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Abstract

The task of finding synonymous relational phrases is important in natural lan-
guage understanding problems such as question answering and paraphrase detec-
tion. While this task has been addressed by many previous systems, each of these
existing approaches is limited either in expressivity or in scalability. To address
this challenge, we present a large-scale statistical relational method for clustering
relational phrases using Probabilistic Soft Logic (PSL) [1]. To assess the quality
of our approach, we evaluated it relative to a set of baseline methods. The pro-
posed technique was found to outperform the baselines for both clustering and
link prediction, and was shown to be scalable enough to be applied to 200,000
relational phrases.

1 Introduction

To fully understand a written text, a machine must be able to understand the meaning of the relational
phrases occurring within it. Relational phrases are textual representations of relations which occur
between common noun phrases (e.g., “the movie star”) or named entities (e.g., “George Clooney”)
with the same semantic type signature. For example, “Bob is married to Alice” connects two en-
tities of the type <person>, and is an instance of the relational phrase “<person> is married to
<person>.” In this case, both the left side (domain) and the right side (range) arguments of the
phrase have the type <person>. The problem of discovering and organizing relational phrases was
addressed in many previous works [2, 3, 4, 5].

A key step toward detecting the meaning of these phrases is to find their synonyms, in a task known
as semantic clustering. In this problem the goal is to group together phrases which have similar
meanings. For example, “<person> is married to <person>” should be clustered together with
a relation “<person> is a spouse of <person>.” This kind of clustering has many applications,
including paraphrase detection or generation, information extraction, semantic parsing, and question
answering.

State of the art systems for clustering relational phrases concentrate mostly on two aspects – syn-
tax similarity and argument co-occurrence statistics. The PATTY system [4] performs clustering
using both argument overlap statistics and phrase syntax similarity. WiseNet [5] uses similar ideas
but includes a soft clustering option. Universal Schema [6] applies collaborative filtering on the
relation-arguments co-occurrence matrix to find similarity scores between relational phrases. More-
over, it learns vector representations for phrases, which allows to encode asymmetry between them.
Universal Schema additionally combines closed IE (prespecified) with open IE (newly discovered)
phrases. NELL [7] also organizes extracted relations into groups of synonyms, but the number
of clusters is limited to a fixed set of prespecified relations. In our case, the number of clusters
is unknown. DIRT [8] was one of the first works which addressed finding synonymous relational
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phrases using the distributional hypothesis [9]. RESOLVER [10] extended that idea with computing
pairwise similarities between relations and applying hierarchical agglomerative clustering (HAC).
Unlike PATTY, WiseNet or our PSL models, both of the aforementioned systems work with untyped
relational phrases. The PPDB paraphrase database [11] uses a very different approach, employing
bilingual texts. However, they concentrate on paraphrases of textual phrases rather than finding
synonymous or similar relations.

The above approaches are capable of performing semantic clustering at large scale. However, they
are limited in terms of the relational features used. OntExt [3] uses richer contextual information for
clustering but can extract and cluster relations of only one pair of types at one time. There is a need
for more powerful methods which can incorporate many types of relational features, yet can solve
large-scale semantic clustering problems.

To address this challenge, in this paper we present a method for clustering relational phrases using a
statistical relational learning system called Probabilistic Soft Logic (PSL) [1]. The proposed method
has several advantages. First, the PSL modeling language allows us to easily build a rich model
incorporating both similarity measures and relational features. Moreover, it is efficient enough to be
applied to a dataset containing 200,000 relational phrases.

We perform a quantitative evaluation of the proposed PSL model on a small dataset. The per-
formance of our approach is compared against a set of baselines, including textual similarity and
argument overlap, demonstrating the efficacy of the technique. Additionally, we report the outcome
of the PSL method on the large-scale dataset extracted by PATTY [4], illustrating that the proposed
method is highly scalable.

2 Semantic Clustering using Probabilistic Soft Logic

The proposed models begin with the ideas of [4] and [5], and build upon them using relational
learning techniques. This is accomplished using probabilistic soft logic, a declarative language for
specifying templates for probabilistic graphical models. The resulting models, known as hinge-loss
Markov random fields (HL-MRFs) [12], define probability densities over continuous random vari-
ables in the range [0,1]. Inference in this setting is a convex optimization task, which can be solved
efficiently and at scale. PSL has been successfully applied to problems such as entity resolution
[13], trust in social networks [14], ontology alignment [15], and social group modeling [16]. A PSL
model is specified by a set of weighted first order logical rules. The resulting Markov random field
gives higher probability density to states where the rules are closer to being satisfied, as measured
by a continuous relaxation of Boolean logic. We now describe our proposed approach.

