(Classification Accuracy)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 5 3 3 8 3 5 6 34 6
Losses 4 3 3 6 3 8 3 0 4
Ties 55 58 58 50 58 51 55 30 54
Wins - Losses 1 0 0 2 0 -3 3 34 2
Average
MIWrapper 75.1 78.8 68.0 67.1 68.0 77.9 76.2 63.0 77.9
Average
IFLIW 74.9 78.0 68.0 67.2 68.0 77.4 76.5 72.5 77.8

Table 5.2: IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data
(Root Mean Squared Error)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 24 28 28 29 28 27 35 33 33
Losses 1 1 1 3 1 2 0 9 0
Ties 39 35 35 32 35 35 29 22 31
Wins - Losses 23 27 27 26 27 25 35 24 33
Average
MIWrapper 0.43 0.46 0.46 0.47 0.46 0.43 0.43 0.47 0.43
Average
IFLIW 0.38 0.44 0.44 0.45 0.44 0.36 0.35 0.41 0.36

seemed likely that this was caused by a bug in the implementation of that algorithm.

This problem was resolved by limiting the depth of the trees created by the random

forests algorithm to 500 levels — a depth which was not expected to be reached in

normal execution of the algorithm on these datasets.

It was found that although IFLIW did not typically achieve superior classifi-

cation accuracy over the baseline MIWrapper algorithm (Table 5.1), it frequently

obtained significantly lower root mean squared error rates compared to MIWrapper

(Table 5.2) for all base learners, with very few significant losses for this performance

measure. The median number of significant wins minus significant losses against MI-

Wrapper was only one for classification accuracy, but 27 for the root mean squared

error measure.

The root mean squared error is a more sensitive measure of performance than

classification accuracy, which may partially explain the discrepancy between the

results of the two measures. Furthermore, as found by [Dong, 2006] and confirmed

in the experiments described in Chapter 4, MIWrapper is typically very difficult

to beat in terms of classification accuracy. It appears that the bias introduced by

MIWrapper’s inability to represent instance weights is small enough to make little

difference to classification performance (due to an adequate decision boundary being

obtained), but the bias in the probability estimates becomes apparent when the root

97

Table 5.3: IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data
with Deterministic Generative Model (Classification Accuracy)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 5 3 3 7 3 5 6 31 6
Losses 4 3 3 4 3 8 3 0 4
Ties 23 26 26 21 26 19 23 1 22
Wins - Losses 1 0 0 3 0 -3 3 31 2
Average
MIWrapper 88.7 76.3 76.3 74.9 76.3 91.7 90.9 71.3 91.4
Average
IFLIW 88.5 76.3 76.3 75.1 76.3 90.4 90.1 87.0 91.1

Table 5.4: IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data
with Non-Deterministic Generative Model (Classification Accuracy)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 0 0 0 1 0 0 0 3 0
Losses 0 0 0 2 0 0 0 0 0
Ties 32 32 32 29 32 32 32 29 32
Wins - Losses 0 0 0 -1 0 0 0 3 0
Average
MIWrapper 61.5 59.7 59.7 59.3 59.7 64.0 61.4 54.6 64.4
Average
IFLIW 61.3 59.7 59.7 59.2 59.7 64.4 62.0 58.0 64.5

Table 5.5: IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data
with Deterministic Generative Model (Root Mean Squared Error)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 21 23 23 24 23 26 28 31 29
Losses 0 1 1 2 1 0 0 0 0
Ties 11 8 8 6 8 6 4 1 3
Wins - Losses 21 22 22 22 22 26 28 31 29
Average
MIWrapper 0.39 0.44 0.44 0.45 0.44 0.38 0.39 0.43 0.38
Average
IFLIW 0.28 0.39 0.39 0.41 0.39 0.24 0.24 0.28 0.24

Table 5.6: IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data
with Non-Deterministic Generative Model (Root Mean Squared Error)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 3 5 5 5 5 1 7 2 4
Losses 1 0 0 1 0 2 0 9 0
Ties 28 27 27 26 27 29 25 21 28
Wins - Losses 2 5 5 4 5 -1 7 -7 4
Average
MIWrapper 0.48 0.48 0.48 0.49 0.49 0.48 0.48 0.52 0.48
Average
IFLIW 0.47 0.48 0.48 0.49 0.49 0.48 0.47 0.54 0.47

Table 5.7: IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data
with Fixed Bag Sizes (Classification Accuracy)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 2 3 3 5 3 2 2 16 2
Losses 4 2 2 4 2 6 3 0 4
Ties 26 27 27 23 27 24 27 16 26
Wins - Losses -2 1 1 1 1 -4 -1 16 -2
Average
MIWrapper 73.4 66.4 66.4 66.3 66.4 77.0 74.6 60.5 77.4
Average
IFLIW 72.3 66.6 66.7 66.4 66.6 75.6 73.7 69.5 75.8

98

Table 5.8: IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data
with Random Bag Sizes (Classification Accuracy)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 3 0 0 3 0 3 4 18 4
Losses 0 1 1 2 1 2 0 0 0
Ties 29 31 31 27 31 27 28 14 28
Wins - Losses 3 -1 -1 1 -1 1 4 18 4
Average
MIWrapper 76.8 69.6 69.6 67.8 69.6 78.7 77.8 65.4 78.3
Average
IFLIW 77.5 69.4 69.4 68.0 69.4 79.2 79.3 75.5 79.8

Table 5.9: IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data
with Fixed Bag Sizes (Root Mean Squared Error)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 11 14 14 16 14 15 19 15 17
Losses 0 1 1 2 1 0 0 5 0
Ties 21 17 17 14 17 17 13 12 15
Wins - Losses 11 13 13 14 13 15 19 10 17
Average
MIWrapper 0.46 0.48 0.48 0.47 0.48 0.45 0.46 0.48 0.45
Average
IFLIW 0.40 0.44 0.44 0.45 0.44 0.38 0.38 0.43 0.37

Table 5.10: IFLIW: Significant Wins and Losses vs MIWrapper on Artificial Data
with Random Bag Sizes (Root Mean Squared Error)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 13 14 14 13 14 12 16 18 16
Losses 1 0 0 1 0 2 0 4 0
Ties 18 18 18 18 18 18 16 10 16
Wins - Losses 12 14 14 12 14 10 16 14 16
Average
MIWrapper 0.41 0.45 0.45 0.47 0.45 0.41 0.41 0.47 0.41
Average
IFLIW 0.35 0.43 0.43 0.45 0.43 0.34 0.33 0.40 0.34

99

mean squared error measure is used.

A very interesting case was the random forests base learner, for which IFLIW

achieved 34 significant wins and no significant losses against MIWrapper for classifi-

cation accuracy (Table 5.1). This is a surprising result, given that the for next-best

base learner (Adaboost with C4.5), it achieved only six significant wins with three

losses versus MIWrapper.

However, considering the root mean squared error, the results for random forests

are not quite as positive. Although IFLIW with random forests achieved the second-

highest number of significant wins versus MIWrapper (with 33 wins), it also had the

biggest number of significant losses by quite a large margin. It suffered nine signifi-

cant losses against MIWrapper, while the next highest number of losses was from the

1-norm support vector machine with only three significant losses. In comparison to

this, for six of the nine base learners IFLIW suffered no more than one loss against

MIWrapper for the root mean squared error measure.

Closer analysis shows that IFLIW with the random forests base learner consis-

tently performed better than MIWrapper on the datasets that were generated via

a deterministic labeling process, but did not exhibit such a clear superiority on the

probabilistically labeled datasets.

With the random forests base learner, significant wins for IFLIW were observed

for all but one of the deterministically labeled datasets (where no significant dif-

ference was observed), under both the classification accuracy (Table 5.3) and root

mean squared error performance measures (Table 5.5). In contrast to this, only three

wins with respect to accuracy were observed for probabilistically labeled datasets,

also with no losses against MIWrapper (Table 5.4). The nine significant losses with

respect to the root mean squared error measure for IFLIW with random forests

were all observed on probabilistically labeled datasets, while only two significant

wins were observed for IFLIW with that base learner for that performance measure

(Table 5.6).

Regardless of the base learner used, the majority of cases where IFLIW performed

better than MIWrapper were on datasets where a deterministic generative model was

used. Overall, IFLIW achieved a total of 223 more significant wins than losses with

respect to the root mean squared error on datasets where a deterministic generative

model was used (Table 5.5), compared to 24 more wins than losses for that measure

100

on datasets with probabilistic generative models (Table 5.6).

For the classification accuracy measure, 37 more significant wins than losses

for IFLIW were observed on datasets where deterministic generative models were

used (Table 5.3), while only two more significant wins than losses were observed on

datasets where probabilistic generative models were used (Table 5.4). However, this

result was almost entirely due to the random forests base learner.

It was found that both IFLIW and MIWrapper consistently performed slightly

better on datasets where bag sizes were randomly selected than on datasets where

each bag contained exactly five instances, regardless of the base classifier or per-

formance measure (Tables 5.7 — 5.10). Although this result is slightly counter-

intuitive, it can be largely explained by the fact that the datasets where bag sizes

were randomly selected contained smaller bags on average, which presumably re-

sulted in an easier learning problem. In hindsight, to make this comparison fairer

the mean of the randomly generated bag sizes could have been set to the size of

the bags used in the deterministic case. This should be taken into account when

interpreting the experimental results with respect to determinism of bag sizes.

In the observed results, and under classification accuracy, IFLIW performed

better relative to MIWrapper on datasets with non-deterministic bag sizes than on

those with fixed bag sizes, although bag size determinism had a smaller effect on the

algorithms’ relative performance than label determinism. IFLIW achieved 28 more

significant wins than losses against MIWrapper on datasets with randomly selected

bag sizes (Table 5.8), compared to 11 more significant wins than losses on datasets

with fixed bag sizes (Table 5.7).

In contrast to the case of label determinism, there was very little overall difference

between datasets with fixed bag sizes and those with random sizes under the root

mean squared error performance measure: 125 more significant wins than losses for

IFLIW were observed on datasets with fixed bag sizes (Table 5.9), compared to 122

on the randomly sized datasets (Table 5.10).

Predicted Weights vs Iterations

Figures 5.5 to 5.10 show the weights predicted by IFLIW for the instances in the

training bags in their initial state and after each of the first five iterations for one of

the artificial problems described above. The weight function and class probability

101

Figure 5.5: Weight Function — Predicted vs Actual. Iteration 0

weight function
positive class probability function

predicted weights

x

w
(x

)

10.80.60.40.20−0.2−0.4−0.6−0.8−1

4

3.5

3

2.5

2

1.5

1

0.5

0

Figure 5.6: Weight Function — Predicted vs Actual. Iteration 1

weight function
positive class probability function

predicted weights

x

w
(x

)

10.80.60.40.20−0.2−0.4−0.6−0.8−1

4

3.5

3

2.5

2

1.5

1

0.5

0

102

Figure 5.7: Weight Function — Predicted vs Actual. Iteration 2

weight function
positive class probability function

predicted weights

x

w
(x

)

10.80.60.40.20−0.2−0.4−0.6−0.8−1

4

3.5

3

2.5

2

1.5

1

0.5

0

Figure 5.8: Weight Function — Predicted vs Actual. Iteration 3

weight function
positive class probability function

predicted weights

x

w
(x

)

10.80.60.40.20−0.2−0.4−0.6−0.8−1

4

3.5

3

2.5

2

1.5

1

0.5

0

103

Figure 5.9: Weight Function — Predicted vs Actual. Iteration 4

weight function
positive class probability function

predicted weights

x

w
(x

)

10.80.60.40.20−0.2−0.4−0.6−0.8−1

4

3.5

3

2.5

2

1.5

1

0.5

0

Figure 5.10: Weight Function — Predicted vs Actual. Iteration 5

weight function
positive class probability function

predicted weights

x

w
(x

)

10.80.60.40.20−0.2−0.4−0.6−0.8−1

4

3.5

3

2.5

2

1.5

1

0.5

0

104

function used to generate the dataset were the piecewise (decision tree) function

from Figure 5.2 and the decision stump function from Figure 5.1, respectively. The

deterministic version of the weighted MI assumption (Equation 5.2) was used to

generate 150 bags, each containing five instances.

The single-instance base classifier used for IFLIW was a simple information-gain

based decision tree algorithm, implemented as REPTree in the WEKA data mining

software suite. No pruning was performed for the decision tree, but instead the tree

was limited to a maximum depth of three levels. The choice of regression learner is

irrelevant here, as the regression model is not built until after the iteration process

is completed.

It can be seen from the graphs that in this example, IFLIW has in most cases

shifted the instance weights towards the correct shape of the underlying weight func-

tion as the iterations have proceeded. However, some issues can also be observed.

Instances belonging to the region of instance space between x = 0.05 and x = 0.1

were given much higher instance weights than those in other regions. In fact, the

weights of points in this region were out of range of the graphs in Figures 5.8 to

5.10. The most likely cause for this is overfitting to the training data. Under this

hypothesis, the base learner produced very confident probability estimates in this

region due to the fortuitous occurrence of class purity in this region of the training

set. The confident probability estimates caused an increase in weight, which was

exaggerated in every iteration. By iteration 3 (Figure 5.8), the weights for the

instances close to x = 0.05 exceeded the maximum value represented by the graph,

and by iteration 5 had weight values of approximately 15, a twenty-fold increase

over the weight values of nearby instances.

Thus it appears that overfitting by the base learner can be exaggerated by

IFLIW, especially when large numbers of iterations are used. For this reason, it

is recommended that the base learner for IFLIW be selected carefully to avoid over-

fitting.

Another interesting phenomenon that can be observed from the graphs is the

behaviour of IFLIW in the region where x is between 0.7 and 1. In the underlying

model, this region has a moderate weight and a high probability of the positive class.

IFLIW gave this region a higher weight than the preceding region, despite the fact

that the preceeding region has a higher weight value in the underlying model.

105

This can be explained by the ambiguity between the weight function and the

probability function. In the weighted collective assumption, the total influence of

an instance on a bag-level class label is determined not only by the weight value of

that instance, but also the confidence of the probability function of the instance.

The higher weight in this region was most likely predicted due to interference from

the probability function.

It is clear from this example that IFLIW cannot always retrieve the original

weight function and probability function. In fact, this is not possible in general, as

different combinations of weight and probability function could generate the same

overall classification model. Despite this, it does appear to make a reasonable ap-

proximation as to which areas of instance space are the most important. From this

point of view, the increased weight in the region near the right-hand end of the

graph is sensible, as the probability function in that region makes those instances

more important than other regions, even though the weight value of that region is

not very high in the generative model.

5.4 An Alternative Weighted Assumption

In this section, we present a second MI assumption for modeling the notion of varying

levels of influence on bag-level class labels, called the weighted linear threshold MI

assumption. This assumption is inspired by linear classification techniques such as

support vector machines and boosting. In the following, the model is formalized,

motivations for the model are discussed, and the relationship between the weighted

collective assumption and this alternative assumption is explained. In Section 5.5,

we show how MILES can be modified to learn this alternative type of MI concept.

5.4.1 The Weighted Linear Threshold MI Assumption

The weighted collective MI assumption (described earlier in Section 5.2) is a gener-

alized MI assumption that extends the collective assumption. We showed that such

an extended model is more powerful than the collective assumption, and that it can

also be used to approximate the standard MI assumption.

The relationship between the weighted assumption and the collective assumption

106

is convenient for upgrading collective assumption-type MI algorithms to incorporate

an influence function. However, if the goal is to represent the notion of bag-level

influence over instance space, the weighted collective MI assumption may be unnec-

essarily complex.

Weighted collective MI concepts are defined by a probability function pr(c|x)

and a weight function w(x). Under this assumption, the level of influence of a point

in instance space depends not only on the weight of the point, but also on the

confidence of the class probability. For example, in the deterministic version of the

assumption, if there is an equal likelihood that an instance x belongs to either the

positive or the negative class (pr(+|x) = pr(−|x) = 0.5), x will have no influence

on the class label of a bag, regardless of its weight.

In the weighted collective MI model, the weight function and the probability

function combine to form an overall influence function. It is this “true” influence

function that determines the bag-level classification outcome.

It is not hard to see that many different combinations of probability function

and weight function can produce the same overall influence function. Because of

this ambiguity, it is not generally possible to recover the true underlying weight and

probability functions from an observed set of data. Fortunately, it is not necessary

to do so, as the overall influence function is all that is required to make accurate

classifications.

Thus, if we are interested only in classification performance, it makes sense to use

the notion of instance weights to model bag-level influence directly. We can simplify

the weighted collective model by equating the notion of weight with the overall

influence that an instance has on a bag’s class label. In terms of the weighted

collective assumption, this new type of weight, combined with the class label of

an instance, corresponds to the combined effect of both the level of confidence of

pr(c|x), and w(x).

This alternative assumption is named the weighted linear threshold MI assump-

tion, because the accumulated (signed) weights for a bag are compared against a

threshold to obtain a classification. In this model, a weight function wwlt(x) : χ →
R

+ and a classification function cwlt(x) : χ → {+1,−1} are defined over instance

space1. Instances belonging to the positive class (cwlt(x) = +1) influence their par-

1Here, R
+ refers to the positive real numbers, and does not include zero.

