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ABSTRACT OF THE DISSERTATION

Latent Variable Modeling for Networks and Text:
Algorithms, Models and Evaluation Techniques

By

James Richard Foulds

Doctor of Philosophy in Computer Science

University of California, Irvine, 2014

Professor Padhraic Smyth, Chair

In the era of the internet, we are connected to an overwhelming abundance of information. As

more facets of our lives become digitized, there is a growing need for automatic tools to help

us find the content we care about. To tackle the problem of information overload, a standard

machine learning approach is to perform dimensionality reduction, transforming complicated

high-dimensional data into a manageable, low-dimensional form. Probabilistic latent variable

models provide a powerful and elegant framework for performing this transformation in a

principled way. This thesis makes several advances for modeling two of the most ubiquitous

types of online information: networks and text data.

Our first contribution is to develop a model for social networks as they vary over time. The

model recovers latent feature representations of each individual, and tracks these represen-

tations as they change dynamically. We also show how to use text information to interpret

these latent features.

Continuing the theme of modeling networks and text data, we next build a model of cita-

tion networks. The model finds influential scientific articles and the influence relationships

between the articles, potentially opening the door for automated exploratory tools for scien-

tists.

xiii



The increasing prevalence of web-scale data sets provides both an opportunity and a chal-

lenge. With more data we can fit more accurate models, as long as our learning algorithms

are up to the task. To meet this challenge, we present an algorithm for learning latent

Dirichlet allocation topic models quickly, accurately and at scale. The algorithm leverages

stochastic techniques, as well as the collapsed representation of the model. We use it to

build a topic model on 4.6 million articles from the open encyclopedia Wikipedia in a matter

of hours, and on a corpus of 1740 machine learning articles from the NIPS conference in

seconds.

Finally, evaluating the predictive performance of topic models is an important yet computa-

tionally difficult task. We develop one algorithm for comparing topic models, and another for

measuring the progress of learning algorithms for these models. The latter method achieves

better estimates than previous algorithms, in many cases with an order of magnitude less

computational effort.
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Chapter 1

Introduction

It’s the job that’s never started as takes longest to finish.

J.R.R. Tolkien, the Fellowship of the Ring

In recent decades the amount of digital information available on the internet has been increas-

ing at an astounding rate. As consumers of information, we are inundated on a daily basis

with overwhelming amounts of content in the form of news websites, online encyclopedias,

weblogs, social media, photos, music, streaming video and more.

Furthermore, we as a society are becoming increasingly connected to the internet throughout

our daily lives. The data traffic from mobile devices alone in 2013 was close to 18 times

the total internet traffic in the year 2000 (Cisco Systems, 2014). Cisco projects that the

number of mobile-connected devices will exceed the earth’s population by the end of this

year (2014), and that traffic from wearable devices will increase 36-fold by 2018. With

more digital information being available, and greater portions of our lives being connected

to it, information becomes increasingly pertinent to the human condition. An important

consequence is that as internet users consume content, they also irrevocably consume even
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more valuable resources: their time and their attention. This motivates the use of automatic

methods to understand, summarize and recommend this content.

Scientists have even stronger needs for such automatic tools than the average digital con-

sumer. The overall number of scientific publications has been estimated to grow exponen-

tially with a growth rate of about 4.7% per year (Price, 1963), with no sign of slowing

(Larsen & von Ins, 2010), motivating analysis tools and recommender systems for scientific

articles, e.g. (Wang & Blei, 2011; El-Arini & Guestrin, 2011). More directly, the growing

field of the digital humanities seeks to employ computational tools to advance research in

the disciplines of the humanities. Examples include modeling ancient Roman households

based on databases of artifacts discovered by archaeologists (Mimno, 2011), and modeling

social networks, digital or otherwise (Nowicki & Snijders, 2001; Kemp et al. , 2006).

A standard approach to the problem of information overload is to perform dimensionality

reduction, transforming complicated high-dimensional data into a smaller, more manageable

representation. Ideally, the transformed low-dimensional representations are semantically

meaningful and able to be understood directly by humans. This idea dates back at least as

far as the principal components analysis (PCA) technique of Pearson (1901) and Hotelling

(1933), which seeks to re-represent data in fewer dimensions while minimizing the total

squared error on reconstruction.

PCA continues to enjoy widespread use, over a century after Pearson’s original article was

published. However, its squared error minimization objective corresponds to an implicit

Gaussian noise assumption which is not always appropriate for every data set (Hofmann,

1999b; Buntine & Jakulin, 2006). For instance, PCA can be applied to text data, in a

technique known as latent semantic analysis (Deerwester et al. , 1990). In this scenario a

document is represented as a discrete vector of “bag of words” term counts. Typically the

document vectors are very sparse, meaning that the large-sample approximation of binomi-

ally distributed count data by a Gaussian is not accurate. Buntine & Jakulin (2006) show
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that the implicit Gaussian assumption of PCA may consequently result in issues such as

greatly over-estimating the probability of rare events. The resulting low-dimensional rep-

resentations are also not as interpretable as we would like, as our positive integer-valued

count vectors are transformed into continuous vectors with potentially negative entries, and

as such cannot be interpreted as “typical” documents (Buntine & Jakulin, 2006). Further-

more, many words have multiple senses – a phenomenon known as polysemy. LSA does not

explicity encode this, which limits its usefulness for word disambiguation and gist extraction

(Griffiths et al. , 2007).

What is needed, then, is a set of techniques which can obtain meaningful low-dimensional

representations of data as in PCA, but which support alternative statistical assumptions.

This is achieved by a class of probabilistic models known as latent variable models (cf.