Predicates: The PSL models introduced in this work use the following predicates:

• args(R1, X, Y ) - is true when relational phrase R1 occurs with domain argument X and range
argument Y .

• types(R1, T1, T2) - is true when T1 and T2 are domain and range types of relation R1.
• phrase(R1, STR1) - is true when STR1 is a textual representation of relational phrase R1. It is

an implementation detail which allows us to separate numerical identifier R1 from string STR1

in the logic of our models.
• simPattern(STR1, STR2) - is true when Jaccard similarity of tokens of strings STR1 and
STR2 is above a threshold.

• similar(R1, R2) - an open predicate which is true when relational phrases R1 and R2 belong
to the same cluster.

PSL rules: The rules used in the PSL models are shown in Table 1. We employed standard similarity
functions for argument similarity and textual similarity (rules 1,2,3,4). Rule 5 ensures that the
similarity relation between relational phrases is transitive. Additionally, we define a prior on the
inference predicate similar (rule 6). It says that we should assume that two phrases are not similar
with a small weight. This can be overridden with evidence as defined in the other rules.

PSL models: We have developed three sets of rules used by the PSL framework The full list of
rules used by our models is shown in Table 1. Each model runs in two stages – weight learning
and inference. Weight learning is performed on a separate training data set. In the inference stage,
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Id Name Rule
1 Argument similarity

(without types)
args(R1, X, Y ) ∧ args(R2, X, Y ) ⇒ similar(R1, R2)

2 Textual similarity
(without types)

phrase(R1, STR1) ∧ phrase(R2, STR2) ∧
simPattern(STR1, STR2)⇒ similar(R1, R2)

3 Argument similarity and
type compatibility

args(R1, X, Y ) ∧ args(R2, X, Y ) ∧ types(R1, T1, T2) ∧
types(R2, T1, T2)⇒ similar(R1, R2)

4 Textual similarity and
type compatibility

phrase(R1, STR1) ∧ phrase(R2, STR2) ∧
simPattern(STR1, STR2) ∧ types(R1, T1, T2) ∧ types(R2, T1, T2)
⇒ similar(R1, R2)

5 Transitivity rule similar(R1, R2) ∧ similar(R2, R3) ⇒ similar(R1, R3)
6 Negative prior ¬similar(R1, R2)

Table 1: Rules used in PSL models

for each model, the defined rules with learned weights are applied to the test data. We used the
following models:

• PSL sim: In this model we use argument and textual similarity without types (rules 1,2,6)
• PSL types: In this model we add to PSL sim information about the semantic types of the

domain and the range (rules 3,4,6)
• PSL trans: This model extends PSL types with transitivity rules (rules 3,4,5,6)

3 Evaluation

To assess the quality of PSL models we evaluated the proposed models and compared the results
against baseline algorithms.

Baselines: To be able to compare PSL models we have implemented a set of baselines. All of these
methods predict similarity between relational phrases. We consider four baselines:

• Random: for every pair of relations we randomly decide whether they are similar or not.
• Arguments overlap: two relations are similar if they occur with the same arguments. The

higher the percentage of common arguments is, the more similar the relations are. This follows
the distributional hypothesis [9]. For example, if the relations “is married to” and “is husband
of” occurred only with arguments “George Clooney” and “Amal Alamuddin” then they would be
clustered together because of 100% arguments overlap. The threshold above which two relations
are clustered together is set using training data with the grid search algorithm.

• String similarity: to determine the similarity of two relations we use the Jaccard sim-
ilarity of the sets of tokens of their textual representations. Again, two relations are said to be
similar if their textual similarity is above a threshold, chosen using a grid search.

• String & types similarity: we use string similarity and add an additional feature,
types compatibility. Type compatibility introduces a constraint which requires that two relations
can be similar only if the semantic types of the domains of each relation are equal and the
semantic types of the ranges are also equal.

Dataset: We prepared the ground truth semi-automatically based on the clusters of relational phrases
produced by the PATTY system [4]. For the first experiment we used all together 526 relational
phrases which were divided into training and test sets. The training set contains 399 phrases and
3,454 argument-relation-argument triples. These phrases were divided into 229 clusters. The test
set contains 127 phrases and 1,494 argument-relation-argument triples. These phrases were divided
into 58 clusters.