107

ent bag towards a positive class label, and instances belonging to the negative class

(cwlt(x) = −1) influence their bag towards a negative class label. The weight of

an instance determines the strength of that instance’s influence on bag-level class

labels.

Formally, let νwlt : N
χ → Ω = {+,−} be a weighted linear threshold MI concept.

Then νwlt is of the form

νwlt(X) = sign

(

∑

i

wwlt(Xi)cwlt(Xi) + b

)

. (5.3)

Here, b is a bias variable, which determines the location of the decision boundary.

This formulation of weight-based MI learning is inspired by linear classification in

single instance learning (see Section 3.3.5). Recall the classification equation for a

linear classifier:

ν(m) = sign(wT m + b)

= sign(
∑

i

wimi + b) .

In the weighted linear threshold model, instances are treated analogously to

attributes in the case of linear classification. The class cwlt(x) of an instance cor-

responds to an attribute value mi. Instance weights wwlt(x) in the MI assumption

correspond directly to attribute weights wi in a linear classifier. The bias parameter

b performs an identical function to the b parameter in the linear classification model.

The weighted linear threshold assumption can represent the types of concepts

that the deterministic version of the weighted collective assumption can model. The

precise relationship between the two models is described in Section 5.4.3.

As mentioned earlier, the weighted collective MI assumption presents a difficulty

for learning algorithms in that there is an ambiguity between the weight function

and the class probability function. Many different pairs of weight and probability

function can produce the same overall influence function, which means that the

original functions cannot be retrieved in general.

This ambiguity problem is largely avoided with the weighted linear threshold

assumption, as the level of influence is determined by a single function, wwlt(x). Be-

108

cause the classification function encapsulates only the direction of the influence and

does not contain information relating to its magnitude, there is no shared respon-

sibility between wwlt(x) and cwlt(x) for the level of influence at a point in instance

space.

Some ambiguity in the model remains, however, as different combinations of

wwlt(x) and b can correspond to the same classification decision boundary. We will

not prove this formally here, but a geometric interpretation may help to demonstrate

this. Recall that in this model, instances are treated similarly to the way attributes

are treated in linear classification. In other words, each instance can be interpreted

as a dimension of a feature space.

Under this interpretation, a weighted linear threshold concept can be viewed as

a “hyperplane” through the space of instance labels. The part of Equation 5.3 that

describes the location of the decision boundary,
∑

i wwlt(Xi)cwlt(Xi)+b, is analogous

to a “line” in this space. Just as a line L = {m|wTm + b = 0} in a vector space

can be described by different choices of wT and b, a weighted linear threshold can

be described by different choices of wwlt(x) and b.

This ambiguity is less problematic than in the case of the weighted collective

assumption, as the ambiguity does not affect the semantics of the model. In the

case of the line L, all choices of wT and b must be scalar multiples of each other —

similarly, wwlt(x) and b are unique up to scalar multiplication.

5.4.2 Artificial Domain Examples

To illustrate the type of MI concepts that can be represented by the weighted linear

threshold MI assumption, let us consider a simple artificial domain example, which

we will refer to as WLT1. This artificial problem consists of an instance space χ

with one binary attribute a = {t, f}. As each instance is described entirely by

a single attribute value, we will abuse the feature vector notation and denote an

instance in this domain by its attribute value, i.e. χ = {t, f}.

In our artificial example, let the influence function wWLT1(x) be:

wWLT1(x) =











2 if x = t

1 if x = f ,

109

let the classification function be

cWLT1(x) =











+1 if x = t

−1 if x = f ,

and set b = −3. In this scenario, t is a positive instance, and f is a negative

instance. t instances have twice as much influence as f instances. Then the artificial

concept vWLT1 can be described by:

νWLT1(X) = sign

(

2 × count(Xi = t) − count(Xi = f) − 3

)

,

where count(Xi = x) is the number of instances Xi in the bag X where the attribute

value for Xi is equal to x.

The trial and scholarship scenarios can also be represented using the weighted

linear threshold assumption. In the trial problem, the classification function de-

termines whether a piece of evidence supports a guilty or innocent verdict, and

the weight function determines the influence that the piece of evidence has on the

verdict.

In the scholarship scenario, the classification function determines whether the

reference was positive or negative, and the weight function corresponds to the level

of influence that the reference has on the scholarship selection committee, which is

affected by both the level of enthusiasm of the referee and their reputation.

5.4.3 Relationship to the Weighted Collective MI Assump-

tion

It is instructive to consider how the weighted collective MI assumption is related to

the weighted linear threshold assumption. We show the relationship between the

two models by deriving a formula to convert an arbitrary deterministic weighted

collective concept into a weighted linear threshold concept, thus demonstrating that

the weighted linear threshold assumption is at least as powerful a concept language

as the deterministic weighted collective assumption. A partial converse is also shown.

Theorem 5.4.1. Let νdw(B) be a deterministic weighted collective concept. Then

νdw(B) can be written as a weighted linear threshold concept of the form:

110

νdw(B) = sign

(

∑

i

wdw(xi)cdw(xi) + b

)

Proof. The deterministic weighted collective concept vdw(B) is of the form:

νdw(B) = sign(t), t =
1

∑nb

j=1 w(xj)

nb
∑

i=1

w(xi)pr(+|xi) − 0.5

The target variable t determines the classification of a bag. To convert vdw(B)

into a weighted linear threshold concept, we will find a method to compute the class

of an instance xi, and the influence that xi has on t. First, we rewrite the equation

as

w(x1)pr(+|x1) + · · ·+ w(xnb
)pr(+|xnb

)
∑nb

j=1 w(xj)
= t + 0.5 .

Let ai = pr(+|xi) − 0.5. Then we have

w(x1)(a1 + 0.5) + · · ·+ w(xnb
)(anb

+ 0.5)
∑nb

j=1 w(xj)
= t + 0.5

⇔ w(x1)(a1 + 0.5) + · · ·+ w(xnb
)(anb

+ 0.5) =

nb
∑

j=1

w(xj)(t + 0.5)

⇔ w(x1)(a1 + 0.5) + · · ·+ w(xnb
)(anb

+ 0.5) =

nb
∑

j=1

w(xj)t +

nb
∑

j=1

0.5w(xj) .

Expanding the left hand size and collecting like terms into sums, we get

111

nb
∑

i=1

w(xi)ai +

nb
∑

i=1

0.5w(xi) =

nb
∑

j=1

w(xj)t +

nb
∑

j=1

0.5w(xj)

⇔
nb

∑

i=1

w(xi)ai =

nb
∑

j=1

w(xj)t

⇔
∑nb

i=1 w(xi)ai
∑nb

j=1 w(xj)
= t

⇔
∑nb

i=1 w(xi)(pr(+|xi) − 0.5)
∑nb

j=1 w(xj)
= t

⇔
nb

∑

i=1

w(xi)(pr(+|xi) − 0.5)
∑nb

j=1 w(xj)
= t

We know that νdw(B) = sign(t), so we have:

νdw(B) = sign

(nb
∑

i=1

w(xi)(pr(+|xi) − 0.5)
∑nb

j=1 w(xj)

)

.

Let cdw(x) =











+1 pr(+|x) − 0.5 > 0

−1 otherwise ,

and let wdw(x) = |w(x)(pr(+|x) − 0.5)|. Then

νdw(B) = sign

(nb
∑

i=1

|w(xi)(pr(+|xi) − 0.5)|cdw(xi)
∑nb

j=1 w(xj)

)

⇔ νdw(B) = sign

(nb
∑

i=1

wdw(xi)cdw(xi)
∑nb

j=1 w(xj)

)

Since
∑nb

j=1 w(xj) is positive and affects all terms equally, it does not affect the

sign. Therefore, it can be discarded, and νdw can be written in weighted linear

threshold form:

νdw(B) = sign

(

∑

i

wdw(xi)cdw(xi) + 0

)

.

112

We have now shown that any arbitrary deterministic weighted collective concept

can be represented as a weighted linear threshold concept. As every step of the

conversion was an equivalence, the converse is true with one restriction: any weighted

linear threshold concept where b = 0 can be represented as a weighted collective

concept.

This makes sense given that there is no bias parameter in the deterministic

weighted collective assumption — instead, a fixed threshold of 0.5 is used. To

remedy this, a bias parameter bedw can be introduced as follows:

νedw(B) = sign(t), t =
1

∑nb

j=1 w(xj)

nb
∑

i=1

w(xi)pr(+|xi) − bedw . (5.4)

We name this model the extended deterministic weighted collective assumption.

This thesis will not explore this model any further.

5.5 Modifying MILES to Learn Weighted Linear

Threshold Concepts

Although MILES learns instance weights for all of the instances in its training bags,

in generalizing these weights to other instances a bag-dependent weight function is

used. Because the weight function is bag-dependent, it is not a function over instance

space. In other words, MILES’ weight method is a function wMILES(x) : (χ×B) → R

from the Cartesian product of instance space χ with bag space B to the real numbers

(see Section 3.3.5). It is desirable for the weight method to be a function over

instance space, i.e. of the form w(x) : χ → R. This section presents YARDS, a

variation on MILES which learns a true weight function over instance space, and

makes classifications according to the weighted linear threshold MI assumption.

Recall that MILES performs a transformation that maps every bag into an

instance-based feature space, where each feature represents the similarity between a

bag and an instance. A single-instance classifier (typically a 1-norm support vector

machine) is learned on this transformed feature space, and used for classification.

The similarity measure s(x, B) used for the feature mapping was defined earlier

113

in Equation 3.2. For convenience, we provide it again:

s(x, B) = max
j

exp

(

− ‖Bj − x‖2

σ2

)

,

where x is an instance, B is a bag and σ is a parameter to the model. As

explained above, this is problematic when viewing MILES as an algorithm that

learns instance weights, as the weight of any point in instance space is dependent

on the other instances in its bag. The difficulty arises because of the max operator,

which selects only the closest instance in the bag B when determining the similarity

value. The max operator is based on the most-likely cause estimator [Maron, 1998],

a method from the diverse density framework for predicting the probability that

a point in instance space is the target point (assuming only a single target point)

given a bag. The most likely cause estimator only considers the closest instance in

the bag when computing that probability.

We propose an alternative similarity measure sy(X, B) that removes this bag

dependence. We call this alternative Yet Another Radial Distance-based Similar-

ity measure (YARDS). The YARDS similarity measure replaces the max operator

with a sum operator. In other words, every instance in the bag contributes in an

equal fashion when computing the similarity measure. This results in the following

equation:

sy(x, B) =
∑

j

exp

(

− ‖Bj − x‖2

σ2

)

. (5.5)

By summing the distance-based similarity measures for each instance in the bag,

the weight of each instance is taken into account.

The YARDS algorithm is otherwise identical to MILES. The feature space map-

ping is performed using the YARDS transformation, which is identical to the MILES

transformation except that the alternative similarity measure is used:

m(B) = [sy(x
1, B), sy(x

2, B), · · · , sy(x
n, B)]T . (5.6)

Just as for MILES, a single instance classifier is trained on the transformed

feature space, and subsequently used for classification on the similarly transformed

test instances. However, unlike MILES, if a linear classifier is used for the single

114

instance model, a weight function over instance space wy(x) : χ → R
+ is implicitly

formed, and the classifications made by the algorithm are in accordance with the

simplified weighted MI assumption. A proof for this is now provided.

Theorem 5.5.1. YARDS classifiers with linear base learners adhere to the sim-

plified weighted MI assumption. I.e. νY ARDS(X) can be written in the form:

sign

(

∑

i w(Xi)c(Xi) + b

)

, where w(x) is a function over the instance space χ.

Proof. Let us consider the behaviour of the linear model on this transformed data.

Linear classification models are of the form:

ν(m) = sign(wTm + b)

⇔ ν(m) = sign(
∑

k

wkmk + b) ,

where w is a weight vector, m is a test instance, b is the bias parameter, and

ν(m) is the output of the model for instance m. Let X be the bag that generated

instance m. By Equation 5.6, the YARDS classifier can be represented by

νY ARDS(X) = sign(
∑

k

wksy(x
k, X) + b)

⇔ νY ARDS(X) = sign(
∑

k

wk

∑

j

exp

(

− ‖Xj − xk‖2

σ2

)

+ b)

⇔ νY ARDS(X) = sign(
∑

k

∑

j

exp

(

− ‖Xj − xk‖2

σ2

)

wk + b)

⇔ νY ARDS(X) = sign(
∑

j

∑

k

exp

(

− ‖Xj − xk‖2

σ2

)

wk + b) .

We now define wy(x) : χ → R
+ as follows:

wy(x) = |
∑

k

exp

(

− ‖x − xk‖2

σ2

)

wk| . (5.7)

We also let cy(x) =















+1
∑

k exp

(

− ‖x−xk‖
2

σ2

)

wk > 0

−1 otherwise .

115

Now,

∑

k

exp

(

− ‖Xj − xk‖2

σ2

)

wk

= |
∑

k

exp

(

− ‖Xj − xk‖2

σ2

)

wk|cy(Xj)

= wj(Xj)cy(Xj) ,

so we have:

νY ARDS(X) = sign(
∑

j

wy(Xj)cy(Xj) + b) . (5.8)

Assuming a fixed σ, and a fixed set of target points xk ∈ C with fixed weights wk,

wy(x) is clearly a function over instance space χ, and by Equation 5.8 the YARDS

classifier adheres to the simplified weighted MI assumption.

Pseudocode for YARDS is provided in Algorithm 4.

Interpretation of YARDS’ weight function

Let us consider Equation 5.7. The weight of an instance at point x is determined

by the sum of a set of functions, each of which is related to the distance between x

and an instance from a training bag.

We can interpret this by considering each training point to have its own influence

function over χ. These influence functions are Gaussian, i.e. “bell-shaped” func-

tions, with a peak (or trough, if wk is negative) at the location of the corresponding

training point. The influence functions “stack” together additively to form the over-

all influence function wy(x). Thus, the weight function used by YARDS consists of

the sum of a set of Gaussian influence functions, each centred at an instance from

the training data. It is easy to see that this is quite a powerful representation, and

many complex weight functions can be represented in this manner.

5.5.1 Computational Complexity of YARDS

In this section, we informally show upper bounds on the computational complex-

ity of YARDS. It should be noted that the complexity results for YARDS are also

116

Algorithm 4 YARDS

D = the set of training bags
C = all instances in the bags in D
L = a single-instance base learner
σ = the scaling factor, a parameter to the algorithm

Y ARDS transform(B), B = {Bj : j = 1, · · · , nb}, a bag

for (every instance xk in C) do
sum = 0
for (every instance Bj in B) do

sum = sum + e−
‖Bj−xk‖2

σ2

the kth element of m(B) is sy(x
k, B) = sum

return m(B)

train(D)
F = an empty set of instances
for (every bag Bi = {xij : j = 1, · · · , ni} in D) do

t = Y ARDS transform(Bi)
t.setClassLabel(Bi.getClassLabel())
F = F ∪ {t}

L.train(F) // Can optionally perform feature selection here also

classify(B), B = {Bj : j = 1, · · · , nb} a test bag
t = Y ARDS transform(B)
return L.classify(t)

117

applicable to MILES, as the
∑

operation used in the YARDS feature space trans-

formation is of the same complexity as the max operation used for MILES, and the

algorithms are otherwise identical.

In the following proofs, we assume that the dimensionality of the instance space χ

and the number of classes are both constants. All capital letter variable names refer

to the pseudocode in Algorithm 4. Further, let n = |C|, the number of instances in

all of the training bags in D, and let q = |D|, the number of training bags.

Theorem 5.5.2. Let B be a bag, |B| = m. Then Y ARDS transform(B), the

transformation that maps B into the instance-based feature space, is O(nm).

Proof. To perform the mapping, a feature is created for each instance in the training

bags. As there are n of these instances, the feature creation step occurs n times.

The feature value corresponding to each instance xk is equal to sy(x
k, B). This is

computed by summing the values of a Gaussian function for each instance in B. As

we view the dimensionality of the instance space as a constant, the computation

of the Gaussian function for each instance is O(1). This occurs m times. So the

mapping procedure is O(n × m × 1) ∈ O(nm).

Theorem 5.5.3. Let L.train(F) ∈ O(f(a, b)), where a is the number of instances

in F and b is their dimensionality. Then Y ARDS.train(D) ∈ O(n2 + f(q, n)).

Proof. Because Y ARDS transform() is called for each training bag, the Gaussian

function is computed for each pair of training instance from these bags (of which

there are n) and candidate target point (of which there also are n). The computation

of the Gaussian function is O(1) by assumption, so the total cost for the Gaussian

step over all iterations is O(1 × n × n) ∈ O(n2).

There are two further O(1) assignment statements in the loop over the candidate

target points xk ∈ C. As that loop repeats n times for each bag, the overall cost of

the execution of those statements is O(nq) ∈ O(n2). The assignment of class labels

to transformed instances occurs once for each bag, and the total cost for this is

O(q) ∈ O(n2). So the execution of the feature space transformation for all instances

is O(n2).

All that remains is the complexity of the base learner L’s train() procedure. An

instance in the transformed dataset F is created for each bag in the training data,

118

so |F | = |D| = q. Each instance in F contains a feature corresponding to each

instance in C so the dimensionality of F is |C| = n. So L.train(F) ∈ O(f(q, n)).

Putting the two steps together, the whole build procedure is O(n2 + f(q, n)).