Bishop (1998)). These models represent a distribution on the observed variables of interest

by way of additional posited latent (hidden, unobserved) variables. The assumed generative

process of the model can be chosen to encode appropriate distributional assumptions. Latent

variable models produce (potentially) low-dimensional representations of the data by way

of the latent variables and model parameters themselves, which are inferred from the data

using statistical techniques.

Returning to our example of bag-of-words text data, the latent variable model called prob-

abilistic LSA (PLSA) (Hofmann, 1999b,a) and its Bayesian extension, LDA (Blei et al. ,

2003), use multinomial distributional assumptions. These modeling assumptions are more

appropriate to sparse, discrete count data than the implicit Gaussian assumption used by

LSA, leading to better predictive performance and more interpretable latent representations

(Hofmann, 1999b,a; Griffiths et al. , 2007).
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To use latent variable models in practice, we need to

1. define models applicable to the tasks at hand,

2. develop learning algorithms to fit them, and

3. implement evaluation strategies for validating the models.

This thesis makes advances on each of these fronts. The key contributions of the thesis

are two new latent variable models, and two novel algorithmic methods. The proposed

techniques focus on network and text data sets, which are perhaps the most prevalent types of

information available for internet and digital humanities applications. Furthermore, some of

the methods introduced here explore the interplay of both of these types of digital information

in the case where network and text data are available together. In addition, many of the

ideas explored here have the potential to be applied more generally to other types of data.

We first consider the problem of modeling social networks in a longitudinal setting where

the network is observed repeatedly over time. A Bayesian nonparametric model is intro-

duced for this setting, allowing the latent variable assignments to vary dynamically and the

complexity of the latent representation to be inferred from the data. We also explore the

use of text to infer the semantics of the latent features in these models for both email data

and for a network of twitter users. Continuing our theme of network and text modeling,

the second contribution of the dissertation is a model which leverages text information to

recover influence relationships between scientific articles along the citation graph.

The success of latent variable models at finding meaningful latent structure in data motivates

their application in increasingly large data sets, where human attention is increasingly diluted

across the data. This brings with it challenges of scale. For example, it is not feasible to

fit a topic model to the online encyclopedia Wikipedia using traditional single-threaded

batch learning algorithms. This thesis introduces a stochastic algorithm for efficiently and
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accurately learning topic models, by exploiting the collapsed representation of the model, in

which the model parameters are marginalized out and inference is performed on the latent

variables alone.

Evaluating topic models is a task even more computationally challenging than learning these

models, as computing the likelihood of a single held-out document involves an intractable

integral or an intractable sum, and there may be thousands or tens of thousands of held-

out documents. The final contribution of this thesis is to introduce new reliable methods

for comparing the predictive performance of topic models and for efficiently estimating their

predictive quality per iteration of the algorithms used to train them. This facilitates thorough

empirical comparisons of the convergence properties of different learning algorithms.

The remainder of this chapter provides an introduction to latent variable modeling and

summarizes the contributions of the dissertation.

1.1 Latent Variable Models

Suppose we are given a collection x = (x1,x2, . . .xN) of D-dimensional data observations.

In a probabilistic modeling context, we assume that x is random and we are interested in

learning its distribution Pr(x). A latent variable model approaches this by augmenting the

observed variables x with unobserved (a.k.a. “latent” or “hidden”) variables z, allowing us

to reason over the joint distribution Pr(x, z). Note that we can recover Pr(x) from this joint

distribution through marginalizing the latent variables, since Pr(x) =
∑

z
Pr(x, z) due to

the law of total probability.1 The latent variables may correspond to real-world quantities

1If the latent variables are continuous, this sum is replaced with an integral. Notationally, we will assume
discrete variables whenever possible for simplicity.
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which are hidden from us, or to convenient artificial constructs introduced for modeling

purposes.2

Due to the product rule, the joint distribution Pr(x, z) can be factorized as Pr(x|z)Pr(z).

We can think of Pr(z) as the prior probability of the latent variables. It is often convenient to

assume that the xi are conditionally independent given z, i.e. Pr(x, z) =
∏

i Pr(xi|z)Pr(z).

This conditional independence assumption still allows for complex dependencies between the

xi in the marginal distribution Pr(x) by way of the latent structure. In this form, we can

construct our latent variable models via an assumed generative process, where the latent

variables are drawn first, and then the observed variables are each drawn independently

based on the latent variables.

We motivated latent variable models above through their ability to perform dimensionality

reduction. This is typically achieved by associating each D-dimensional observation xi with a

K-dimensional latent representation zi, whereK ≪ D, and further assuming that Pr(x, z) =
∏

i Pr(xi|zi)Pr(z) (Tipping & Bishop, 1999). With an appropriately specified model, each

zi captures important properties of its xi, while living in a lower dimensional space. In the

nomenclature of neural networks, we can think of z as a bottleneck through which the data

are squeezed, thus compressing them.3

2In the words of Box & Draper (1987), “all models are wrong. Some models are useful.” Even very
unrealistic models may be useful for finding interesting latent structure in the data, and may still be useful
for density estimation and prediction.

3Alternatively, it is still possible to achieve compression by setting K > D as long as the latent repre-
sentations are made to be sparse, e.g. Teh et al. (2003). We will not consider these sparse overcomplete

representations further here.
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1.1.1 A Simple Example: Mixture Models

A simple example of a latent variable model is the mixture model,

Pr(xi) =
∑

k

Pr(zi = k)Pr(xi|zi = k) . (1.1)

Here, the latent variable zi is a discrete class for each data point xi. The component dis-

tributions Pr(xi|zi = k) specify the data probability for each class, e.g. Pr(xi|zi = k) =

Gaussian(xi;µk,Σk). A useful property of many latent variable models is that they often

correspond to an intuitive generative “story” of how the data were assumed to be generated.