Evaluation setup: We treat our problem in two ways – first as a link prediction task and second as
a clustering problem. In the first setting the goal is to predict which relational phrases are similar.
For every pair of relational phrases the algorithms determine whether there should be a similarity
link between them. The similarity links form a similarity graph. Next we compare the produced
similarity links against the similarity links in the ground truth. As the evaluation metrics for the link
prediction task we use F1 score and area under the receiver operating characteristic curve (AUC).
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In the second setting the goal is to form clusters of synonymous relational phrases. In this case we
take the output of the previous setting and organize phrases into clusters by applying a connected
component detection algorithm [17]. Relational phrases which are in the same component are put
to the same cluster. For the purpose of the evaluation we assume that phrases inside a cluster are
all connected with similarity links. Again, we compare similarity links against the ground truth and
compute F1 score and AUC. Additionally, we compute Normalized Mutual Information (NMI) [18]
– a metric used specifically for the clustering problem.

In order to compute statistical significance the experiment was repeated 20 times on random subsets
of the patterns in the test data. We performed a paired t-test for all metrics (F1, AUC for link pre-
diction and clustering; NMI for clustering) of the PSL models results against baselines and obtained
p-values below 0.05.

Results: The results of the evaluation are shown in Table 2. The String & types
similarity method performs the best out of all baselines in terms of all metrics and settings.
The PSL types and PSL trans models have higher scores than baselines in both link predic-
tion and clustering tasks. Moreover, in the link prediction task, we can see the difference between
PSL types and PSL transmodels. This shows us the influence of the transitivity rule.

After the application of the connected components detection algorithm there is no difference be-
tween PSL types and PSL trans models. This means that the transitivity rule in PSL models
tends to play the same function as the connected components detection algorithm. However, PSL
allows us to incorporate it in a single model rather than in a few separate algorithms. The cause
of the equal scores of PSL types and PSL trans could be the size of the dataset. We do not
observe big clusters in the data, therefore the transitivity cannot be often applied.

Link prediction Clustering
F1 AUC F1 AUC NMI

Random 0.0174 0.5000 0.0221 0.5000 0.8020
Arguments overlap 0.1204 0.5337 0.1167 0.5349 0.8740
String similarity 0.4017 0.6281 0.5878 0.7312 0.9236
String & types similarity 0.4085 0.6283 0.6350 0.7326 0.9321
PSL sim 0.3675 0.6146 0.5684 0.7205 0.9193
PSL type 0.6690 0.7538 0.7151 0.8011 0.9448
PSL trans 0.7290 0.8017 0.7151 0.8011 0.9448

Table 2: Evaluation

Studies on the PATTY dataset: We also investigated the performance of the best performing PSL
model on a larger amount of data. To increase the speed of the algorithm we used precomputed
similarities of textual representations of relational phrases. We used a subset of the patterns taken
using PATTY by Nakashole et al. [4]. The subset consisted of 200,000 patterns, contained informa-
tion about 1,158,417 argument-relation-argument triples and was originally organized into 162,289
clusters. As a result of running the algorithm we obtained 144,634 clusters. Some example clusters
created during this process are shown in Table 3.

Cluster Domain Phrases Range
1 sovereign became emperor as; ascended the throne as; succeeded as; took the

throne as
head of state

2 person be consecrated by; enthroned as; also consecrated; priest
3 actor had starred in; best known for playing on; again starred in; event
4 person and defeated the; successfully defended against; team

Table 3: Example clusters of phrases

4 Conclusion and Future Work

In this paper, we demonstrate an approach for semantic clustering of relational phrases. This ap-
proach uses the PSL framework for modeling similarities between phrases. In the experiments, we
showed that our method outperforms several baselines and is capable of reconstructing a clustering
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performed by PATTY [4]. Moreover, we applied PSL to a dataset whose size is comparable with
datasets used by state of the art systems for extraction and clustering of relational phrases. Since we
used basic features and basic similarity measures there is still the potential for further improvement.
As future work, we can use the expressiveness of PSL to incorporate other similarity measures into
our models. Furthermore, other sources of relational phrases can be used (e.g. WiseNet [5]). Finally,
we also plan to perform a human evaluation of the results of running PSL on the PATTY dataset.
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