As an illustrative example, consider the case where the base learner for

YARDS is the C4.5 decision tree learner, without using subtree raising for prun-

ing. The complexity of the C4.5 build routine is O(ba log a) = O(nq log q)

[Witten and Frank, 2005], so the overall computational cost of training YARDS with

this base learner is O(n2 + nq log q).

Theorem 5.5.4. Let B be a bag, |B| = m, and let L.classify(x) ∈ O(p(a, b)),

where a is the number of instances used to train L, and b their dimensionality.

Then Y ARDS.classify(B) ∈ O(nm + p(q, n)).

Proof. As shown earlier, the feature space transformation for B is O(mn). The final

step is to apply the base learner L to classify this instance. We showed earlier that

the number of instances in F is equal to q, and dimensionality of F is equal to n,

so the entire classify procedure is O(mn + p(q, n)).

Continuing the earlier illustrative example, the complexity of the C4.5 decision

tree’s classification routine is O(log a) = O(log q) if we follow Witten and Frank and

assume that the decision tree is well balanced. So with C4.5 as the base learner, the

complexity of YARDS classification routine is O(mn + log q) ∈ O(mn).

Compared to IFLIW, the base learner for YARDS (or MILES) need not be as

efficient in the number of instances, since the transformed dataset contains only

one instance for each bag. The base learner for IFLIW, on the other hand, must be

trained on a dataset consisting of the total collection of all instances in all bags in the

training data. However, YARDS’ base learner is required to be more efficient with

respect to feature space dimensionality, as the dimensionality of the transformed

space is equal to the total number of instances in the training data, and will typically

be much larger than the dimensionality that IFLIW would have to deal with.

5.5.2 Limitations of the Algorithm

Although YARDS with a linear base classifier learns weighted linear threshold-type

concepts, it cannot learn any arbitrary weighted linear threshold concept. As de-

119

scribed above, it represents the weight function of a dataset as a sum of Gaussian

functions, each of which has a peak or trough at an instance from the training data.

Even though this representation is quite flexible, this may or may not be a good

approximation for the weight function of a given weighted linear threshold concept.

It should also be noted that when non-linear base learners are used, YARDS may

not learn weighted linear threshold concepts. If the base learner used for YARDS

is not linear, all that can be said about the MI concepts that can be learnt by the

algorithm is that the class labels of bags must be in some way determined by these

features. We can therefore define the MI assumption used by YARDS as:

YARDS Assumption: There is a set of target points, K =

{x1, x2, · · · , x|K|}. The label of a bag X is in some way related to the set

of values {sy(x
1, X), sy(x

2, X), · · · , sy(x
|K|, X)}. Furthermore, K can be

well approximated by the set of instances from the training data.

As in MILES, each feature generated by the YARDS transformation represents a

measure of similarity between a bag and a candidate target point. For YARDS, this

measure is related to the distance of each instance in the bag from the candidate

target point. Because the influence of each instance on a feature is determined by a

Gaussian function, instances that are close to the target point will have a far greater

influence than those which are further away.

Naturally, YARDS can only learn MI concepts where the YARDS assumption

holds. An appropriate base learner must also used — one that is able to learn the

relationship between the sy(x
k, X) values and bag-level class labels for the given MI

concept.

5.5.3 Evaluation on Artificial Data

To empirically investigate the efficacy of YARDS, an artificial dataset was created

using the WLT1 concept (described in Section 5.4.2) as the generative model. This

dataset contained 75 positive and 75 negative bags, with ten instances in each bag.

As the instance space was binary rather than numeric, a distance metric for this

space was required to compute the similarity functions for MILES and YARDS’

feature space transformations. For this, we used the following distance function:

120

Table 5.11: YARDS vs MILES on WLT1: Classification Accuracy
C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging

(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5
MILES 46.7 46.7 46.7 46.7 46.7 46.7 46.7 47.9 49.2
YARDS 47.6 100 100 91.2 100 100 46.7 80.2 49.2
Significance − ◦ ◦ ◦ ◦ ◦ − ◦ −

◦, •, − statistically significant improvement, degradation or no difference vs MILES

Table 5.12: YARDS vs MILES on WLT1: Root Mean Squared Error
C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging

(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5
MILES 0.50 0.50 0.50 0.56 0.50 0.50 0.50 0.50 0.50
YARDS 0.50 0.00 0.00 0.39 0.00 0.00 0.50 0.32 0.50
Significance − ◦ ◦ ◦ ◦ ◦ − ◦ −

◦, •, − statistically significant improvement, degradation or no difference vs MILES

d(x1, x2) =











0 x1 = x2

1 x1 6= x2 .

YARDS, MILES and MIWrapper were compared on this dataset via 10×10-fold

cross-validation, using the base learners from the MILES experiments described in

Chapter 4. The σ parameter for both MILES and YARDS was set to
√

8 × 105, as

used by [Chen et al., 2006] for MILES on the musk2 dataset. Statistical significance

was determined using a paired corrected t-test with confidence level α = 0.05. The

results are summarized in Tables 5.11 — 5.14.

The results show that the performance of YARDS varies dramatically between

base learners. Linear classifiers, support vector machines with non-linear RBF ker-

nels and boosted decision stumps performed the best. All of those base learners

except for the 1-norm support vector machine achieved perfect classification perfor-

mance (Table 5.11) and negligible root mean squared error rates (Table 5.12), though

the 1-norm SVM still performed competitively with 91.2% accuracy. However, C4.5

was unable to perform better than chance, and neither bagging nor boosting the

base learner improved this result.

In contrast to YARDS, MILES’ performance was consistently poor regardless of

the base learner. MILES performed no better than chance for all base classifiers

tried in the experiment (Tables 5.11 and 5.12). For both classification accuracy and

the root mean squared error estimator, YARDS enjoyed significant wins over MILES

for six of the nine base learners, with no significant losses.

Although YARDS achieved excellent accuracy and root mean squared error re-

sults with several base learners, MIWrapper was more consistently strong in terms

121

Table 5.13: YARDS vs MIWrapper on WLT1: Classification Accuracy
C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging

(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5
MIWrapper 100 100 100 92.3 100 100 100 100 100
YARDS 47.6 100 100 91.2 100 100 46.7 80.2 49.2
Significance • − − − − − • • •

◦, •, − statistically significant improvement, degradation or no difference vs MIWrapper

Table 5.14: YARDS vs MIWrapper on WLT1: Root Mean Squared Error
C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging

(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5
MIWrapper 0.46 0.46 0.46 0.44 0.46 0.46 0.46 0.46 0.46
YARDS 0.50 0.00 0.00 0.39 0.00 0.00 0.50 0.32 0.50
Significance • ◦ ◦ ◦ ◦ ◦ • ◦ •

◦, •, − statistically significant improvement, degradation or no difference vs MIWrapper

of classification accuracy. The MIWrapper method achieved one-hundred percent

accuracy with eight of the nine base learners (Table 5.13). The worst performing

base learner for MIWrapper was the 1-norm support vector machine, where an ac-

curacy of 92.3% was observed. This result was statistically indistinguishable to the

accuracy of YARDS using the same base classifier.

However, YARDS fared better than MIWrapper overall with respect to the root

mean squared error rate, with six significant wins and three losses for that perfor-

mance measure (Table 5.14). MIWrapper consistently produced a root mean squared

error rate of approximately 0.46, and never approached the negligible RMSE values

enjoyed by YARDS using four of the nine base learners.

Further Investigation — Parameter Tuning

The above experimental results motivated two questions: why did MILES perform

so poorly compared to the other two methods, and why was there such a dramatic

variability between the performance of base learners for YARDS? We considered

the possibility that the selection of the σ parameter for the MILES and YARDS

transformations may have been a factor in this result.

To investigate the first question, MILES was evaluated on the WLT1 dataset with

a range of different σ values. The support vector machine with the linear kernel was

selected as the base learner for the experiment, as that algorithm had performed

strongly as a base classifier for both YARDS and MIWrapper. The σ parameter was

varied between σ2 = 1 and σ2 = 106, using the step procedure σ2
i+1 = σ2

i × 10, and

the algorithm was evaluated using a single ten-fold cross-validation. It was found

that the alteration of the σ value made no difference to the classification performance

122

Figure 5.11: Parameter Tuning — MILES with linear kernel SVM on WLT1

0

20

40

60

80

100

100 101 102 103 104 105 106

%
ac

cu
ra

cy

σ2 (log10 scale)

rsrsrsrsrsrsrs

of the algorithm. The results are shown in Figure 5.11.

Combined with the results described in the previous section, this result indi-

cates that MILES may not be able to learn the WLT1 concept, regardless of the

base learner used or the value of the σ parameter. An explanation for this from a

theoretical point of view is provided in the next section.

A similar experiment was performed to determine whether the poor performance

of YARDS with C4.5 as the base learner was due to the value of the σ parameter

or a more fundamental reason. YARDS with C4.5 was evaluated on the dataset

using the same evaluation method and parameter values as for the MILES tuning

experiment. The results of the experiment are provided in Figure 5.12.

It was found that YARDS with C4.5 achieved one-hundred percent classification

accuracy for all parameter values where σ was less than or equal to 104, thus demon-

strating that YARDS with C4.5 was capable of learning this type of concept when

appropriate parameter values were selected. To verify that this was not merely due

to a chance effect caused by the particular dataset that was generated, an alterna-

tive test dataset was created using the WLT1 generative model. This dataset was

created in the same way as the original WLT1 data, but using a different random

seed. It also contained 75 positive and 75 negative bags, with each bag consisting

of ten instances.

All experiments were repeated on this alternative dataset using the parameter

value σ2 = 104 for both YARDS and MILES. With this new σ value, YARDS

123

Figure 5.12: Parameter Tuning — YARDS with C4.5 on WLT1

0

20

40

60

80

100

100 101 102 103 104 105 106

%
ac

cu
ra

cy

σ2 (log10 scale)

rsrs

rsrsrsrsrs

achieved one-hundred percent classification accuracy with all base learners tried in

the experiment. YARDS also had negligible root mean squared error values for all

base learners except for the 1-norm SVM which had an RMSE of 0.18. MILES did

not significantly improve with the new σ value, with an accuracy rate of less than

fifty percent for all base learners. The results are shown in Tables 5.15 — 5.18.

An Explanation for MILES’ Poor Performance on WLT1

As shown earlier, the WLT1 concept can be written in the form:

νWLT1(X) = sign

(

2 × count(Xi = t) − count(Xi = f) − 3

)

,

where count(Xi = x) is the number of instances Xi in the bag X where the attribute

value for Xi is equal to x.

Written this way, it is clear that the computation of WLT1(X) is difficult to

achieve if the learning program cannot represent the number of occurrences of the

target points t and f in a bag. MILES is unable to represent this type of concept

because the feature space mapping does not include any information about the

number of occurrences of instances close to (or at) a target point, but only the

distance from that point to the closest instance in the bag. The “max” operator

used in the MILES transformation selects the closest instance to a target point, and

ignores all other instances that may be close to or at that point. Because of this, the

124

Table 5.15: YARDS vs MILES on WLT1 Alternative Dataset, σ2 = 104: Classifi-
cation Accuracy

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

MILES 46.7 46.7 46.7 46.7 46.7 46.7 46.7 47.9 49.2
YARDS 100 100 100 100 100 100 100 100 100
Significance ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦, •, − statistically significant improvement, degradation or no difference vs MILES

Table 5.16: YARDS vs MILES on WLT1 Alternative Dataset, σ2 = 104: Root Mean
Squared Error

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

MILES 0.50 0.50 0.50 0.56 0.50 0.50 0.50 0.50 0.50
YARDS 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00
Significance ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦, •, − statistically significant improvement, degradation or no difference vs MILES

Table 5.17: YARDS vs MIWrapper on WLT1 Alternative Dataset, σ2 = 104: Clas-
sification Accuracy

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

MIWrapper 100 100 100 93.9 100 100 100 100 98.9
YARDS 100 100 100 100 100 100 100 100 100
Significance − − − ◦ − − − − −

◦, •, − statistically significant improvement, degradation or no difference vs MIWrapper

Table 5.18: YARDS vs MIWrapper on WLT1 Alternative Dataset, σ2 = 104: Root
Mean Squared Error

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

MIWrapper 0.46 0.46 0.46 0.44 0.46 0.46 0.46 0.46 0.46
YARDS 0.00 0.00 0.00 0.18 0.00 0.00 0.00 0.00 0.00
Significance ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦, •, − statistically significant improvement, degradation or no difference vs MIWrapper

125

features generated by the MILES transformation are related to the distance from

each target point to the closest instance in the bag, but do not contain any further

information pertaining to the number of instances that are close to each target point.

In the case of WLT1, the target points are t and f . The features created by

the MILES transformation describe the closest points to t and f , which in this

problem corresponds to the existence or non-existence of the target points in the

bag. In contrast, a feature generated by the YARDS transformation represents the

sum of values computed based on the distance between each instance in the bag

and a target point. For WLT1, a t instance will add a larger value to the attribute

corresponding to t than to the instance corresponding to f , and vice-versa. Thus,

the feature values are directly related to the number of occurrences of t and f , and

therefore YARDS gives the base learner adequate information from which to learn

the WLT1 concept, while MILES does not.

Experiments on Weighted Collective Assumption Artificial Problems

We showed in Section 5.4.3 that any deterministic weighted collective assumption

can be represented as a weighted linear threshold assumption. The non-deterministic

case can be interpreted as adding class noise that is caused by the probabilistic label-

ing process. Because of this relationship between the assumptions, we investigated

the performance of YARDS on datasets generated using the weighted collective MI

assumption.

YARDS was evaluated on the 64 artificial weighted collective assumption

datasets described in Section 5.3.3, using the base learners from the MILES exper-

iment (Chapter 4). The experiments were performed using both MIWrapper and

MILES as the baseline algorithms for comparison. For both MILES and YARDS, σ2

was set to 8 × 105, as used by [Chen et al., 2006] for MILES on the musk2 dataset.

Ten repeats of 10-fold cross validation were performed on each dataset using each

base learner, and statistical significance was determined using a pairwise resampled

corrected t-test with significance level α = 0.05.

Just as in the experiments described in Section 5.3.3, it was found that the

random forests base learner was creating unreasonably large trees on many of the

datasets. This was a problem for all three MI algorithms, but was particularly severe

for YARDS and MILES, where execution slowed to a crawl. To resolve this problem,

126

Table 5.19: YARDS: Significant Wins and Losses vs MIWrapper on Weighted Col-
lective Artificial Data (Classification Accuracy)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 2 8 12 6 11 3 2 4 0
Losses 56 16 18 27 0 20 56 9 55
Ties 6 40 34 31 53 41 6 51 9
Wins - Losses -54 -8 -6 -21 11 -17 -54 -5 -55
Average
MIWrapper 75.1 68.0 68 67.1 68.0 77.9 76.2 64.5 77.9
Average
YARDS 49.6 64.2 63.3 59.7 69.5 71.4 49.6 62.0 52.1

Table 5.20: YARDS: Significant Wins and Losses vs MIWrapper on Weighted Col-
lective Artificial Data (Root Mean Squared Error)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 0 17 15 14 17 15 0 8 0
Losses 53 12 17 38 12 17 53 16 57
Ties 11 35 32 12 35 32 11 40 7
Wins - Losses -53 5 -2 -24 5 -2 -53 -8 -57
Average
MIWrapper 0.43 0.46 0.46 0.47 0.46 0.43 0.43 0.47 0.43
Average
YARDS 0.50 0.44 0.44 0.50 0.42 0.41 0.50 0.47 0.50

the random forests base learner was limited to a maximum depth of 20 levels per

tree. For this reason the results reported for MIWrapper using this base learner may

differ from those in Section 5.3.3.

The results are summarized in Tables 5.19 — 5.22. For all base learners except

logistic regression and the 2-norm support vector machine with the linear kernel,

YARDS exhibited a larger number of significant losses than significant wins against

MIWrapper for both classification accuracy (Table 5.19) and the root mean squared

error (Table 5.20). With logistic regression as the base learner, YARDS achieved 11

wins with no losses against MIWrapper for classification accuracy, but its average

accuracy was only 1.5 percentage points higher than MIWrapper. Although YARDS

had five more wins than losses against MIWrapper with the root mean squared error

measure when the 2-norm SVM with the linear kernel was used as the base learner, it

also exhibited eight more losses than wins under the accuracy performance measure.

Adaboost with decision stumps was the best performing base learner for all three

MI algorithms. Using this base learner, the average accuracies were 77.9%, 76.9%

and 71.4% for MIWrapper, MILES and YARDS, respectively. The lowest root mean

squared error rate for each MI algorithm was also achieved using this base learner.