In the case of the mixture model, Equation 1.1 is equivalent to the following generative

process:

• For each data point i

• Draw a discrete latent variable assignment zi ∼ discrete(π)

• Draw the data point from component zi, x ∼ Pr(xi|zi) ,

where πk = Pr(zi = k). Drawing zi from discrete(π) can be thought of as rolling a biased

K-sided die to select the latent class assignment. Even when the component distributions

are unimodal, the latent variables in the mixture model result in a flexible multi-modal

distribution by adding probability mass around the mode of each component. Given the

component distributions and the probability of each component, we can perform inference

to estimate the assignments via Bayes rule.

In this way the latent variable framework provides us with a (probabilistic) clustering, i.e.

a partition of the data into related sets of data points, thus extracting hidden structure

present in the data in a model-based way. In terms of dimensionality reduction, we have

mapped our possibly high-dimensional data points xi onto a discrete cluster label zi. We
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can also interpret this as mapping xi onto a K-dimensional binary vector with zeros in every

co-ordinate except the zith entry, which contains a one, thus projecting the D-dimensional

x’s onto a K-dimensional space.

1.2 Latent Variable Models as Matrix Factorization

Principal component analysis finds a latent representation of the data matrix by factorizing

it, via the singular value decomposition, in order to reduce its dimensionality. It should per-

haps be unsurprising, then, that many latent variable models can also be interpreted as per-

forming matrix factorization. Buntine & Jakulin (2006) and Griffiths et al. (2007) illustrate

this interpretation for an important class of latent variable models known as topic models,

and many social network models are also explicitly described this way, e.g. Miller et al.

(2009).

We will use the discrete component analysis (DCA) framework of Buntine & Jakulin (2006)

to encode many of the major latent variable models in the literature, including all models

encountered in this thesis, as matrix factorization models. To achieve this, here we generalize

Buntine and Jakulin’s framework slightly by relaxing their assumption that the data are

discrete, and by including a variant of it for one-mode network models. This will allow us to

give a very concise review of the literature, as well as showing the relationships between the

different models. In the following, we will also slightly modify DCA in order to make use

of the terminology and notation of generalized linear models (GLMs) (Mccullagh & Nelder,

1989), which are closely related to the present framework.
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1.2.1 A Matrix Factorization Framework

Let us represent our data set in an N ×D matrix x, where N is the number of data points

and D is their dimensionality. The entries of x are assumed to be real-valued, or belonging to

a subset of the real numbers such as the integers or binary numbers. We model the expected

value µ of the data matrix as a function of a matrix product of latent variable matrices,

µ , E[x|R,C] = g−1(η) (1.2)

η = RC⊺ , (1.3)

where η is an auxiliary N×D matrix, and g, which is assumed monotonic, differentiable and

invertible, is known in the GLM literature as a link function. Its inverse g−1, which maps

the linear predictor η to the mean µ, is called a mean function or an inverse link function.

The matrix R is N × K and consists of low-dimensional latent variable representations of

each data point (i.e. each row of x), and C is a D×K matrix consisting of low-dimensional

representations of each feature (i.e. each column of x). In a manner reminiscent of GLMs,

the final distribution is specified by

Pr(x|R,C, θ(f)) = fθ(f)(η) , (1.4)

where f is a distribution, typically from the exponential family, with θ(f) optionally specify-

ing additional parameters such as variances. For example, if x contains count data, f may

be a Poisson distribution on each of the entries, xij ∼ Poisson(ηij). After including a prior

distribution Pr(R,C, θ(f)), we have now specified a family of latent variable models Pr(x, z),

where the latent variables z = {R,C, θ(f)} correspond to K-dimensional compressed rep-

resentations of the rows and columns of x, as well as any additional parameters for the

likelihood. Alternatively, instead of interpreting the rows of C as latent representations for

the features in x, we can interpret the columns ofC as D-dimensional representations of each
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Figure 1.1: A matrix factorization framework for latent variable models.
Top: Rectangular data matrices and two-mode networks. Bottom: Single-mode networks.

of the K latent dimensions in R. See Figure 1.1 (top) for an illustration of this modeling

framework.

Consider, for example, the Gaussian mixture model. If data point xi belongs to class k,

we can set Ri (the ith row of matrix R) to be a binary vector consisting of a single one

at the kth entry, and zeros elsewhere. Let each column c of C be the mean mc of the

kth component Gaussian. We then may compute η = RC⊺. The matrix product “selects”

the component mean mk, and re-represents xi with ηi = m⊺
k. So we can write Pr(x|z) for

the Gaussian mixture model as Pr(x|R,C,Σ) = fΣ(η), where f consists of a multivariate

Gaussian distribution for each row i with mean ηi and covariance Σk, with k being the class

assignment for data point xi.

This framework is very general, and it includes the vast majority of latent variable models in

the literature (after generalizing it to network models, which we do below). Essentially the

only constraining assumption is that the expectation of x under the model can be written

as g−1(RC⊺) for some latent variables R and C and mean function g−1. This is exceedingly

common in practice. Although η = RC⊺ is linear, the mean function g−1 may introduce
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non-linearities. Furthermore, both R and C are unobserved free parameters. This is in

contrast to GLMs (Mccullagh & Nelder, 1989), which follow a similar pattern except that

η depends on a fixed, observed feature vector xi, and the goal is to perform regression,

predicting a response variable yi for each xi. GLMs have a form somewhat parallel to the

above framework,

ηi = x⊺
i β (1.5)

µi , E[yi|xi, β, θ
(f)] = g−1(ηi) (1.6)

Pr(yi|xi, β, θ
(f)) = fθ(f)(µi) , (1.7)

where it is assumed that f is in the exponential family. The linearity assumption in our latent

variable framework is in some sense less restrictive than for GLMs, as η is a linear function of

adjustable free parameters, instead of being a linear function of a fixed observation vector.