The worst-performing base learners for YARDS were C4.5 and its bagged and

127

Table 5.21: YARDS: Significant Wins and Losses vs MILES on Weighted Collective
Artificial Data (Classification Accuracy)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 13 4 6 33 9 2 13 43 10
Losses 0 32 27 0 9 18 0 0 0
Ties 51 28 31 31 46 44 51 21 54
Wins - Losses 13 -24 -21 33 0 -16 13 43 10
Average
MILES 46.7 74.4 72.7 46.7 69.7 76.9 46.7 48.9 49.3
Average
YARDS 49.6 64.2 63.3 59.7 69.5 71.4 49.6 62.0 52.1

Table 5.22: YARDS: Significant Wins and Losses vs MILES on Weighted Collective
Artificial Data (Root Mean Squared Error)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 1 3 7 38 41 7 2 29 3
Losses 0 27 25 16 12 15 0 1 0
Ties 63 34 32 10 11 42 62 34 61
Wins - Losses 1 -24 -18 22 29 -8 2 28 3
Average
MILES 0.50 0.37 0.39 0.56 0.50 0.36 0.50 0.50 0.50
Average
YARDS 0.50 0.44 0.44 0.50 0.42 0.41 0.50 0.47 0.50

boosted variants, each of which achieved an average accuracy of only around fifty

percent (Table 5.19). This figure is slightly misleading, as these base learners were

able to achieve accuracies higher than fifty percent on 13 (in the case of C4.5 and

Adaboost with C4.5) and 25 (in the case of bagged C4.5) of the 64 datasets. The

algorithm had an accuracy level of 46.7% on all of the other datasets (except for

bagged C4.5, where the value was typically 49.27%, and occasionally as low as

43.53%), which brought the average down to around fifty percent.

The YARDS method performed more favourably compared to MILES than to

MIWrapper. The relative performance of YARDS and MILES depended to a sur-

prisingly large degree on the base classifier used. With five of the nine base learners,

YARDS achieved a higher number of significant wins than losses against MILES

for both accuracy (Table 5.21) and the root mean squared error value (Table 5.22).

Considering all of the base learners together, YARDS was ahead overall with a total

of 51 more significant wins than losses for classification accuracy, and 35 more wins

than losses for the root mean squared error measure.

In the case of each of the five base learners where YARDS achieved a higher

number of wins than losses, the average accuracy of MILES was slightly less than fifty

percent. Except for the 1-norm support vector machine, all of these base learners

were decision tree learners. MILES with C4.5, the 1-norm support vector machine,

128

and with boosted C4.5 each had an accuracy rate of 46.7% on all 64 datasets,

while MILES with bagged C4.5 had an accuracy of 49.3% on all datasets. MILES

with random forests had classification accuracy rates ranging between 47.9% and

53.7%. Although the classification accuracy of YARDS with C4.5, and with bagged

and boosted C4.5, was equal to MILES’ poor performance on most datasets, the

algorithm performed better in some cases, resulting in a number of significant wins

(and no losses) for those base learners despite poor overall average accuracy rates.

Though YARDS performed better than MILES for the majority of the base

learners, the best MILES classifiers performed better (in both accuracy and root

mean squared error rate) than the best performing YARDS classifiers. The top

three base learners for MILES were Adaboost with decision stumps, and the 2-norm

SVM with both the linear and the polynomial kernel, achieving average accuracies

of 76.9%, 74.4% and 72.7% (Table 5.21), and root mean squared error values of 0.36,

0.37 and 0.39, respectively (Table 5.22). For YARDS, the top three base learners

for classification accuracy were Adaboost with decision stumps, logistic regression

and the 2-norm SVM with the linear kernel, with average accuracy rates of 71.4%,

69.5%, and 64.2%, respectively. These base learners were also the best for the root

mean squared error measure, with RMSE rates of 0.41, 0.42, and 0.44 respectively,

though the support vector machine with the RBF kernel also had an RMSE rate of

0.44.

YARDS and MILES tied in the number of significant wins and losses for classifi-

cation accuracy using the logistic regression base learner, and were also very similar

in terms of average accuracy. Despite this, YARDS with logistic regression had 41

significant wins with only 12 losses for the root mean squared error performance

measure. Thirty of these significant wins, and no losses, were achieved on datasets

generated by a non-deterministic classification process, with the other 11 wins and

12 losses on deterministically labeled datasets (not shown in the tables).

Except for the case of logistic regression, if YARDS or MIWrapper were ahead

in terms of significant wins minus significant losses for classification accuracy, they

were also ahead for the root mean squared error rate, although the magnitude of the

difference between significant wins and losses was generally smaller for the RMSE

performance measure than for accuracy. Because these performance measures were

thus connected in the observed results, the root mean squared error measure is not

129

Table 5.23: YARDS: Significant Wins and Losses vs MILES on Weighted Collective
Artificial Data with Deterministic Generative Model (Classification Accuracy)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 8 4 5 26 6 2 8 30 7
Losses 0 22 18 0 9 15 0 0 0
Ties 24 6 9 6 17 15 24 2 25
Wins - Losses 8 -18 -13 26 -3 -17 8 30 7
Average
MILES 46.7 87.7 84.3 46.7 83.2 92.6 46.7 49.0 49.3
Average
YARDS 50.6 72.3 70.4 69.1 79.0 83.7 50.6 69.1 53.4

Table 5.24: YARDS: Significant Wins and Losses vs MILES on Weighted Collective
Artificial Data with Non-Deterministic Generative Model (Classification Accuracy)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 5 0 1 7 3 0 5 13 3
Losses 0 10 9 0 0 3 0 0 0
Ties 27 22 22 25 29 29 27 19 29
Wins - Losses 5 -10 -8 7 3 -3 5 13 3
Average
MILES 46.7 61.2 61.1 46.7 56.2 61.1 46.7 48.5 49.3
Average
YARDS 46.6 56.1 56.1 50.3 50.0 59.2 48.6 55.0 50.8

considered any further in following, where we investigate classification determinism

and bag size.

As expected, both YARDS and MILES performed better on datasets created

with a deterministic generative model than on datasets where a probabilistic label-

ing process was used (Tables 5.24 and 5.24). With boosted decision stumps as the

base learner, MILES achieved an impressive accuracy rate of 92.6% on the deter-

ministically labeled datasets, while YARDS’ accuracy rate with that base learner

was 83.7%. There was no clear trend regarding the performance of these algo-

rithms relative to each other between deterministically and probabilistically labeled

datasets — the number of significant wins minus losses for YARDS was higher on

deterministically labeled datasets for five of the nine base learners, and higher on

probabilistically labeled datasets for the other four single-instance learners.

Consistent with the results of the experiments using IFLIW and MIWrapper on

these artificial problems, MILES and YARDS performed better (or at least equally

well) on the datasets with random bag sizes (Table 5.26) than the datasets with fixed

bag sizes (Table 5.25), presumably because the randomly sized bags were smaller on

average than the fixed size bags. While bag-size determinism did not in general make

a clear difference in the relative performance of MILES and YARDS, the significant

wins enjoyed by YARDS over MILES for the C4.5 (plain, bagged, and boosted) base

130

Table 5.25: YARDS: Significant Wins and Losses vs MILES on Weighted Collective
Artificial Data with Fixed Bag Sizes (Classification Accuracy)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 0 4 6 12 9 1 0 17 0
Losses 0 9 5 0 4 9 0 0 0
Ties 32 19 21 19 19 22 32 15 32
Wins - Losses 0 -5 1 12 5 -8 0 17 0
Average
MILES 46.7 73.7 72.5 46.7 68.2 75.2 46.7 48.1 49.3
Average
YARDS 46.7 70.2 71.6 61.3 71.0 68.8 46.7 57.2 49.3

Table 5.26: YARDS: Significant Wins and Losses vs MILES on Weighted Collective
Artificial Data with Random Bag Sizes (Classification Accuracy)

C4.5 SMO SMO 1-Norm Logistic Adaboost Adaboost Random Bagging
(Lin) (RBF) SVM + D. Stump + C4.5 Forest + C4.5

Wins 13 0 0 21 0 1 13 26 10
Losses 0 23 22 0 5 9 0 0 0
Ties 19 9 10 11 27 22 19 6 22
Wins - Losses 13 -23 -22 21 -5 -8 13 26 10
Average
MILES 46.7 75.1 72.9 46.7 71.2 78.5 46.7 49.4 49.3
Average
YARDS 52.6 58.1 54.9 58.6 68.0 74.1 52.5 66.9 55.0

learners were all achieved on datasets with random bag sizes.

5.5.4 Conclusions

It was found that YARDS was able to achieve perfect classification accuracy and a

root mean squared error rate of zero for the WLT1 data when an appropriate value

for the σ parameter was used, for all base learners tried in the experiment. This is

in contrast to MILES, which was unable to achieve an accuracy level better than

chance, regardless of the base learner or σ value. We showed that MILES is unable

to represent “counting” concepts such as WLT1, thereby explaining its failure to

learn in this domain.

The MIWrapper algorithm was also able to achieve perfect classification accuracy

for WLT1 with all base learners except for the 1-norm SVM, but YARDS was

superior for the root mean squared error performance measure. An advantage of

MIWrapper over YARDS was that no parameter tuning was required.

However, even though all deterministic weighted collective MI concepts can be

represented as weighted linear threshold concepts (and from a classification point

of view, probabilistic weighted collective concepts are deterministic concepts with

class noise), YARDS was not able to perform as well as MIWrapper on the set of

64 artificial weighted collective concepts. In contrast, YARDS was very competitive

131

with MILES on this data with a larger number of significant wins than losses on

five of the nine datasets, and with more significant wins than losses against MILES

overall. Adaboost with decision stumps was the best base learner for all three

MI algorithms, with 77.9%, 76.9% and 71.4% accuracy on average for MIWrapper,

MILES and YARDS respectively.

It should be noted that YARDS is only guaranteed to learn weighted linear

threshold concepts (and by extension, weighted collective concepts) when the base

learner is linear. Even when this condition is satisfied, YARDS can only model

weighted linear threshold concepts if the weight function can be approximated by a

sum of a set of Gaussian functions centred on points from the training data. These

reasons may partially explain YARDS’ mediocre performance on these datasets. A

lack of parameter tuning for YARDS and MILES may also have been a factor in

these results.

132

Chapter 6

Evaluation of the New Algorithms

on Real-World Data

This chapter presents an empirical investigation into the predictive performance of

the new algorithms introduced in Chapter 5 on real-world data. The IFLIW and

YARDS algorithms are evaluated on a diverse array of real-world datasets using a

wide variety of base learners, with comparison to the related approaches MIWrapper

and MILES.

6.1 Experiment Design

The algorithms were evaluated with the same datasets and base learners that were

used for the MILES experiments (described in Chapter 4). The number of iterations

µ for IFLIW was set to 20, and the regression base learner was additive regression

with 100 decision stumps. For both MILES and YARDS, the parameter value σ2 =

8 × 105 was used, as selected by [Chen et al., 2006] for MILES on the musk2 data.

The evaluation method was 10 × 10-fold cross-validation. A paired corrected t-

test with significance level α = 0.05 was used to determine significant differences

between the algorithms. Performance was measured using classification accuracy

and the root mean squared error.

MIWrapper was used as a baseline algorithm for comparison in the experiments.

It was found by [Dong, 2006] and confirmed in the experiments in Chapter 4 that

despite its simplicity, MIWrapper is very competitive with the more sophisticated

state-of-the-art MI learning methods, and is therefore a good benchmark for evalu-

ating MI algorithms. Results for the MILES algorithm are also provided for com-

parison. As described in Chapter 5, IFLIW is closely related to the MIWrapper

algorithm, and YARDS is closely related to MILES.

133

Table 6.1: Average Performance Over All Datasets (Classification Accuracy)
Base learner MIWRAPPER MILES IFLIW YARDS
C4.5 73.8 70.8 72.5 68.8
Random Forest 77.0 78.5 77.6 73.0
Adaboost + C4.5 76.2 73.3 75.0 70.1
Adaboost + D. Stump 75.4 79.5 72.7 72.7
Bagging + C4.5 76.4 73.6 74.5 72.1
SMO (LIN) 70.2 74.2 71.1 69.3
SMO (RBF) 70.9 73.2 72.5∗ 68.8
1-Norm SVM 70.8 73.0 71.0 75.2
Logistic 72.9 74.6 70.4 74.47
*Based on incomplete results for thioredoxin (26/100 folds)

Table 6.2: Average Performance Over All Datasets (Root Mean Squared Error)
Base learner MIWRAPPER MILES IFLIW YARDS
C4.5 0.41 0.47 0.42 0.48
Random Forest 0.39 0.38 0.38 0.42
Adaboost + C4.5 0.39 0.44 0.39 0.47
Adaboost + D. Stump 0.41 0.37 0.41 0.42
Bagging + C4.5 0.39 0.40 0.41 0.42
SMO (LIN) 0.42 0.42 0.43 0.44
SMO (RBF) 0.42 0.47 0.42∗ 0.43
1-Norm SVM 0.43 0.42 0.44 0.40
Logistic 0.44 0.45 0.44 0.41
*Based on incomplete results for thioredoxin (26/100 folds)

6.2 Experimental Results and Analysis

In this section, the experimental results are presented in summary form, and the

implications of these results are discussed. The results are presented in more detail

in Appendix 7.2.

6.2.1 Average Performance Over All Datasets

The average (arithmetic mean) performance of each algorithm over all nine datasets

is shown in Tables 6.1 and 6.2. It should be noted that the datasets were not all

of equal learning difficulty, and were diverse in the level of class skewness, number

of bags and number of instances. Small datasets were given equal consideration to

larger ones when computing the averages. These factors should be considered when

interpreting the results for this section.

In the observed results, the average classification accuracy (Table 6.1) and root

mean squared error rate (Table 6.2) for IFLIW were typically very similar to the

results for MIWrapper using the same base learner. In terms of average perfor-

mance, the random forests classifier was the best base learner for both IFLIW and

MIWrapper under both performance measures. Using that base classifier, MIWrap-

per had an average accuracy of 77.0% with a root mean squared error of 0.39, while

134

IFLIW’s average accuracy was 77.6% with an RMSE of 0.38. The boosted decision

stumps classifier was the best performing base learner for MILES in terms of average

performance, with an accuracy rate of 79.5% and an RMSE of 0.37.

For each base learner except the 1-norm support vector machine and logistic

regression, YARDS performed slightly worse than the other three schemes, though

the differences were not very large. With the 1-norm SVM base learner, YARDS

was slightly ahead of the other algorithms for both performance metrics. YARDS

also had the lowest average root mean squared error rate of the four schemes when

the logistic regression base learner was used. The 1-norm SVM base learner was the

best performer on average for YARDS, with a classification accuracy of 75.2% and

a root mean squared error of 0.40.

6.2.2 Significant Wins and Losses vs MIWrapper

Tables 6.3 and 6.4 show the significant differences in performance versus the MI-

Wrapper algorithm for each of the other three schemes. For each scheme, the first

column shows the number of significant wins, the second column displays the num-

ber of significant losses, and the final column shows the number of significant wins

minus significant losses against MIWrapper. Once again, the different sizes of the

datasets should be taken into consideration when interpreting this result — signifi-

cant differences were much harder to obtain for datasets with few bags.

It was found that all three algorithms exhibited less wins than losses against

MIWrapper in total over all of the base learners, for both accuracy (Table 6.3) and

root mean squared error (Table 6.4). MILES and IFLIW both exhibited a greater

number of significant losses for the RMSE measure than for classification accuracy,

while the number of significant wins was similar between the two metrics. YARDS

had a similar number of wins and losses for both metrics.

For accuracy and root mean squared error, the number of significant wins and

significant losses for MILES were each greater than for IFLIW, but the two algo-

rithms had similar overall total wins minus losses. YARDS was the worst of the

three schemes in terms of total wins minus losses, with 34 more losses than wins for

both performance metrics. A closer inspection of the results provided in Appendix

7.2 shows that the majority of YARDS’ significant losses against MIWrapper were

135

Table 6.3: Significant Differences vs MIWrapper Over All Datasets: Classification
Accuracy (Significant Wins / Losses / Wins - Losses)

Base learner MILES IFLIW YARDS Total
C4.5 0 3 -3 0 0 0 0 7 -7 0 10 -10
Random Forest 0 3 -3 0 2 -2 0 7 -7 0 12 -12
Adaboost + C4.5 0 2 -2 0 0 0 0 7 -7 0 9 -9
Adaboost + D. Stump 3 1 2 1 0 1 2 5 -3 6 6 0
Bagging + C4.5 0 3 -3 0 4 -4 0 6 -6 0 13 -13
SMO (LIN) 3 2 1 1 1 0 2 4 -2 6 7 -1
SMO (RBF) 4 2 2 1 1 0 2 4 -2 7 7 0
1-Norm SVM 3 3 0 0 1 -1 2 4 -2 5 7 -2
Logistic 2 3 -1 1 1 0 2 0 2 5 4 1
Total 15 22 -7 4 10 -6 10 44 -34

Table 6.4: Significant Differences vs MIWrapper Over All Datasets: Root Mean
Squared Error (Significant Wins / Losses / Wins - Losses)

Base learner MILES IFLIW YARDS Total
C4.5 0 6 -6 0 1 -1 0 7 -7 0 14 -14
Random Forest 2 3 -1 0 2 -2 0 7 -7 2 12 -10
Adaboost + C4.5 0 6 -6 1 1 0 0 7 -7 1 14 -13
Adaboost + D. Stump 3 3 0 1 1 0 0 5 -5 4 9 -5
Bagging + C4.5 0 3 -3 0 6 -6 0 7 -7 0 16 -16
SMO (LIN) 2 2 0 1 2 -1 2 5 -3 5 9 -4
SMO (RBF) 0 7 -7 1 2 -1 2 3 -1 3 12 -9
1-Norm SVM 5 3 2 1 5 -4 4 2 2 10 10 0
Logistic 1 6 -5 0 5 -5 3 2 1 4 13 -9
Total 13 39 -26 5 25 -20 11 45 -34

on image problems, while all but one of its significant wins were on the mutagenesis

datasets.

None of the three algorithms exhibited any significant wins against MIWrapper

for classification accuracy using the C4.5 (plain, bagged and boosted) and random

forests base learners. Those four base learners were also the worst for YARDS in

terms of significant differences against MIWrapper, with six or seven losses for each.

6.2.3 The Best Results for Each Scheme

The best results for each scheme on each dataset are displayed in Table 6.5 (Clas-

sification Accuracy) and Table 6.6 (root mean squared error). The top-performing

base learners for each scheme on each dataset were typically very similar to each

other under both peformance measures, although there were several exceptions to

this.

Notable exceptions were MILES’ best results for musk2 and eastwest / westeast,

which were 8 – 12 percentage points ahead of each of the other algorithms, and were

also noticeably superior in the root mean squared error rate. With the 1-norm SVM,

MILES achieved 90.4% accuracy on musk2, while the other three algorithms had

accuracy rates of around 82.8%. It should be noted that the σ parameter for MILES

136

Table 6.5: The Best Result For Each Scheme (Classification Accuracy)
Dataset Best % Best % Best % Best %

MIWrapper MILES IFLIW YARDS
musk1 Random 87.3 Adaboost 88.0 Adaboost 86.8 Random 84.4

Forest + D. Stump + C4.5 Forest
musk2 SMO 82.8 1-Norm 90.4 SMO 82.8 1-Norm 82.6

(RBF) SVM (LIN) SVM
eastwest Adaboost 69.0 Adaboost 81.0 Random 71.0 Random 72.5

+ D. Stump + D. Stump Forest Forest
westeast Adaboost 69.0 Adaboost 81.0 Random 69.0 Random 72.5

+ D. Stump + D. Stump Forest Forest
mutagenesis-atoms Random 81.9 Adaboost 83.9 Random 82.0 Random 81.9

Forest + D. Stump Forest Forest
mutagenesis-bonds Random 83.1 Adaboost 86.3 C4.5 83.8 Random 82.6

Forest + D. Stump Forest
mutagenesis-chains Bagging 85.3 Adaboost 86.0 C4.5 84.1 Logistic 83.9

+ C4.5 + D. Stump
suramin 1-Norm* 65.0 1-Norm* 65.0 SMO 93.5 1-Norm 65.0

SVM SVM (RBF) SVM
thioredoxin Adaboost 88.0 Adaboost 89.3 Adaboost 88.5 Bagging 89.7

+ C4.5 + D. Stump + C4.5 + C4.5
elephant Random 87.1 1-Norm 84.3 Adaboost 84.4 Logistic 83.9

Forest SVM + C4.5
fox Adaboost 65.7 Random 64.9 C4.5* 64.1 Logistic 55.9

+ D. Stump Forest
tiger Random 84.3 1-Norm 82.0 Random 81.3 1-Norm 81.3

Forest SVM Forest SVM
bikes Bagging 82.5 SMO 80.5 SMO 81.6 1-Norm 83.9

+ C4.5 (LIN) (LIN) SVM
cars Random 74.8 SMO 72.5 Random 72.4 Logistic 72.2

Forest (LIN) Forest
people Random 82.6 Random 77.5 Adaboost 81.1 1-Norm 78.5

Forest Forest + C4.5 SVM
∗ Scheme was best-equal with one or more other schemes.

Table 6.6: The Best Result For Each Scheme (Root Mean Squared Error)
Dataset Best % Best % Best % Best %

MIWrapper MILES IFLIW YARDS
musk1 Bagging 0.29 Adaboost 0.26 Adaboost 0.30 Random 0.33

+ C4.5 + D. Stump + C4.5 Forest
musk2 SMO 0.33 SMO 0.27 SMO 0.34 1-Norm 0.38

(RBF) (LIN) (LIN) SVM
eastwest SMO 0.46 Adaboost 0.27 Random 0.39 SMO 0.39

(RBF) + D. Stump Forest (RBF)
westeast SMO 0.46 Adaboost 0.27 Random 0.39 SMO 0.39

(RBF) + D. Stump Forest (RBF)
mutagenesis-atoms Random* 0.36 Adaboost 0.35 Random 0.36 Random 0.39

Forest + D. Stump Forest Forest
mutagenesis-bonds Random* 0.36 Adaboost 0.33 C4.5* 0.35 Random 0.36

Forest + D. Stump Forest
mutagenesis-chains Bagging 0.33 Adaboost 0.32 C4.5* 0.34 Logistic 0.34

+ C4.5 + D. Stump
suramin 1-Norm 0.44 SMO 0.37 Adaboost 0.34 1-Norm 0.44

SVM (RBF) + C4.5 SVM
thioredoxin Random 0.30 Random 0.30 Adaboost* 0.31 Bagging 0.29

Forest Forest + D. Stump + C4.5
elephant Adaboost* 0.33 SMO 0.34 Adaboost 0.33 Logistic 0.33

+ C4.5 (LIN) + C4.5
fox Bagging 0.46 Random 0.47 Random 0.47 SMO 0.50

+ C4.5 Forest Forest (LIN)
tiger Adaboost* 0.36 SMO 0.36 Random 0.36 1-Norm* 0.38

+ D. Stump (LIN) Forest SVM
bikes Adaboost 0.36 1-Norm 0.40 Adaboost 0.36 1-Norm 0.35

+ C4.5 SVM + C4.5 SVM
cars Adaboost 0.43 Random 0.43 Adaboost 0.43 1-Norm* 0.44

+ C4.5 Forest + C4.5 SVM
people Bagging* 0.37 Random 0.39 Adaboost 0.37 1-Norm 0.39

+ C4.5 Forest + C4.5 SVM
∗ Scheme was best-equal with one or more other schemes.

137

was selected based on the results of tuning experiments by [Chen et al., 2006] on a

subset of this data, so this result may be slightly optimistic. MILES with boosted

decision stumps achieved an accuracy of 81.0% on both eastwest and westeast, while

the others ranged between accuracies of 69.0–72.5% on those datasets.

Another notable result was that using the 2-norm support vector machine with

the radial basis function kernel, IFLIW exhibited an accuracy of 93.5% on the

suramin dataset. The other algorithms only achieved an accuracy of 65% on this

dataset, as did the other base learners for IFLIW. Furthermore, all algorithms tried

in the experiments from Chapter 4 also achieved at most 65% on that data, except

for SimpleMI (propositionalization with summary statistics) which exhibited an ac-

curacy of 73.0% using the 2-norm support vector machine with the linear kernel.

The best result for IFLIW also exhibited a lower root mean squared error value

on this dataset than the other MI algorithms, although the difference was not as

notable as for classification accuracy. Note that the suramin dataset only contains

11 bags, and the result was not statistically significantly superior to the results for

the other algorithms.

Although the results for IFLIW on this problem were notable, their incongruity

with all of the other results on that dataset made them appear slightly suspicious.

A separate experiment was performed to confirm that this was not just a statistical

anomaly. IFLIW and MIWrapper using the SVM with the RBF kernel were evalu-

ated on the suramin dataset using ten repeats of randomized 90%/10% train/test

splits, and the results were averaged over the repeats. In this experiment, the aver-

age classification accuracy for IFLIW was 88.9% with a standard deviation of 22.1%,

and the accuracy for MIWrapper was 44.4% with a standard deviation of 46.4%.

It was interesting that the best base learners for YARDS were generally very

competitive with the best base learners for the other schemes, despite typically

lagging slightly behind the other algorithms in terms of average performance and

significant differences to MIWrapper. The only major exception to this was the

result for the fox dataset under the accuracy performance measure, where the best

result for YARDS was 55.9% with the logistic regression base learner. The best

results for the other algorithms ranged from 64.1 to 65.7 on this dataset. The

difference was not as notable for the best results in terms of the root mean squared

error measure — YARDS with the 2-norm linear SVM exhibited an RMSE of 0.50,

138

while the other algorithms’ best RMSE values were between 0.46 and 0.47.

6.3 Conclusions for this Study

The experimental results show that IFLIW and YARDS are not generally superior

to their predecessors MIWrapper and MILES on the the datasets tried in the study,

although they are still very competitive overall.

On average, IFLIW was very similar to MIWrapper and MILES in terms of

classification accuracy and root mean squared error (Tables 6.1 and 6.2). Though

IFLIW often achieved superior root mean squared error rates to MIWrapper on

artificial data, such improved performance was not generally observed on the real-

world datasets used in this study.

However, IFLIW achieved an accuracy of 93.5% on the suramin dataset using

the SVM with the RBF kernel, a result which was nearly 30 percentage points higher

than the best results for the other algorithms. This difference was not statistically

significant, however, possibly due to the small size of the dataset.

YARDS was generally slightly worse than the other three algorithms for each base

learner in terms of both average performance (Tables 6.1 and 6.2) and significant

differences to MIWrapper (Tables 6.3 and 6.4). This may partially be due to a lack

of parameter tuning performed for YARDS. As parameter tuning for all algorithms

and datasets was infeasible, the σ parameter was selected due to known results for

MILES on the musk2 data [Chen et al., 2006]. That parameter value may not have

been an optimal value for YARDS.

Even though YARDS was often slightly worse than the other algorithms for a

given base learner, the results for the best YARDS base learner on each dataset were

generally very similar to the best results for the other three algorithms. This was

true both for classification accuracy (Table 6.5) and the root mean squared error

measure (Table 6.6). The only notable exception was for the fox dataset, where

the best YARDS classifier exhibited an accuracy level of 55.9%, while the other

algorithms achieved accuracies between 64.1% and 65.7%.

139

140

Chapter 7

Conclusions and Future Work

This thesis investigated assumptions and algorithms for learning generalized

multiple-instance concepts where instance weights can be used to model the level of

contribution that each instance in a bag has on bag-level class labels.

The MILES algorithm [Chen et al., 2006] was identified as a weight-learning MI

algorithm as it assigns a weight to each instance in the training bags, and further

learns a weight function over the Cartesian product of instance space and bag space.

An empirical study was performed to investigate the effectiveness of this algorithm

relative to other state-of-the-art MI techniques on a wide variety of benchmark

datasets.

In this study, MILES was generalized to allow the use of alternative base learners

in place of the default 1-norm support vector machine used by Chen et al (2006).

Although MILES is not guaranteed to learn a weight-based model when non-linear

base learners are used, the instance-based feature-space mapping performed by the

algorithm ensures that these models are closely related to those that learn weights.

The base learner must implicitly determine the importance of the transformed-space

attributes, which correspond to points in instance space, thereby determining the

importance of different parts of the instance space.

It was found that the 1-norm support vector machine recommended by

[Chen et al., 2006] was not generally superior to the standard 2-norm SVM as a

base learner for MILES. Though the 1-norm SVM was competitive as a MILES

base learner, boosted decision stumps were the best performing base learner overall.

Although MILES was competitive with all other MI algorithms tried in the exper-

iment, the simpler MIWrapper and SimpleMI algorithms generally performed just

as well as MILES when appropriate base learners were used.

Two new generalized MI assumptions were presented, which were designed to

model the level of influence that instances have on bag-level class labels via a weight

141

function over instance space. The weighted collective MI assumption extends the col-

lective MI assumption [Xu, 2003] by incorporating a weight function into the model,

while the weighted linear threshold MI assumption is inspired by linear classification

in single-instance learning. The precise relationship between the two assumptions

was shown.

New algorithms were designed for learning MI concepts under the new assump-

tions. The IFLIW algorithm is an extension of the MIWrapper method which learns

a weight function as well as the class probability function learnt by the original MI-

Wrapper algorithm. YARDS is a variant of MILES which learns weighted linear

threshold MI concepts when a linear base learner is used. Unlike MILES, IFLIW

and YARDS (with a linear base classifier) each learn a weight function over instance

space that is not bag-dependent.

The utility of IFLIW and YARDS was demonstrated on artificial data generated

under the corresponding MI assumptions. Although MIWrapper was competitive

in terms of classification accuracy on the artificial data, IFLIW and YARDS were

able to achieve significantly lower root mean squared error rates on data generated

according to their underlying MI assumptions. The new algorithms were also evalu-

ated on real-world datasets. It was found that IFLIW and YARDS were not gener-

ally superior to MIWrapper and MILES on the real-world problems, although their

performance was very competitive against those algorithms. Furthermore, IFLIW

achieved 93.5% accuracy on the suramin dataset, which was a higher accuracy than

those exhibited by the other algorithms tried in the experiments by a large margin,

although this difference was not statistically significant according to the corrected

resampled t-test.

7.1 Future Work

Many areas for future work were identified during the creation of this thesis. These

can be loosely grouped into four categories: algorithm evaluation, learning instance

weights, generalized MI and standard MI learning.

142

Algorithm Evaluation

Extensive experiments were performed to evaluate MILES, IFLIW and YARDS in

Chapters 4 and 6. Due to time constraints and restrictions on the availability of

computational resources, there were some limitations to these studies, however. In

particular, parameter selection was not performed for the σ parameter for MILES

and YARDS. It would be interesting to investigate the effect of this parameter on

the performance of those algorithms.

[Chen et al., 2006] claim that attribute selection is important for MILES (and

therefore, presumably, YARDS also) because of the high-dimensional feature space

created by the algorithm. Although the competitive results for MILES with the 2-

norm support vector machine relative to the default 1-norm SVM (which performs

more aggressive attribute selection) indicate that attribute selection may not be

crucial, this is still a potential area for future investigation.

In all experiments for IFLIW, the regression base learner was set to additive

regression with decision stumps. Other regression learners may potentially be more

effective, however. A study into the performance of the algorithm using different

regression base learners would be beneficial.

Learning Instance Weights

The IFLIW algorithm introduced in Chapter 5 uses a heuristic approach to learn a

weight function. This heuristic is not guaranteed to be optimal, so there is scope for

the investigation of other approaches for learning weight functions within the IFLIW

framework. Possibilities include the use of simulated annealing, genetic algorithms

or other optimization techniques. Another approach would be to use the diverse

density value [Maron and Lozano-Pérez, 1998] directly to determine the importance

of different regions of instance space.

As MILES learns weights for the training instances, one way to learn a weight

function for IFLIW is to build a regression algorithm on the weights predicted by

MILES. We name this algorithm MILES for Learning Instance Weights (MIFLIW).

YARDS can also be used to learn a weight function for IFLIW. However, as YARDS

learns a weight function over the entire instance space, a regression model is not

required in order to generalize the weight function to future instances; the YARDS

143

weight function can be used directly. This algorithm is named YARDS for Learning

Instance Weights (YARFLIW). Some preliminary work has already been done for

these approaches.

YARDS is a version of the MILES algorithm that uses a different feature space

transformation to represent multi-instance bags in a propositional form. It was

shown that the YARDS algorithm learns weighted linear threshold MI concepts when

a linear base learner is used. The experimental results for YARDS demonstrate that

alternative feature space transformations for MILES can be effective, and may be

more appropriate for certain problem domains. Other alternative transformations

may also prove to be useful.

The MILES algorithm uses the most-likely cause [Maron, 1998] diverse density

estimator to compute the feature space transformation; obvious possible alternative

include the other diverse density estimators defined by Maron including the noisy-

or and all-or-nothing estimators. Another possibility is to find the centre of mass

for a bag, and compute the mapping based on the distance between the centre of

mass and the target point. The choice of feature space transformation determines

the information available to the single-instance base learner, and thus largely deter-

mines the types of MI concepts that can be learnt. The exploration of alternative

transformations for specific problem domains is a promising area for future research.

The YARDS method may also be effective for instance classification, which is

important in some MI problem domains such as object detection [Chen et al., 2006].

Chen et al. provide a method for classifying instances within multi-instance bags via

the bag-dependent weight function used by MILES. However, this method is only

defined for a certain index set of instances in a bag — those which are the closest to

one of the candidate target points and are hence able to contribute to the bag-level

class label. This means that MILES is not able to classify all instances in a bag. The

classification step is also bag dependent, which is counter-intuitive to the notion that

a point in instance space has a specific label regardless of the bag that it belongs to.

In contrast, YARDS learns a bag-independent instance-level classification function

over the entire instance space. In fact, any algorithm that explicitly learns weighted

linear threshold concepts must also learn such a classification function.

In Section 5.4.3, the extended deterministic weighted collective MI assumption

was briefly introduced. This assumption extends the deterministic weighted col-

144

lective assumption to include a bias parameter that determines the location of the

classification decision boundary. A future task is to develop algorithms that learn

this type of MI concept. A simple approach would be to create a version of IFLIW

that also predicts the bias parameter. Such an extension is also potentially applica-

ble to the MIWrapper algorithm.

Generalized MI Assumptions and Algorithms

MIWrapper and IFLIW use a very simple heuristic for predicting instance-level class

labels: each instance is merely assigned the class label of its parent bag. Although

this simple approach works surprisingly well in practice, it may be possible to im-

prove upon this with a more sophisticated instance labeling method.

An important area for future research is the further investigation of generalized

MI assumptions that determine the relationship between instances and bag-level

concepts. This thesis presented MI assumptions that used the notion of instance

weights to determine the importance of each instance in bag-level classification.