We can think of the framework as an unsupervised version of generalized linear models

(Buntine & Jakulin, 2006).

1.2.2 Terminology: Latent Variables vs Parameters

Before extending the framework to network models, we will pause to discuss the terminology

used in latent variable modeling, in the context of the framework. Specifically, a frequentist

statistician makes a clear distinction between variables, which are random, and parameters,

which are assumed fixed but unobserved. Here, we assume a Bayesian stance, where all

elements of the models are considered to be random. From a Bayesian perspective, there

is no mathematical difference between parameters and latent variables. In our case, for

example, all elements of z = {R,C, θ(f)}, are latent, and are variable, and so therefore they

are latent variables. In this thesis, we will also use the word parameter to describe some of
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the latent variables when this is convenient. Following Murphy (2012), we will refer to the

variables which are not associated with specific data points, C and θ(f), as parameters.

In certain cases such as for topic models, the convention is to also refer to continuous variables

within R as parameters, and to use the term “latent variable” only to refer to discrete hidden

variables. We follow this convention when appropriate.

1.2.3 Single-Mode Network Data

In the above we have assumed that our data matrix x is a rectangular N × D matrix.

This does not hold for non-bipartite network data, where the observation Y is an N × N

(binary, or weighted) adjacency matrix of a graph, representing for example connectivity

in a social network.4 For such data the row and column entities are the same, so we do

not need separate row and column latent variables R and C. Instead, we can represent the

entities with one N ×K matrix of latent representations, Z. When building network models

with these latent variables Z, a matrix factorization modeling framework is once again a

convenient formalizm (Hoff, 2007). The distribution over the adjacency matrix is once again

parameterized in GLM-style as

µ , E[Y] = g−1(η) (1.8)

η = ZWZ⊺ . (1.9)

Here, W is a K×K matrix which encodes the relationships between the latent variables used

to represent the entities. See Figure 1.1 (bottom) for an illustrative diagram of the modeling

framework. In practice, it is useful to extend the framework slightly to allow additional

4Bipartite networks, also known as two-mode networks, where there are two types of entities and there are
no connections within each type, can be written as rectangular matrices. Each row of the matrix is associated
with entities of type one, and each column is associated with entities of type two. The rectangular matrix
factorization framework for latent variable models applies directly, see e.g. DuBois et al. (2011).
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linear terms specifying actor-specific tendencies to form and receive ties, as well as intercept

terms (Krivitsky et al. , 2009),

Pr(yij|Z,W, ρ, ξ, ǫ, θ(f)) = fθ(f)(g
−1(ziWz⊺j + ρi + ξj + ǫ)) . (1.10)

These linear terms could in principle be included for a rectangular x as well. Since networks

are frequently represented as binary adjacency matrices, the likelihood portion of the model

is typically specified by conditionally independent Bernoulli distributions for each yij. The

framework allows us to concisely describe many of the models in the literature. A survey of

latent variable models for rectangular data matrices is given in Figure 1.2, and for single-

mode networks in 1.3, leveraging the framework to show the different choices along which

the models in the literature vary. We detail some of the possible modeling options in the

next section.

1.3 Modeling Choices

We can specify many different latent variable models by using different choices for the row

and column latent representations, the link function and the prior on the latent variables.

1.3.1 Latent Representation

By constraining the latent representations, different semantics can be imposed. In the follow-

ing we focus our discussion on the row representations Ri of the data points. Some options

are:
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Figure 1.2: Matrix factorization representations of latent variable models

Model Rows Columns Likelihood Infinite

Factor analysis continuous continuous row-wise diagonal no
cf. Spearman (1904) multivariate

Gaussian

Infinite sparse factor analysis continuous continuous, row-wise isotropic yes
Knowles & Ghahramani (2007) sparse multivariate

Gaussian

Probabilistic PCA continuous continuous row-wise isotropic no
Tipping & Bishop (1999) multivariate

Gaussian

Gaussian mixture model, cf. latent class continuous row-wise no
Orchard & Woodbury (1972) multivariate

Gaussian

Infinite Gaussian mixture latent class continuous row-wise yes
model, Rasmussen (1999) multivariate

Gaussian

Collaborative filtering continuous continuous element-wise no
cf. Bell & Koren (2007) Gaussian

Binary matrix factorization binary binary element-wise yes
Meeds et al. (2007) latent feature latent feature Gaussian

Latent set model binary sparse feature noisy-or no
DuBois et al. (2011) latent feature probabilities

Latent Dirichlet allocation mixed mixed row-wise no
Blei et al. (2003) membership membership multinomial

HDP topic model mixed mixed row-wise yes
Teh et al. (2006) membership membership multinomial

Gamma Poisson topic model continuous continuous Poisson no
Canny (2004)

Focused topic model sparse mixed mixed row-wise yes
Williamson et al. (2010) membership membership multinomial

SparseTM topic model mixed sparse mixed row-wise yes
Wang & Blei (2009) membership membership multinomial

Restricted Boltzmann latent feature continuous Bernoulli No
machines, Hinton (2002) logit

Smolensky (1986)
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Figure 1.3: Matrix factorization representations of network models

Model Entity Feature-feature Likelihood Infinite
interaction / Link

Latent eigenmodel continuous continuous, diagonal Bernoulli no
Hoff (2007) probit

Latent space modela continuous identity Bernoulli no
Hoff et al. (2002) logit

Stochastic block model latent class probability Bernoulli no
Nowicki & Snijders (2001)

Infinite relational model latent class probability Bernoulli yes
Kemp et al. (2006)

Mixed membership mixed probability Bernoulli no
stochastic block model membership
Airoldi et al. (2008)

Latent feature latent continuous Bernoulli yes
relational model feature logit

Miller et al. (2009)

aThe latent space model computes probabilities of ties based on the distance between the actors in the
latent space. The latent eigenmodel weakly generalizes the latent space model, in the sense that it can
closely approximate it (Hoff, 2007). It can also be mapped to the matrix factorization framework using the
identity ‖q − p‖ =

√

−2q · p+ ‖q‖2 + ‖p‖2.