Another possibility is to define MI concepts in terms of instance-level concept con-

currency relationships. For example, beach scene concepts can be defined as images

which contain instances belonging to the ocean concept and the sand concept.

The ConMIL algorithm [Qi et al., 2007] learns such concurrency relationships

at training time, but the concurrency information is only indirectly used at clas-

sification time, as classification decisions are made according to the standard MI

assumption. This algorithm could potentially be improved by making use of con-

currency relationships at classification time. Such a modification to the algorithm

requires the abandonment of the standard MI assumption in favour of a generalized

assumption that defines MI concepts in terms of concurrency relationships.

Multi-instance multi-label learning (MIML) [Zhou and Zhang, 2006] is a variant

of multi-instance learning where each bag has a set of labels that apply to it, rather

than just a single label. The standard MI assumption does not account for the

possibility of multiple labels, and therefore is not directly applicable in this sce-

nario. Zhou and Zhang upgrade the multiple-instance logistic regression algorithm

[Xu and Frank, 2004] to learn MIML concepts, and thus implicitly use a multi-label

version of the collective MI assumption. They do not precisely define the generalized

MI assumptions that their algorithms rely upon, however. Much work remains to be

145

done to clarify the MI assumptions that are applicable in multi-instance multi-label

learning.

Standard MI Learning

The maxDD algorithm [Maron and Lozano-Pérez, 1998] searches for target points

by optimizing the diverse density function over instance space. To attempt to

find the point in instance space with the maximum diverse density value, a quasi-

Newtonian gradient ascent search is repeatedly applied, starting from each instance

inside a positive training bag. The point with the maximum diverse density value is

assumed to be the location of the target concept, and instance-level class probabili-

ties are computed based on the distance to this target point. Bag-level classification

decisions are made according to the standard MI assumption. However, the repeated

optimization step is very computationally expensive. [Zhang and Goldman, 2002]

presented a more efficient way to search for diverse density maxima using an

expectation-maximization approach.

Another possible approach is to abandon the quasi-Newtonian optimization pro-

cedure used by maxDD, and instead only consider instances belonging to positive

training bags when searching for the diverse density maxima. The potential effec-

tiveness of such an approach is demonstrated by the diverse density-based algorithm

MILES, which also uses the heuristic of considering only training instances when

selecting candidate target points. MILES performs just as well as its predecessor

DD-SVM, which (as in maxDD) performs gradient ascent searches to find candidate

target points at diverse density local maxima.

7.2 Summary

Multi-instance learning is a variant of supervised machine learning where each learn-

ing example, called a bag, may contain multiple feature vectors. When a generalized

view of multi-instance learning is taken, there are many possible ways that instances

within a bag can interact to produce an overall class label for that example. This

thesis explored the case where each instance is assigned a weight that determines its

contribution to the label of its parent bag. An existing MI algorithm related to this

scenario was identified, and was thoroughly evaluated via an empirical study. Precise

146

formalizations of the interactions between instances and bag labels were provided,

and algorithms were presented that were designed to learn these types of multiple-

instance concepts. The effectiveness of the new algorithms was demonstrated on

both artificial data and real-world problems.

The field of MI learning is relatively young, and much work remains to be done

in this area. A number of possible avenues for future research were identified in

this thesis. In particular, the relationships between instances in a bag and the label

of that bag differ between problem domains, and are often not well understood.

The branch of multi-instance learning known as generalized MI is concerned with

understanding the nature of these relationships, and developing algorithms that

can learn effectively when different relationships are applicable. The development

of generalized MI models for real-world problems, and algorithms to solve those

problems, remains an important area for future research.

147

148

Appendix: Detailed Experimental

Results for the New Algorithms

The full results for the experiments described in Chapter 6 were too numerous to

be displayed in that chapter. To avoid disrupting the flow of the document, those

results are instead provided in this appendix.

Experimental results for each single-instance base learner are shown for the

MILES, IFLIW and YARDS algorithms, along with MIWrapper as a baseline

method. All results were computed via 10 × 10-fold cross-validation. Significant

differences versus MIWrapper were computed using a pairwise corrected t-test with

significance level α = 0.05. Tables A.1 — A.9 display percentage accuracy, while

Tables A.10 — A.18 show the root mean squared error results.

Complete results for IFLIW using the 2-norm SVM with the RBF kernel on the

thioredoxin dataset were not available at the time of submission. The partial results

are displayed in the tables.

149

Table A.1: MILES, IFLIW and YARDS vs MIWrapper: C4.5 Base Learner (Clas-
sification Accuracy)

Dataset MIWrapper MILES IFLIW YARDS
musk1 84.3± 11.7 84.1±11.9 81.5±12.2 77.6±12.6
musk2 80.1± 11.3 82.5±12.1 80.1±12.0 67.2±14.2 •
eastwest 52.0± 35.5 50.0± 0.0 44.5±35.5 65.0±30.6
westeast 49.5± 32.2 50.0± 0.0 44.5±35.5 65.0±30.6
mutagenesis-atoms 76.4± 8.3 80.8± 8.1 80.9± 8.5 66.8± 2.7 •
mutagenesis-bonds 80.7± 8.9 77.1± 9.8 83.8± 8.1 80.5± 9.5
mutagenesis-chains 84.9± 7.2 79.3± 9.5 84.1± 8.4 80.2± 9.0
suramin 65.0± 45.2 65.0±45.2 65.0±45.2 65.0±45.2
thioredoxin 87.8± 2.7 84.3± 7.1 87.3± 3.8 86.0± 6.6
elephant 80.3± 7.7 77.5± 9.2 77.8± 8.8 65.4± 9.9 •
fox 64.1± 10.6 56.8±11.2 64.1± 9.8 49.7± 5.1 •
tiger 77.4± 9.2 69.7± 9.3 73.4± 9.4 60.0± 9.6 •
bikes 78.8± 4.6 72.5± 5.7 • 76.3± 5.2 72.7± 5.6 •
cars 67.7± 5.3 62.6± 4.7 • 68.2± 4.5 62.6± 5.3
people 78.4± 4.2 69.8± 5.8 • 76.3± 4.5 68.9± 5.5 •
◦, • statistically significant improvement or degradation vs MIWrapper

Table A.2: MILES, IFLIW and YARDS vs MIWrapper: Random Forests Base
Learner (Classification Accuracy)

Dataset MIWrapper MILES IFLIW YARDS
musk1 87.3± 10.8 87.0±11.4 85.7±12.0 84.4±10.9
musk2 81.0± 11.4 81.7±11.2 79.7±12.1 69.4±13.8 •
eastwest 54.0± 31.5 80.0±24.6 71.0±31.1 72.5±28.8
westeast 55.0± 31.4 80.0±24.6 69.0±31.6 72.5±30.5
mutagenesis3-atoms 81.9± 8.5 82.0± 8.2 82.0± 8.1 81.9± 8.5
mutagenesis3-bonds 83.1± 8.7 79.7±10.5 82.6± 8.8 82.6± 8.4
mutagenesis3-chains 84.2± 7.5 80.4± 9.2 83.3± 8.1 79.6± 9.3
suramin 65.0± 45.2 65.0±45.2 65.0±45.2 65.0±45.2
thioredoxin 87.9± 2.6 87.7± 2.7 87.2± 2.5 87.4± 3.0
elephant 87.1± 6.9 82.3± 8.2 82.1± 8.7 • 66.6±10.3 •
fox 64.6± 9.6 64.9±10.2 64.1± 9.9 54.6±10.8 •
tiger 84.3± 8.1 78.6± 9.0 • 81.3± 8.8 62.0±10.0 •
bikes 82.2± 4.2 79.2± 4.4 • 80.2± 4.6 76.8± 4.8 •
cars 74.8± 4.6 71.7± 4.0 72.4± 4.8 67.0± 4.6 •
people 82.6± 4.0 77.5± 4.3 • 77.9± 4.3 • 73.0± 5.0 •

◦, • statistically significant improvement or degradation vs MIWrapper

Table A.3: MILES, IFLIW and YARDS vs MIWrapper: Adaboost + C4.5 Base
Learner (Classification Accuracy)

Dataset MIWrapper MILES IFLIW YARDS
musk1 86.8± 11.1 85.8±12.0 86.8±11.1 80.3±11.9
musk2 82.7± 11.8 83.2±11.3 82.7±11.8 71.1±14.5
eastwest 56.0± 33.5 50.0± 0.0 47.5±35.8 64.5±31.2
westeast 57.5± 34.4 50.0± 0.0 47.5±35.8 64.5±31.2
mutagenesis-atoms 77.4± 8.1 79.5± 8.5 80.3± 8.6 67.1± 3.2 •
mutagenesis-bonds 82.2± 8.3 80.1± 9.9 81.4± 8.1 80.3± 8.6
mutagenesis-chains 85.1± 7.8 80.8± 8.1 83.0± 7.2 79.4± 8.3
suramin 65.0± 45.2 65.0±45.2 65.0±45.2 65.0±45.2
thioredoxin 88.0± 2.6 85.6± 6.4 88.5± 3.2 87.8± 5.9
elephant 84.2± 8.1 81.5± 8.9 84.4± 7.8 67.1±10.3 •
fox 62.6± 9.8 59.4±11.6 62.7± 9.7 49.7± 5.1 •
tiger 81.0± 8.1 75.4± 9.3 81.1± 8.0 61.5± 9.9 •
bikes 81.8± 4.5 78.0± 4.5 • 81.3± 4.2 75.2± 5.5 •
cars 71.4± 4.9 69.3± 5.0 71.4± 4.9 65.7± 5.1 •
people 81.5± 4.0 75.4± 4.8 • 81.1± 4.5 72.8± 4.6 •
◦, • statistically significant improvement or degradation vs MIWrapper

150

Table A.4: MILES, IFLIW and YARDS vs MIWrapper: Adaboost with Decision
Stump Base Learner (Classification Accuracy)

Dataset MIWrapper MILES IFLIW YARDS
musk1 84.7± 10.7 88.0±11.6 82.6±12.5 82.7±12.1
musk2 79.7± 10.6 83.2±11.5 75.6±12.9 72.2±12.0
eastwest 69.0± 26.4 81.0±24.4 51.0±31.8 70.0±29.3
westeast 69.0± 26.4 81.0±24.4 51.0±31.8 70.0±29.3
mutagenesis-atoms 66.5± 2.3 83.9± 8.6 ◦ 73.3± 8.7 ◦ 78.6± 8.9 ◦
mutagenesis-bonds 73.2± 8.4 86.3± 7.4 ◦ 79.9± 9.6 81.7± 8.4 ◦
mutagenesis-chains 74.0± 7.7 86.0± 8.0 ◦ 73.3± 9.5 79.3± 9.1
suramin 65.0± 45.2 65.0±45.2 65.0±45.2 65.0±45.2
thioredoxin 87.1± 2.4 89.3± 4.0 86.7± 3.3 89.1± 4.9
elephant 85.5± 7.3 80.9± 7.7 82.9± 8.5 66.0±10.5 •
fox 65.7± 9.6 61.6±10.9 63.3±11.0 52.1±11.0 •
tiger 81.8± 8.5 80.5± 8.9 77.7± 9.1 66.4±10.9 •
bikes 79.2± 4.6 78.0± 5.0 79.7± 5.6 76.2± 5.1
cars 71.3± 4.8 71.6± 4.1 71.4± 4.9 66.1± 4.0 •
people 79.5± 4.3 75.6± 4.6 • 76.9± 4.5 74.9± 4.5 •

◦, • statistically significant improvement or degradation vs MIWrapper

Table A.5: MILES, IFLIW and YARDS vs MIWrapper: Bagging with C4.5 Base
Learner (Classification Accuracy)

Dataset MIWrapper MILES IFLIW YARDS
musk1 86.6± 11.0 86.0±11.5 84.1±12.6 80.7±12.5
musk2 81.5± 11.6 83.7±11.5 82.6±11.9 72.5±13.4
eastwest 54.0± 34.6 50.5± 5.0 54.0±38.7 69.0±27.3
westeast 53.5± 35.0 50.5± 5.0 54.0±38.7 69.0±27.3
mutagenesis-atoms 79.7± 8.2 80.5± 7.7 79.1± 9.2 75.5± 9.0
mutagenesis-bonds 82.9± 8.5 77.4± 8.9 83.9± 8.1 80.1± 9.0
mutagenesis-chains 85.3± 7.6 79.8± 9.1 82.9± 8.1 80.3± 8.5
suramin 65.0± 45.2 62.0±46.1 65.0±45.2 62.0±46.1
thioredoxin 87.9± 2.6 88.2± 4.6 87.0± 2.4 89.7± 5.1
elephant 84.1± 7.7 84.0± 8.3 77.7±10.4 • 68.1±10.1 •
fox 65.7± 8.8 61.4±10.3 62.8±10.1 52.9±10.1 •
tiger 81.7± 9.4 75.7± 8.4 75.9± 9.2 • 65.5±11.0 •
bikes 82.5± 4.0 77.7± 5.1 • 80.6± 4.4 76.2± 5.2 •
cars 74.3± 4.5 70.5± 4.9 • 70.3± 4.7 • 66.2± 4.2 •
people 81.8± 3.9 76.6± 4.7 • 77.4± 4.9 • 73.2± 5.4 •

◦, • statistically significant improvement or degradation vs MIWrapper

151

Table A.6: MILES, IFLIW and YARDS vs MIWrapper: 2-Norm SVM with Linear
Kernel Base Learner (Classification Accuracy)

Dataset MIWrapper MILES IFLIW YARDS
musk1 86.9± 11.8 86.6± 9.9 85.1±11.6 79.7±12.2
musk2 81.2± 11.8 88.6±10.1 82.8±11.8 75.8±11.6
eastwest 53.0± 33.2 54.0±33.1 62.0±31.9 65.0±35.2
westeast 53.0± 33.2 54.5±32.6 62.0±31.9 65.0±35.2
mutagenesis-atoms 66.5± 2.3 81.5± 8.2 ◦ 66.3± 2.5 66.5± 2.4
mutagenesis-bonds 66.5± 2.3 81.3± 9.7 ◦ 71.6± 5.7 ◦ 79.0± 8.6 ◦
mutagenesis-chains 68.0± 3.8 77.6± 8.2 ◦ 68.9± 5.0 80.5± 8.3 ◦
suramin 35.0± 45.2 65.0±45.2 34.0±44.9 65.0±45.2
thioredoxin 87.1± 2.4 69.0±10.6 • 87.1± 2.4 68.4±11.4 •
elephant 84.5± 8.7 83.9± 8.0 80.4± 8.7 66.4±13.4 •
fox 59.2± 9.5 61.8± 9.4 59.2±10.9 49.9±11.8
tiger 80.5± 8.0 80.8± 8.8 78.8± 9.6 57.4±10.4 •
bikes 81.5± 4.1 80.5± 4.7 81.6± 4.9 79.4± 4.7
cars 70.8± 4.6 72.5± 4.9 70.2± 4.9 64.8± 6.3 •
people 79.6± 4.3 74.9± 4.9 • 76.3± 4.8 • 76.9± 4.7

◦, • statistically significant improvement or degradation vs MIWrapper

Table A.7: MILES, IFLIW and YARDS vs MIWrapper: 2-Norm SVM with RBF
Kernel Base Learner (Classification Accuracy)

Dataset MIWrapper MILES IFLIW YARDS
musk1 80.8± 12.2 76.1±14.6 81.2±12.6 73.7±13.4
musk2 82.8± 11.8 76.3±11.7 80.0±12.7 63.3±11.3 •
eastwest 68.0± 29.7 80.0±24.6 55.0±32.2 68.5±24.3
westeast 68.0± 29.7 80.0±24.6 54.5±31.9 68.5±24.3
mutagenesis-atoms 66.5± 2.3 82.7± 8.8 ◦ 66.5± 3.0 68.5± 5.7
mutagenesis-bonds 66.5± 2.3 79.1± 8.8 ◦ 66.7± 3.6 78.3± 8.7 ◦
mutagenesis-chains 69.6± 3.5 76.6± 9.6 ◦ 71.4± 6.5 82.5± 8.6 ◦
suramin 35.0± 45.2 65.0±45.2 93.5±19.7 ◦ 65.0±45.2
thioredoxin 87.1± 2.4 87.1± 2.4 87.0∗± 2.7 84.0± 6.2
elephant 82.0± 8.4 52.8± 5.7 • 80.3± 8.7 59.5±10.6 •
fox 57.2± 10.4 54.8± 5.6 54.6±10.3 46.7±10.2 •
tiger 81.0± 8.0 63.8± 6.1 • 77.8± 9.2 57.0± 9.0 •
bikes 76.8± 4.3 77.2± 4.5 77.8± 4.9 75.4± 4.7
cars 66.6± 5.1 71.0± 4.6 ◦ 66.6± 5.1 66.9± 4.9
people 76.0± 4.4 75.3± 4.5 74.1± 4.6 • 74.9± 4.3
* execution did not complete in time for submission for IFLIW on the thioredoxin

dataset. The displayed result is based on the 35/100 completed folds.
◦, • statistically significant improvement or degradation vs MIWrapper

Table A.8: MILES, IFLIW and YARDS vs MIWrapper: 1-Norm SVM Base Learner
(Classification Accuracy)

Dataset MIWrapper MILES IFLIW YARDS
musk1 83.6± 11.7 83.2±11.7 80.8±12.7 80.6±11.4
musk2 78.6± 13.1 90.4± 9.3 ◦ 78.6±13.4 82.6±11.2
eastwest 47.0± 28.3 50.0± 0.0 56.5±23.2 65.0±35.2
westeast 47.5± 29.6 50.0± 0.0 56.5±23.2 65.0±35.2
mutagenesis-atoms 66.5± 2.3 77.4± 9.3 ◦ 66.5± 2.3 66.5± 2.3
mutagenesis-bonds 66.5± 2.3 73.1±13.0 66.5± 2.3 81.3± 8.9 ◦
mutagenesis-chains 66.7± 2.6 77.0± 9.0 ◦ 66.6± 3.1 82.7± 9.7 ◦
suramin 65.0± 45.2 65.0±45.2 65.0±45.2 65.0±45.2
thioredoxin 87.1± 2.4 88.1± 5.1 87.1± 2.4 86.3± 4.4
elephant 83.4± 8.0 84.3± 8.7 79.9± 9.7 82.9± 8.5
fox 58.9± 9.6 61.0± 9.5 59.4± 9.3 55.5± 9.5
tiger 77.7± 8.1 82.0± 8.5 75.0± 8.4 81.3± 8.8
bikes 81.9± 3.9 76.1± 5.0 • 80.6± 4.0 83.9± 4.6
cars 72.3± 4.9 66.5± 5.5 • 70.4± 4.8 71.4± 4.7
people 79.5± 4.3 71.1± 4.9 • 75.8± 4.7 • 78.5± 4.2

◦, • statistically significant improvement or degradation vs MIWrapper

152

Table A.9: MILES, IFLIW and YARDS vs MIWrapper: Logistic Regression Base
Learner (Classification Accuracy)

Dataset MIWrapper MILES IFLIW YARDS
musk1 78.9± 12.5 84.8±11.3 78.3±12.1 81.2±11.4
musk2 81.7± 12.7 85.8±11.0 82.4±13.3 79.7±12.8
eastwest 61.5± 33.2 64.5±29.6 48.0±31.7 65.0±35.2
westeast 61.5± 33.2 68.5±33.1 48.0±31.7 65.0±35.2
mutagenesis-atoms 66.5± 2.3 83.8± 7.2 ◦ 67.2± 5.2 66.8± 6.1
mutagenesis-bonds 67.2± 3.3 80.2± 8.8 ◦ 75.0± 8.2 ◦ 80.8± 8.5 ◦
mutagenesis-chains 70.6± 6.5 73.5± 9.4 71.8± 7.7 83.9± 7.8 ◦
suramin 65.0± 45.2 65.0±45.2 65.0±45.2 65.0±45.2
thioredoxin 87.1± 2.4 87.1∗± 3.9 87.0± 2.7 86.1∗± 4.0
elephant 84.0± 8.6 79.6± 9.1 79.1± 9.0 83.9± 8.7
fox 58.4± 10.2 63.6± 8.9 56.6± 9.8 55.9±10.5
tiger 78.4± 8.3 80.0± 9.2 74.6± 8.8 82.1± 8.5
bikes 82.2± 3.8 72.4± 4.8 • 79.7± 5.1 82.8± 4.4
cars 71.8± 4.9 63.9± 4.9 • 70.3± 5.0 72.18± 5.0
people 78.7± 4.2 66.9± 5.0 • 73.1± 4.4 • 78.28± 4.5
∗ We were unable to allocate enough memory to run MILES/YARDS + Logistic
on the thioredoxin dataset. This result was obtained using an alternative logistic
regression algorithm, implemented as SimpleLogistic in WEKA. The algorithm
uses LogitBoost to learn a logistic regression model. See [Landwehr et al., 2003]
for more information.
◦, • statistically significant improvement or degradation vs MIWrapper

Table A.10: MILES, IFLIW and YARDS vs MIWrapper: C4.5 Base Learner (Root
Mean Squared Error)

Dataset MIWrapper MILES IFLIW YARDS
musk1 0.33± 0.12 0.34±0.19 0.34±0.13 0.44±0.15
musk2 0.39± 0.11 0.37±0.18 0.38±0.12 0.53±0.14 •
eastwest 0.52± 0.16 0.50±0.00 0.62±0.25 0.44±0.35
westeast 0.52± 0.16 0.50±0.00 0.62±0.25 0.44±0.35
mutagenesis-atoms 0.39± 0.04 0.38±0.07 0.38±0.08 0.47±0.01 •
mutagenesis-bonds 0.37± 0.07 0.42±0.08 0.35±0.09 0.38±0.07
mutagenesis-chains 0.33± 0.07 0.39±0.09 0.34±0.09 0.39±0.08
suramin 0.46± 0.25 0.50±0.14 0.37±0.45 0.50±0.14
thioredoxin 0.31± 0.03 0.38±0.11 0.32±0.05 0.36±0.10
elephant 0.37± 0.06 0.44±0.10 • 0.39±0.07 0.54±0.08 •
fox 0.49± 0.06 0.61±0.08 • 0.51±0.06 0.52±0.04
tiger 0.39± 0.07 0.53±0.08 • 0.43±0.07 0.51±0.07 •
bikes 0.39± 0.03 0.51±0.05 • 0.41±0.04 0.51±0.05 •
cars 0.46± 0.02 0.60±0.04 • 0.49±0.03 • 0.59±0.05 •
people 0.39± 0.03 0.54±0.05 • 0.40±0.03 0.54±0.05 •

◦, • statistically significant improvement or degradation vs MIWrapper

Table A.11: MILES, IFLIW and YARDS vs MIWrapper: Random Forests Base
Learner (Root Mean Squared Error)

Dataset MIWrapper MILES IFLIW YARDS
musk1 0.30± 0.08 0.30±0.08 0.31±0.10 0.33±0.08
musk2 0.36± 0.08 0.35±0.07 0.36±0.09 0.45±0.09 •
eastwest 0.51± 0.11 0.32±0.25 ◦ 0.39±0.24 0.40±0.25
westeast 0.51± 0.11 0.32±0.25 ◦ 0.39±0.25 0.40±0.25
mutagenesis-atoms 0.36± 0.07 0.38±0.07 0.36±0.07 0.39±0.09
mutagenesis-bonds 0.36± 0.07 0.38±0.07 0.36±0.07 0.36±0.08
mutagenesis-chains 0.34± 0.07 0.37±0.09 0.34±0.08 0.38±0.08
suramin 0.47± 0.21 0.51±0.14 0.44±0.32 0.51±0.14
thioredoxin 0.30± 0.03 0.30±0.04 0.32±0.03 • 0.30±0.03
elephant 0.35± 0.04 0.36±0.05 0.36±0.05 0.47±0.06 •
fox 0.47± 0.02 0.47±0.04 0.47±0.03 0.54±0.05 •
tiger 0.37± 0.04 0.40±0.05 • 0.36±0.06 0.49±0.06 •
bikes 0.37± 0.02 0.38±0.03 • 0.38±0.04 0.40±0.03 •
cars 0.44± 0.01 0.43±0.02 0.44±0.03 0.47±0.02 •
people 0.37± 0.02 0.39±0.02 • 0.40±0.04 • 0.41±0.02 •

◦, • statistically significant improvement or degradation vs MIWrapper

153

Table A.12: MILES, IFLIW and YARDS vs MIWrapper: Adaboost with C4.5 Base
Learner (Root Mean Squared Error)

Dataset MIWrapper MILES IFLIW YARDS
musk1 0.30± 0.13 0.31±0.21 0.30±0.13 • 0.41±0.16
musk2 0.35± 0.13 0.36±0.17 0.35±0.13 ◦ 0.51±0.14 •
eastwest 0.52± 0.17 0.50±0.00 0.59±0.28 0.46±0.37
westeast 0.52± 0.17 0.50±0.00 0.58±0.27 0.46±0.37
mutagenesis-atoms 0.39± 0.04 0.39±0.07 0.38±0.07 0.47±0.02 •
mutagenesis-bonds 0.37± 0.07 0.39±0.08 0.36±0.08 0.38±0.09
mutagenesis-chains 0.34± 0.08 0.38±0.08 0.35±0.08 0.40±0.10
suramin 0.47± 0.21 0.50±0.14 0.34±0.42 0.50±0.14
thioredoxin 0.31± 0.04 0.36±0.11 0.31±0.04 0.33±0.10
elephant 0.33± 0.07 0.40±0.11 • 0.33±0.07 0.53±0.08 •
fox 0.50± 0.06 0.60±0.09 • 0.50±0.05 0.51±0.02
tiger 0.36± 0.07 0.46±0.10 • 0.36±0.07 0.50±0.06 •
bikes 0.36± 0.03 0.45±0.05 • 0.36±0.03 0.48±0.05 •
cars 0.43± 0.02 0.53±0.04 • 0.43±0.02 0.56±0.04 •
people 0.37± 0.03 0.47±0.05 • 0.37±0.03 0.50±0.04 •

◦, • statistically significant improvement or degradation vs MIWrapper

Table A.13: MILES, IFLIW and YARDS vs MIWrapper: Adaboost with Decision
Stump Base Learner (Root Mean Squared Error)

Dataset MIWrapper MILES IFLIW YARDS
musk1 0.31± 0.09 0.26±0.21 0.33±0.14 0.36±0.16
musk2 0.37± 0.08 0.37±0.16 0.41±0.10 0.47±0.13 •
eastwest 0.47± 0.09 0.27±0.34 0.54±0.20 0.40±0.36
westeast 0.47± 0.09 0.27±0.34 0.54±0.20 0.40±0.36
mutagenesis-atoms 0.44± 0.02 0.35±0.10 ◦ 0.41±0.05 0.41±0.05
mutagenesis-bonds 0.41± 0.03 0.33±0.09 ◦ 0.37±0.06 0.37±0.08
mutagenesis-chains 0.40± 0.03 0.32±0.11 ◦ 0.40±0.05 0.38±0.08
suramin 0.55± 0.20 0.50±0.14 0.37±0.46 0.50±0.14
thioredoxin 0.33± 0.03 0.31±0.07 0.31±0.04 0.31±0.08
elephant 0.33± 0.06 0.40±0.08 • 0.36±0.08 0.47±0.05 •
fox 0.47± 0.03 0.54±0.07 • 0.49±0.06 0.52±0.04 •
tiger 0.36± 0.06 0.39±0.09 0.40±0.07 0.47±0.06 •
bikes 0.39± 0.02 0.40±0.04 0.38±0.03 0.40±0.04
cars 0.46± 0.01 0.44±0.03 0.44±0.02 ◦ 0.46±0.02
people 0.38± 0.02 0.42±0.04 • 0.40±0.03 • 0.41±0.03 •

◦, • statistically significant improvement or degradation vs MIWrapper

Table A.14: MILES, IFLIW and YARDS vs MIWrapper: Bagging With C4.5 Base
Learner (Root Mean Squared Error)

Dataset MIWrapper MILES IFLIW YARDS
musk1 0.29± 0.09 0.30±0.10 0.31±0.13 0.36±0.10
musk2 0.36± 0.10 0.34±0.11 0.35±0.12 0.43±0.10
eastwest 0.52± 0.12 0.50±0.00 0.53±0.32 0.41±0.26
westeast 0.52± 0.12 0.50±0.00 0.53±0.32 0.41±0.26
mutagenesis-atoms 0.37± 0.05 0.38±0.06 0.39±0.07 0.42±0.05 •
mutagenesis-bonds 0.36± 0.07 0.39±0.07 0.35±0.08 0.37±0.07
mutagenesis-chains 0.33± 0.07 0.36±0.07 0.35±0.08 0.37±0.07
suramin 0.46± 0.25 0.51±0.14 0.37±0.45 0.51±0.14
thioredoxin 0.30± 0.03 0.30±0.05 0.33±0.03 • 0.29±0.06
elephant 0.34± 0.05 0.35±0.07 0.40±0.09 • 0.46±0.06 •
fox 0.46± 0.04 0.49±0.05 0.53±0.07 • 0.51±0.03 •
tiger 0.37± 0.06 0.41±0.06 • 0.42±0.08 • 0.47±0.06 •
bikes 0.37± 0.02 0.39±0.04 • 0.37±0.04 0.40±0.03 •
cars 0.44± 0.01 0.44±0.02 0.46±0.03 • 0.47±0.03 •
people 0.37± 0.02 0.40±0.03 • 0.41±0.04 • 0.42±0.03 •

◦, • statistically significant improvement or degradation vs MIWrapper

154

Table A.15: MILES, IFLIW and YARDS vs MIWrapper: 2-Norm SVM with Linear
Kernel Base Learner(Root Mean Squared Error)

Dataset MIWrapper MILES IFLIW YARDS
musk1 0.30± 0.10 0.31±0.18 0.32±0.12 0.37±0.12 •
musk2 0.34± 0.11 0.27±0.17 0.34±0.11 0.43±0.10
eastwest 0.50± 0.12 0.57±0.35 0.48±0.18 0.43±0.17
westeast 0.50± 0.12 0.57±0.35 0.48±0.18 0.43±0.17
mutagenesis-atoms 0.47± 0.01 0.38±0.07 ◦ 0.47±0.01 0.47±0.01
mutagenesis-bonds 0.45± 0.01 0.38±0.08 ◦ 0.43±0.02 ◦ 0.38±0.06 ◦
mutagenesis-chains 0.45± 0.01 0.40±0.08 0.45±0.02 0.35±0.06 ◦
suramin 0.56± 0.11 0.50±0.14 0.68±0.41 0.50±0.14
thioredoxin 0.33± 0.03 0.54±0.10 • 0.33±0.03 0.54±0.11 •
elephant 0.34± 0.06 0.34±0.08 0.37±0.08 0.44±0.07 •
fox 0.50± 0.04 0.49±0.05 0.52±0.06 • 0.50±0.02
tiger 0.37± 0.06 0.36±0.08 0.40±0.07 0.48±0.03 •
bikes 0.37± 0.02 0.37±0.05 0.37±0.03 0.37±0.04
cars 0.46± 0.01 0.44±0.03 0.45±0.01 0.47±0.02
people 0.39± 0.02 0.42±0.04 • 0.42±0.02 • 0.40±0.03 •

◦, • statistically significant improvement or degradation vs MIWrapper

Table A.16: MILES, IFLIW and YARDS vs MIWrapper: 2-Norm SVM with RBF
Kernel Base Learner (Root Mean Squared Error)

Dataset MIWrapper MILES IFLIW YARDS
musk1 0.35± 0.08 0.45±0.19 0.36±0.09 0.39±0.09
musk2 0.33± 0.10 0.47±0.14 • 0.35±0.10 0.48±0.06 •
eastwest 0.46± 0.06 0.28±0.35 0.49±0.11 0.39±0.19
westeast 0.46± 0.06 0.28±0.35 0.49±0.11 0.39±0.19
mutagenesis-atoms 0.47± 0.01 0.40±0.12 0.47±0.01 0.47±0.03
mutagenesis-bonds 0.46± 0.01 0.45±0.10 0.47±0.02 • 0.39±0.07 ◦
mutagenesis-chains 0.45± 0.01 0.47±0.10 0.45±0.03 0.36±0.08 ◦
suramin 0.54± 0.09 0.37±0.46 0.36±0.10 ◦ 0.50±0.14
thioredoxin 0.32± 0.03 0.36±0.03 • 0.33∗±0.00 0.36±0.06
elephant 0.37± 0.05 0.69±0.04 • 0.38±0.04 0.49±0.03 •
fox 0.49± 0.03 0.67±0.04 • 0.49±0.02 0.51±0.02
tiger 0.38± 0.05 0.60±0.05 • 0.40±0.06 0.49±0.03 •
bikes 0.39± 0.02 0.48±0.05 • 0.39±0.03 0.40±0.03
cars 0.47± 0.01 0.54±0.04 • 0.47±0.01 0.46±0.02
people 0.41± 0.02 0.50±0.04 • 0.43±0.02 • 0.41±0.03
* execution did not complete in time for submission for IFLIW on the thioredoxin

dataset. The displayed result is based on the 35/100 completed folds.
◦, • statistically significant improvement or degradation vs MIWrapper

Table A.17: MILES, IFLIW and YARDS vs MIWrapper: 1-Norm SVM Base Learner
(Root Mean Squared Error)

Dataset MIWrapper MILES IFLIW YARDS
musk1 0.35± 0.11 0.34±0.06 0.37±0.13 0.38±0.08
musk2 0.38± 0.11 0.29±0.07 ◦ 0.38±0.12 0.38±0.10
eastwest 0.51± 0.09 0.55±0.00 0.51±0.15 0.42±0.14
westeast 0.51± 0.09 0.55±0.00 0.51±0.15 0.42±0.14
mutagenesis-atoms 0.47± 0.01 0.41±0.05 ◦ 0.47±0.01 • 0.48±0.01 •
mutagenesis-bonds 0.46± 0.02 0.41±0.05 ◦ 0.47±0.02 0.37±0.06 ◦
mutagenesis-chains 0.45± 0.02 0.40±0.05 ◦ 0.46±0.02 0.36±0.08 ◦
suramin 0.44± 0.21 0.44±0.21 ◦ 0.44±0.21 ◦ 0.44±0.21 ◦
thioredoxin 0.36± 0.02 0.34±0.03 0.36±0.02 • 0.36±0.03
elephant 0.36± 0.06 0.36±0.06 0.38±0.09 0.35±0.07
fox 0.51± 0.05 0.49±0.04 0.55±0.06 • 0.55±0.06 •
tiger 0.39± 0.06 0.37±0.06 0.43±0.07 • 0.38±0.08
bikes 0.38± 0.02 0.40±0.03 • 0.38±0.03 0.35±0.04 ◦
cars 0.45± 0.01 0.48±0.03 • 0.45±0.02 0.44±0.03
people 0.39± 0.02 0.44±0.03 • 0.42±0.03 • 0.39±0.03