Latent Class

In a latent class model such as a mixture model, we set Ri to be a binary vector which sums

to one, i.e. there is exactly one entry with the value one. This encodes the property that

each data point belongs to a single class. E.g., Ri = (0, 0, 1) assigns xi to class three.

Mixed Membership

If we relax the constraint that Ri is binary while continuing to require that
∑

k Rik = 1, the

latent representation allows each data point xi to have partial or “mixed” membership of

the K classes (Hofmann, 1999a,b; Pritchard et al. , 2000; Blei et al. , 2003; Erosheva et al. ,

2004). E.g., Ri = (0.1, 0.8, 0.1) assigns 80% of its membership weight to class two.
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We can interpret Rik as the probability that an additional latent class assignment zi = k, i.e.

xi belongs to class k. Since ηij = RiC
⊺
j =

∑

k RikCjk =
∑

k Pr(zi = k)Cjk, we can under-

stand this as averaging over or marginalizing out the class assignment. This formulation is

useful for models where each data point has multiple opportunities to select a class, according

to its mixed membership vector. This should be contrasted with standard mixture models,

where each entity is assigned just one class. Mixed membership models arise naturally in the

study of population genetics, where the genes of an individual are determined by multiple

ancestral populations (Pritchard et al. , 2000). In the population genetics literature, these

models are called admixture models.

In machine learning, the social network model known as the mixed membership stochastic

blockmodel (Airoldi et al. , 2008) posits that each actor in the network selects a different

class when determining the presence or absence of an edge connecting them to each other

actor. In the latent Dirichlet allocation topic model for text corpora (Blei et al. , 2003),

each word in a document is assigned its own latent class according to that document’s

mixed membership distribution, instead of assigning the document to a single latent class.

Note that here the latent variables have a hierarchical structure, in which the latent class

variables zi are generated based on other latent variables, namely the mixed membership

vectors. Hierarchical model-building is a common pattern in latent variable modeling, as it

allows for more sophisticated latent structure.

Binary Latent Features

The mixed membership latent representation requires that the membership values sum to

one across the classes. This implies a “conservation of mass” relationship between the latent

classes, where a limited amount of probability mass is spread across all of the classes. Thus,

in a two-class model where class one corresponds to “[the person associated with data point]

xi likes basketball” and class two corresponds to “xi likes tennis,” then if we increase the
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extent to which xi likes basketball then we must decrease the extent to which xi likes tennis

by the same amount. This is undesirable in some applications – e.g., we should not expect

an interest in basketball to require a lack of interest in tennis.

If we wish to avoid this conservation of mass constraint but still allow multiple classes to

be chosen for a given data point (e.g. xi likes both basketball and tennis), an alternative

choice is to use binary vectors for the latent representation, without any constraint on the

sum (Griffiths & Ghahramani, 2006). In this case, Ri = (1, 1) corresponds to xi having an

interest in both basketball and tennis.

Feature Probabilities

An alternative to the binary latent feature representation is to relax the constraint that

features are either “on” with value one, or “off” with value zero, and instead assign them a

“probability of being on,” i.e. a value between zero and one. This representation is useful

when we want feature semantics along the lines of “in each interaction, make use of feature

k with probability πk” (DuBois et al. , 2011).

Continuous Latent Space

The above kinds of models constrain the representation, which helps to control the semantics

of the latent variables in potentially useful ways such as forcing the model to output a

clustering of the data. We need not restrict ourselves to binary or mixed membership vectors,

however. Unconstrained continuous latent representations can encode similarities between

entities within a latent embedding of social actors (Hoff et al. , 2002), or encode levels of

(dis)interest or affinity with latent categories in recommender systems for products such as

movies (Bell & Koren, 2007). If sparsity in the latent representation is desired, this can be
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achieved by taking the Hadamard (elementwise) product of a continuous vector and a binary

vector (Griffiths & Ghahramani, 2006).

1.3.2 Link Function and Likelihood

The likelihood f and the inverse link function g−1 relate the latent variables to the observed

variables. Some possible options are

• Gaussian

• Each entry of the matrix has a univariate Gaussian

xij ∼ Gaussian(ηij, σzi)

• Each row of the matrix has a multivariate Gaussian

xi ∼ Gaussian(ηi,Σzi)

• A multivariate Gaussian across the entire matrix

x(:) ∼ Gaussian(η,Σ)

• Poisson

• Constraining the parameters to be positive

xij ∼ Poisson(ηij)

• Transforming the parameters to be positive

xij ∼ Poisson(exp(ηij))
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• Bernoulli

• Constraining 0 ≤ ηij ≤ 1

xij ∼ Bernoulli(ηij)

• Logit link function

xij ∼ Bernoulli(σ(ηij))

• Probit link function

xij ∼ Bernoulli(Φ(ηij))

• multinomial

• xi ∼ multinomial(ηi, Ni) (each row has a multinomial distribution)

• x(:) ∼ multinomial(η,N) (a multinomial across the entire matrix)

1.3.3 Priors

It is possible to select any prior on the latent variables whose support is the space of the

chosen latent representation. However, priors which are conjugate, i.e. the posterior is in

the same family as the prior, are often selected for computational reasons. Conjugate priors

are more likely to result in tractable update equations for learning and inference algorithms,

and in some cases allow variables to be marginalized out. Note that conjugacy may be with

respect to the inverse link function, or in a hierarchical model where there are multiple layers

of latent variables, to the next layer. If we have Bernoulli distributed variables we can place

beta priors on their parameters (Griffiths & Ghahramani, 2006); with Poisson variables we

can use gamma priors (Canny, 2004; Titsias, 2008); with multinomial variables we may use

Dirichlet priors (Blei et al. , 2003), and so on.
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Bayesian Nonparametric Priors

The ideal dimensionality K of the latent variables is often unknown in practice. One strategy

for resolving this is to use a Bayesian nonparametric model, where the prior allows for an

unbounded dimensionality on the latent variables. For example, consider the mixture model.