◦, • statistically significant improvement or degradation vs MIWrapper

155

Table A.18: MILES, IFLIW and YARDS vs MIWrapper: Logistic Regression Base
Learner (Root Mean Squared Error)

Dataset MIWrapper MILES IFLIW YARDS
musk1 0.40± 0.12 0.33±0.19 0.40±0.11 0.39±0.16
musk2 0.35± 0.12 0.32±0.19 0.36±0.14 0.41±0.19
eastwest 0.47± 0.12 0.46±0.35 0.59±0.25 0.43±0.17
westeast 0.47± 0.12 0.41±0.39 0.59±0.25 0.43±0.17
mutagenesis-atoms 0.46± 0.01 0.38±0.09 ◦ 0.45±0.03 0.44±0.02 ◦
mutagenesis-bonds 0.44± 0.02 0.42±0.09 0.42±0.04 0.37±0.06 ◦
mutagenesis-chains 0.42± 0.02 0.49±0.09 • 0.43±0.04 0.34±0.06 ◦
suramin 0.50± 0.23 0.50±0.14 0.35±0.44 0.50±0.14
thioredoxin 0.33± 0.03 0.37*±0.09 0.32±0.03 0.45*±0.08 •
elephant 0.35± 0.06 0.42±0.10 • 0.39±0.08 • 0.33±0.09
fox 0.52± 0.05 0.59±0.07 • 0.57±0.06 • 0.56±0.06 •
tiger 0.38± 0.06 0.42±0.11 0.44±0.08 • 0.38±0.08
bikes 0.36± 0.02 0.51±0.05 • 0.38±0.03 • 0.36±0.04
cars 0.45± 0.01 0.58±0.04 • 0.46±0.02 0.44±0.00
people 0.39± 0.02 0.56±0.04 • 0.44±0.03 • 0.41±0.00
∗ We were unable to allocate enough memory to run MILES/YARDS + Logistic
on the thioredoxin dataset. This result was obtained using an alternative logistic
regression algorithm, implemented as SimpleLogistic in WEKA. The algorithm
uses LogitBoost to learn a logistic regression model. See [Landwehr et al., 2003]
for more information.
◦, • statistically significant improvement or degradation vs MIWrapper

156

Bibliography

[Andrews et al., 2002] Andrews, S., Tsochantaridis, I., and Hofmann, T. (2002).

Support vector machines for multiple-instance learning. Advances in Neural In-

formation Processing Systems, 15.

[Asuncion and Newman, 2007] Asuncion, A. and Newman, D. (2007). UCI machine

learning repository.

[Auer and Ortner, 2004] Auer, P. and Ortner, R. (2004). A boosting approach to

multiple instance learning. In ECML, pages 63–74.

[Braddock et al., 1994] Braddock, P. S., Hu, D. E., Fan, T. P., Stratford, I., Harris,

A. L., and Bicknell, R. (1994). A structure-activity analysis of antagonism of the

growth factor and angiogenic activity of basic fibroblast growth factor by suramin

and related polyanions. Br. J. Cancer, 69(5):890–898.

[Breiman, 1996] Breiman, L. (1996). Bagging predictors. Machine Learning,

24(2):123–140.

[Breiman, 2001] Breiman, L. (2001). Random forests. Machine Learning, 45(1):5–

32.

[Buciluǎ et al., 2006] Buciluǎ, C., Caruana, R., and Niculescu-Mizil, A. (2006).

Model compression. In KDD ’06: Proceedings of the 12th ACM SIGKDD in-

ternational conference on Knowledge discovery and data mining, pages 535–541,

New York, NY, USA. ACM.

[Burl et al., 1998] Burl, M. C., Weber, M., and Perona, P. (1998). A probabilistic

approach to object recognition using local photometry and global geometry. In

Computer Vision – ECCV 98, volume 1407/1998 of Lecture Notes in Computer

Science, pages 628–641.

[Carson et al., 1999] Carson, C., Thomas, M., Belongie, S., Hellerstein, J. M., and

Malik, J. (1999). Blobworld: A system for region-based image indexing and

157

retrieval. In Third International Conference on Visual Information Systems.

Springer.

[Chen et al., 2006] Chen, Y., Bi, J., and Wang, J. Z. (2006). Miles: Multiple-

instance learning via embedded instance selection. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 28(12):1931–1947.

[Chen and Wang, 2004] Chen, Y. and Wang, J. Z. (2004). Image categorization

by learning and reasoning with regions. Journal of Machine Learning Research,

5:913–939.

[Chevaleyre and Zucker, 2001] Chevaleyre, Y. and Zucker, J.-D. (2001). Solving

multiple-instance and multiple-part learning problems with decision trees and

rule sets. application to the mutagenesis problem. In Stroulia, E. and Matwin, S.,

editors, Canadian Conference on AI, volume 2056 of Lecture Notes in Computer

Science, pages 204–214. Springer.

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector net-

works. Machine Learning, 20(3):273–297.

[De Raedt, 1998] De Raedt, L. (1998). Attribute-value learning versus inductive

logic programming: The missing links. In Proceedings of the Eight International

Conference on Inductive Logic Programming, volume 1446 of Lecture Notes in

Artificial Intelligence.

[Dietterich and Bakiri, 1995] Dietterich, T. G. and Bakiri, G. (1995). Solving mul-

ticlass learning problems via error-correcting output codes. Journal of Artificial

Intelligence Research, 2:263–286.

[Dietterich et al., 1997] Dietterich, T. G., Lathrop, R. H., and Lozano-Perez, T.

(1997). Solving the multiple instance problem with axis-parallel rectangles. Arti-

ficial Intelligence, 89(1-2):31–71.

[Dong, 2006] Dong, L. (2006). A comparison of multi-instance learning algorithms.

Master’s thesis, University of Waikato.

[Edgar, 1990] Edgar, G. A. (1990). Measure, Topology, and Fractal Geometry (2nd

Edition). Undergraduate Texts in Mathematics. Springer-Verlag, New York.

158

[Frank and Xu, 2003] Frank, E. and Xu, X. (2003). Applying propositional learning

algorithms to multi-instance data. Technical report, Department of Computer

Science, University of Waikato.

[Freund and Schapire, 1996] Freund, Y. and Schapire, R. E. (1996). Experiments

with a new boosting algorithm. In International Conference on Machine Learning,

pages 148–156.

[Friedman et al., 1998] Friedman, J., Hastie, T., and Tibshirani, R. (1998). Addi-

tive logistic regression: a statistical view of boosting. Technical report, Dept. of

Statistics, Stanford University.

[Gärtner et al., 2002] Gärtner, T., Flach, P. A., Kowalczyk, A., and Smola, A.

(2002). Multi-instance kernels. In Proc. 19th Int. Conf. on Machine Learning,

pages 179–186, San Francisco, CA. Morgan Kaufmann.

[Haussler, 1999] Haussler, D. (1999). Convolution kernels on discrete structures.

Technical report, UC Santa Cruz.

[Hsu et al., 2002] Hsu, W., Lee, M. L., and Zhang, J. (2002). Image mining: Trends

and developments. J. Intell. Inf. Syst., 19(1):7–23.

[King et al., 1993] King, R., Srinivasan, A., Muggleton, S., Feng, C., Lewis, R., and

Sternberg, M. (1993). Drug design using inductive logic programming. In Pro-

ceeding of the Twenty-Sixth Hawaii International Conference on System Sciences,

volume 1, pages 646–655.

[Kohavi and John, 1997] Kohavi, R. and John, G. H. (1997). Wrappers for feature

subset selection. Artificial Intelligence, 97(1-2):273–324.

[Krogel and Wrobel, 2002] Krogel, M.-A. and Wrobel, S. (2002). Feature selection

for propositionalization. In Discovery Science: 5th International Conference,

pages 430–434. Springer.

[Landwehr et al., 2003] Landwehr, N., Hall, M., and Frank, E. (2003). Logistic

model trees. In Proc 14th European Conference on Machine Learning, Cavtat-

Dubrovnik, Croatia, pages 241–252. Springer.

159

[Larson and Michalski, 1977] Larson, J. and Michalski, R. S. (1977). Inductive in-

ference of vl decision rules. workshop in pattern-directed inference systems. In

SIGART Newsletter, volume 63, pages 38–44. ACM.

[le Cessie and van Houwelingen, 1992] le Cessie, S. and van Houwelingen, J. (1992).

Ridge estimators in logistic regression. Applied Statistics, 41(1):191–201.

[Littlestone, 1987] Littlestone, N. (1987). Learning quickly when irrelevant at-

tributes abound: A new linear-threshold algorithm. Machine Learning, 2(4):285–

318.

[Manjunath and Ma, 1996] Manjunath, B. S. and Ma, W.-Y. (1996). Texture fea-

tures for browsing and retrieval of image data. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 18(8):837–842.

[Maron, 1998] Maron, O. (1998). Learning from ambiguity. PhD thesis, Mas-

sachusetts Institute of Technology.

[Maron and Lozano-Pérez, 1998] Maron, O. and Lozano-Pérez, T. (1998). A frame-

work for multiple-instance learning. In Jordan, M. I., Kearns, M. J., and Solla,

S. A., editors, Advances in Neural Information Processing Systems, volume 10.

The MIT Press.

[Maron and Ratan, 1998] Maron, O. and Ratan, A. L. (1998). Multiple-instance

learning for natural scene classification. In Proc. 15th International Conf. on

Machine Learning, pages 341–349. Morgan Kaufmann, San Francisco, CA.

[Mayo, 2007] Mayo, M. (2007). Effective classifiers for detecting objects. In Pro-

ceedings of the Fourth International Conference on Computational Intelligence,

Robotics, and Autonomous Systems (CIRAS 07).

[Michie et al., 1994] Michie, D., Muggleton, S., Page, D., and Srinivasan, A. (1994).

To the international computing community: A new East-West challenge. Tech-

nical report, Oxford University Computing laboratory, Oxford,UK.

[Microsoft Game Studios, 1990] Microsoft Game Studios (1990). Chip’s challenge.

Microsoft Entertainment Pack.

160

[Murray et al., 2005] Murray, J. F., Hughes, G. F., and Kreutz-Delgado, K. (2005).

Machine learning methods for predicting failures in hard drives: A multiple-

instance application. Journal of Machine Learning Research, 6:783–816.

[Nadeau and Bengio, 2003] Nadeau, C. and Bengio, Y. (2003). Inference for the

Generalization Error. Machine Learning, 52(3):239–281.

[Nigam and Ghani, 2000] Nigam, K. and Ghani, R. (2000). Analyzing the effective-

ness and applicability of co-training. In Proceedings of the ninth international

conference on Information and knowledge management, pages 86–93. ACM Press

New York, NY, USA.

[Opelt et al., 2006] Opelt, A., Pinz, A., Fussenegger, M., and Auer, P. (2006).

Generic object recognition with boosting. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 28(3):416–431.

[Platt, 1998] Platt, J. (1998). Sequential minimal optimization: A fast algorithm for

training support vector machines. Technical report, Microsoft Research, Redmon,

Washington.

[Qi et al., 2007] Qi, G., Hua, X., Rui, Y., Mei, T., Tang, J., and Zhang, H. (2007).

Concurrent multiple instance learning for image categorization. In Proceeding of

IEEE Conference on Computer Vision and Pattern Recognition 2007, pages 1–8.

[Quinlan, 1993] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Mor-

gan Kaufmann Publishers.

[Quinlan, 1986] Quinlan, R. (1986). Induction of decision trees. Machine Learning,

1(1):81–106.

[Ray and Craven, 2005] Ray, S. and Craven, M. (2005). Supervised learning versus

multiple instance learning: an empirical comparison. In Proceedings of the 22nd

International Conference on Machine Learning, pages 697–704. Omnipress.

[Reutemann, 2004] Reutemann, P. (2004). Development of a propositionalization

toolbox. Master’s thesis, Albert Ludwigs University of Freiburg.

[Reutemann et al., 2004] Reutemann, P., Pfahringer, B., and Frank, E. (2004). A

toolbox for learning from relational data with propositional and multi-instance

161

learners. In Proceedings of the 17th Australian Joint Conference on Artificial

Intelligence, volume 3339 of Lecture Notes in Computer Science, pages 1017–1023.

Springer Berlin.

[Schapire and Singer, 2000] Schapire, R. E. and Singer, Y. (2000). BoosTexter: A

boosting-based system for text categorization. Machine Learning, 39(2/3):135–

168.

[Scott et al., 2005] Scott, S., Zhang, J., and Brown, J. (2005). On generalized

multiple-instance learning. International Journal of Computational Intelligence

and Applications, 5(1):21–35.

[Srinivasan et al., 1994] Srinivasan, A., Muggleton, S., King, R., and Sternberg, M.

(1994). Mutagenesis: ILP experiments in a non-determinate biological domain.

In Wrobel, S., editor, Proceedings of the 4th International Workshop on Inductive

Logic Programming, volume 237, pages 217–232. Gesellschaft für Mathematik und

Datenverarbeitung MBH.

[Tao and Scott, 2004] Tao, Q. and Scott, S. (2004). A faster algorithm for general-

ized multiple-instance learning. In Proceedings of the 17th International Florida

Artificial Intelligence Research Society Conference (FLAIRS 2004), pages 550–

555.

[Tao et al., 2004a] Tao, Q., Scott, S., Vinodchandran, N., and Osugi, T. T. (2004a).

Svm-based generalized multiple-instance learning via approximate box counting.

In Proceedings of the 21st International Conference on Machine Learning, pages

779–806.

[Tao et al., 2004b] Tao, Q., Scott, S., Vinodchandran, N. V., Osugi, T., and Mueller,

B. (2004b). An extended kernel for generalized multiple-instance learning. In

Proceedings of the 16th IEEE International Conference on Tools with Artificial

Intelligence, pages 272–277.

[Wang et al., 2004] Wang, C., Scott, S., Zhang, J., Tao, Q., Fomenko, D., and

Gladyshev, V. (2004). A study in modeling low-conservation protein superfami-

lies. Technical report, Department of Comp. Sci., University of Nebraska-Lincoln.

162

[Wang and Zucker, 2000] Wang, J. and Zucker, J.-D. (2000). Solving the multiple-

instance problem: A lazy learning approach. In Proc. 17th International Conf.

on Machine Learning, pages 1119–1125. Morgan Kaufmann, San Francisco, CA.

[Weidmann, 2003] Weidmann, N. (2003). Two-level classification for generalized

multi-instance data. Master’s thesis, Albert Ludwigs University of Freiburg.

[Weidmann et al., 2003] Weidmann, N., Frank, E., and Pfahringer, B. (2003). A

two-level learning method for generalized multi-instance problems. In Machine

Learning: ECML 2003, Lecture Notes in Computer Science, pages 468–479.

Springer Berlin.

[Witten and Frank, 2005] Witten, I. H. and Frank, E. (2005). Data Mining: Practi-

cal machine learning tools and techniques (2nd Edition). Morgan Kaufmann, San

Francisco.

[Xu, 2003] Xu, X. (2003). Statistical learning in multiple instance problems. Mas-

ter’s thesis, University of Waikato.

[Xu and Frank, 2004] Xu, X. and Frank, E. (2004). Logistic regression and boosting

for labeled bags of instances. In Dai, H., Srikant, R., and Zhang, C., editors, Proc

Eighth Pacific-Asia Advances in Knowledge Discovery and Data Mining Confer-

ence (PAKDD), pages 272–281. Springer-Verlag, Berlin.

[Yager, 1980] Yager, R. (1980). On a general class of fuzzy connectives. Fuzzy Sets

Systems, 4(3):235–242.

[Zhang and Goldman, 2002] Zhang, Q. and Goldman, S. (2002). EM-DD: An im-

proved multiple-instance learning technique. In Advances in Neural Information

Processing Systems 14: Proceedings of the 2002 Conference. MIT Press.

[Zhang et al., 2002] Zhang, Q., Yu, W., Goldman, S., and Fritts, J. (2002). Content-

based image retrieval using multiple-instance learning. In Proceedings of the 19th

International Conference on Machine Learning, pages 682–689. Morgan Kauf-

mann.

[Zhou and Zhang, 2006] Zhou, Z.-H. and Zhang, M.-L. (2006). Multi-instance

multi-label learning with application to scene classification. In Schölkopf, B.,

163

Platt, J., and Hoffman, T., editors, Advances in Neural Information Processing

Systems, pages 1609–1616. MIT Press.

[Zhu et al., 2003] Zhu, J., Rosset, S., Hastie, T., and Tibshirani, R. (2003). 1-norm

support vector machines. Technical report, Stanford University.

164