We must specify a prior distribution Pr(z) on the latent class assignments. Normally this

consists of a discrete distribution, which can be represented as a K-dimensional vector which

sums to one. In a Bayesian framework, we can place a further Dirichlet prior over this discrete

distribution.

Alternatively, the Dirichlet process (DP) (Ferguson, 1973) is a prior with support over all

discrete distributions of any dimensionality. Surprisingly, this prior distribution also results

in tractable posterior distributions. This makes it feasible to define mixture models with an

unbounded number of classes (Neal, 1992, 2000; Rasmussen, 1999).

In a mixture modeling context, drawing from the discrete distribution arising from Dirichlet

process can be understood using an equivalent process known as the Chinese restaurant

process (CRP) (Aldous, 1985). In the CRP, there are an infinite number of “tables” (i.e.

clusters), and each “customer” of the restaurant (i.e. data point) sits at a table based on

the popularity of the dish at that table, i.e. the number of “customers” already at the table.

Continuing with the culinary metaphors, for binary latent feature models and for sparse

continuous representations, we can instead use the Indian buffet process (IBP), which is a

prior on binary matrices with an unbounded number of columns (Griffiths & Ghahramani,

2005, 2006). There are deep connections between the Dirichlet process and the Indian buffet

process. The DP can be understood using a “stick-breaking” construction, where a “stick”

of length one is broken repeatedly, and each cluster is assigned probability mass according

to the discarded portion of the stick (Sethuraman, 1994). The IBP can also be derived using
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a similar stick-breaking process, where the other half of the stick from the CRP gives the

probability of each feature being active (Teh et al. , 2007b).

Frequentist Approaches

Another strategy is to use a frequentist approach to modeling. In this case, some or all

of the latent values are interpreted as fixed but unknown parameters, instead of random

variables. Then, no prior distribution is specified on the parameters, and learning proceeds

using a frequentist method such as maximum likelihood learning (e.g. Hofmann (1999b)).

An intermediate approach between frequentist learning and fully Bayesian models is to add

penalty terms to the modeling objective function such as the log-likelihood. These terms can

be used to encourage certain properties such as sparsity. In some cases, they also correspond

to a Bayesian prior. For example, the lasso (Tibshirani, 1996), may be used, which leads

to sparse representations. The lasso is equivalent to maximizing the posterior probability of

the parameters, with a Laplace prior centered at zero.

1.3.4 Sequential Data

Often we do not observe just a single data matrix x, but multiple snapshots of it over

time, x(1),x(2), . . . ,x(T ). A straightforward way to model such sequential data in a latent

variable framework is to allow the latent variables to change over time, z(1), z(2), . . . , z(T ),

and model the data at each timestep as being drawn in the usual way based on the la-

tent variables at that timestep. The simplest approach is to use a hidden Markov model,

by assuming that the latent variables are generated according to a Markov chain, i.e.

Pr(z(i)|z(i−1), z(i−2), . . . , z(1)) = Pr(z(i)|z(i−1)). If each latent variable z
(.)
k is assumed to

have its own independent Markov chain, i.e. the latent variables and their dynamics are

independent from each other in the prior, this is called a factorial hidden Markov model
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(Ghahramani & Jordan, 1997). Nonparametric Bayesian latent variable models for sequen-

tial data are also possible, including the infinite HMM (Beal et al. , 2002) and the infinite

factorial HMM (Van Gael et al. , 2009). It is also possible to use higher-order Markov depen-

dencies (at greater computational expense), or alternatively to use models with continuous

time instead of discrete timesteps (Fan & Shelton, 2009).

1.4 Learning and Inference

We have seen how we can design latent variable models which posit interesting latent struc-

ture in the data. However, all of this modeling is for naught unless we are able to recover

this latent structure. To achieve this, we need to develop algorithms to infer latent variables

and parameters from data.5

In a Bayesian context, all of our latent variables and parameters z are random variables, and

we can write down their posterior probability using Bayes rule:

Pr(z|x) =
Pr(x|z)Pr(z)

Pr(x)
. (1.11)

Ideally we would like to infer the full posterior Pr(z|x). One strategy for this is to per-

form Markov chain Monte Carlo (MCMC) techniques, which simulate from the distribution

by sampling from a Markov chain invariant to it (Metropolis et al. , 2004; Hastings, 1970;

Geman & Geman, 1984; Gelfand & Smith, 1990).6 Given enough computation time, these

methods will obtain draws from the posterior as long as the Markov chain is ergodic (i.e. it

5In the graphical model literature, some authors make a distinction between inference, which recovers
latent variables, and learning, which recovers parameters. In this thesis we are mainly operating in a Bayesian
framework where there is not always a clear distinction between latent variables and parameters. We will
therefore switch between learning and inference terminology depending on the context, but in both cases we
refer to the recovery of unknown values of interest in our models.

6A Markov chain is invariant to a distribution if, starting from a draw from that distribution, subsequent
iterations of the Markov chain lead to samples which are still draws from that distribution.
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will eventually be able to reach any point in the space, without periodic behavior, and with

the ability to return to any previous state). The simplest MCMC algorithm, which we will

make repeated use of in this thesis, is the Gibbs sampler, which samples from the posterior

by repeatedly iterating the update

zi ∼ Pr(zi|z¬i,x) (1.12)

for each zi, where z¬i consists of the variables in z excluding zi. This strategy can be very

effective in some cases, and MCMC is one of very few algorithms which is guaranteed to

eventually correctly estimate the true posterior in the long run. However, in some cases

MCMC will mix poorly and take a very long time to correctly draw from the posterior.

Such failures can also be very hard to diagnose. Furthermore, given a computational budget

it may be beneficial to use optimization techniques instead of simulation. Optimization

algorithms tend to travel more directly “uphill” in their objective functions, exhibiting less

“random walk” behaviour than their simulation counterparts. This means that they may

reach a reasonable solution more quickly than MCMC.

When using optimization algorithms, an objective function must be chosen. It is generally

not feasible to optimize the full posterior Pr(z|x) directly. A more practical optimiza-

tion strategy known as variational Bayesian (VB) inference instead reasons with a more

tractable distribution q(z) such as a fully factorized distribution. The VB method pro-

ceeds by minimizing the KL-divergence between q(z) and Pr(z|x) (Jaakkola & Jordan, 1997;

Jordan et al. , 1999). A disadvantage of this approach is that if Pr(z|x) is not a member

of the family q (which is typically the case), even the optimal variational distribution q̂(z)

is only an approximation, and thus the variational Bayes approach introduces a bias in the

estimation.
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An alternative optimization strategy is to find a single point estimate with maximum pos-

terior probability. This strategy is known as maximum a posteriori (MAP) estimation. If

a uniform prior is used then this becomes equivalent to maximizing the likelihood function,

a strategy known as maximum likelihood estimation. Normally the estimation is only per-

formed over parameters, marginalizing out other hidden variables. This approximates the

entire posterior distribution as a single delta function, which is a less rich representation than

that of variational Bayes. Unlike VB, however, MAP and maximum likelihood estimators

are asymptotically consistent. Let z(p) be the parameters (i.e. variables not associated with

individual data points) and z(l) be other latent variables. Then the optimization problem is

to solve

argmax
z(p)

Pr(z(p)|x) = argmax
z(p)

Pr(x|z(p))Pr(z(p))

Pr(x)
(1.13)

= argmax
z(p)

logPr(x|z(p)) + logPr(z(p)) (1.14)

= argmax
z(p)

log
∑

z(l)

Pr(x, z(l)|z(p)) + logPr(z(p)) . (1.15)

If z(l) is empty then it is typically straightforward to take the derivative of Pr(x|z(p)) and

gradient ascent algorithms may be used. If not, an alternative is to perform the expectation-

maximization (EM) algorithm (Dempster et al. , 1977). EM operates by performing an

“E-step” which involves computing the expectation of the complete data log-likelihood (the

likelihood with the latent variables z(l) treated as observed) given the current parameters z(p),

which is a lower bound on the log-likelihood. This lower bound is then optimized (the “M-

step”). The procedure is repeated until convergence. The algorithm monotonically improves

the objective function, and is guaranteed to find a local maximum. It can also be interpreted

as performing co-oordinate descent in an augmented state space, and each iteration can be

viewed as solving a small variational inference problem (Neal & Hinton, 1998).
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If an optimization strategy is used, an alternative is to use stochastic optimization algorithms.

These algorithms look at a subset of the data at a time and estimate what the optimization

update would be if the full dataset was processed, then perform that update. This allows

updates to occur much sooner, which can bring significant computational advantages, par-

ticularly if the data set is very large. A disadvantage is that the convergence rate, in terms

of the amount of data examined, is much lower for stochastic algorithms than full batch al-

gorithms. This may result in worse solutions for a reasonable amount of computation, in the

cases where the batch algorithms can be applied for many iterations. Stochastic versions of

gradient descent (cf. Bottou (1998)), expectation maximization (Cappé & Moulines, 2009)

and variational inference (Hoffman et al. , 2013) are available.

1.5 Latent Dirichlet Allocation Topic Models

Now that we have seen a high-level overview of latent variable modeling, let us consider an

important example: the latent Dirichlet allocation (LDA) topic model (Blei et al. , 2003).

Given a corpus of text documents, the LDA model can be used to find semantic themes

(“topics”) which are meaningful to humans, in a completely unsupervised way. We will

make use of LDA in every chapter of this thesis.

1.5.1 A Simple Naive Bayes Text Model

When modeling text data, we are typically given a corpus of documents such as news articles,

weblogs or scientific papers. We can encode each document d with a sequence of words

w(d) = w
(d)
1 , w

(d)
2 , . . . , w

(d)

N(d). A common pre-processing step is to represent each document as a

sparse D-dimensional bag of words vector x(d), where x
(d)
j is the number of occurrences of the

word j in document d. The bag of words representation sacrifices the information available
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in the ordering of the words, but gains a simple, fixed dimensional vector representation for

all documents in the corpus, allowing us to apply standard machine learning techniques.

A simple latent variable approach to modeling text data is to use a mixture model, which

assigns each document to a latent cluster, as in Equation 1.1. A Gaussian mixture model

could in principle be applied to the bag of words vectors x(d), but this approach does not

work well in practice because the Gaussian assumption is not accurate for sparse, discrete

count data (Buntine & Jakulin, 2006). Perhaps the most straightforward alternative is to

make the naive Bayes assumption, namely that each word is conditionally independent given

the topic of the document, and use discrete distributions for drawing each of the words. This

naive Bayes text model (cf. Carpenter (2010)) corresponds to the assumed generative process

in Algorithm 1.

Algorithm 1 Generative process for the naive Bayes text model

• For each document d

• z(d) ∼ discrete(π) //Sample a topic
• For each word i in document d

• w
(d)
i ∼ discrete(Φ(z(d))) //Sample a word

This model makes use of the discrete distribution, which is represented by a vector which

sums to one, and can be viewed as rolling a weighted die and recording the outcome. For

example, discrete(π) rolls a K-sided die weighted by π which chooses the cluster assignment

z(d) for each document d. In a text modeling context, we call such a cluster assignment

a topic, as it is intended that this coincides with the semantic theme of the document.

Similarly, a topic k is represented by a D-dimensional discrete distribution over words Φ(k),

which can be understood as a D-sided weighted die.
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1.5.2 Latent Dirichlet Allocation

The simple naive Bayes model we considered above uses a latent class representation for each

document, which assumes that every document is associated with exactly one topic. Instead,

the latent Dirichlet allocation (LDA) model of Blei et al. (2003) relaxes this assumption,

and represents each document d with a K-dimensional mixed membership vector θ(d) which

sums to one. This means that a document can be about multiple topics, to varying degrees.

For example, this thesis is about latent variable models, networks, and text data. We could

represent it by

θ(thesis) = [0.4, 0.25, 0.35]⊺ , (1.16)

where the entries correspond to topics on latent variables, networks, and text, respectively.

Since each θ(d) sums to one, we can once again think of it as a weighted K-sided die. Rolling

this die chooses a topic. In the LDA model, we roll the die θ(d) for every word i in every

document d, thereby selecting a topic assignment z
(d)
i for each word. We then draw each

word w
(d)
i from the chosen topic, as in the naive Bayes mixture model. This corresponds to

the words in each document being drawn from a mixture model with its own unique prior

over components (topics), θ(d). After adding Dirichlet priors for the topics Φ(k) and the

document-level distributions over topics θ(d), we have the full generative process for LDA,

given in Algorithm 2, with a directed graphical model diagram provided in Figure 1.4.

While the naive Bayes text model used a latent class representation for documents, LDA

uses a mixed membership representation for documents, and a latent class representation

for words. Thus, we can think of LDA as clustering the words, while performing a soft

clustering on the documents. LDA topic models are sometimes called admixture topic models,

with reference to genetic admixture models in population genetics, which model the process

of mixing genes from multiple population groups through interbreeding (Pritchard et al. ,
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Algorithm 2 Generative process for LDA

• For each topic k

• Φ(k) ∼ Dirichlet(β) //Sample a topic

• For each document d

• θ(d) ∼ Dirichlet(α) //Sample a distribution over topics
• For each word i in document d

• z
(d)
i ∼ discrete(θ(d)) //Sample a topic

• w
(d)
i ∼ discrete(Φ(z

(d)
i )) //Sample a word

z
(d)
i

w
(d)
i

N (d)

θ(d)α

K

Φ
(k)

N

β

Figure 1.4: Directed graphical model diagram for LDA

2000). While an individual may acquire genes from several different ancestral populations,

in LDA a document may acquire words from several different topics.

1.5.3 The Collapsed Representation of LDA, Priors and Polya Urn

Models

The LDA model uses Dirichlet priors for both the topics and the distributions over topics.

These distributions are conjugate to the discrete distributions, and to the multinomial dis-
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tributions which arise from repeatedly drawing from these discrete distributions, once for

each word. This allows us to marginalize (“collapse”) out the topics and distributions over

topics, and reason only about the latent topic assignments z. This leads to much faster

mixing when performing Gibbs sampling to infer the model from data, and has other ad-

vantages such as fewer, simpler update equations. This collapsed Gibbs sampling algorithm,

due to Griffiths & Steyvers (2004), consists of iterating the following sampling update for

each word in each document:

Pr(z
(d)
i = k|z−(d,i), . . .) ∝ (n

(d)−(d,i)
k + αk)

n
(w

(d)
i )−(d,i)

k + β
w

(d)
i

n
−(d,i)
k +

∑

w βw
. (1.17)

where n
(d)
k is the number of words in document d assigned to topic k, n

(w
(d)
i )

k is the number of

times word w is assigned to topic k, nk is the number of times in the corpus that words are

assigned to topic k, and −(d, i) excludes the current topic assignment for word i of document

d in the count.

The collapsed representation can help us to interpret the Dirichlet hyperparameters α and

β. We can see in Equation 1.17 that these values get added to the counts of the topics when

performing collapsed Gibbs sampling updates. Thus, we can think of them as extra “words”

previously assigned by the priors.

To further hone our intuition regarding the hyperparameters, after collapsing we can interpret

the compound distribution of the Dirichlet and the multinomial as an urn model. Let us

consider this distribution by itself before proceeding to the full LDA model. Suppose we

have the following model with a K-dimensional Dirichlet prior α, where every entry of α is

a non-negative integer:

θ ∼ Dirichlet(α) (1.18)

x ∼ multinomial(θ,N) . (1.19)
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Marginalizing out θ, it can be shown that this corresponds to an urn model, which draws

the count vector x via

• Begin with an empty urn

• For each k, 1 ≤ k ≤ K

• add αk balls of color k to the urn

• For each i, 1 ≤ i ≤ N

• Reach into the urn and draw a ball uniformly at random

• Observe its color, k. Count it, i.e. add one to xk

• Place the ball back in the urn, along with a new ball of the same color.

This scheme is known as a Polya urn scheme, a Polya distribution or a Dirichlet-multinomial

distribution (cf. Minka (2000)). We can also allow a real-valued α vector by including

“partial” balls in the urn, which are selected with probability proportional to their α value.

This is made clear by examining how real-valued Dirichlet parameters are used in Equation

1.17. Focusing on the first term, (n
(d)−(d,i)
k + αk), which arises from drawing the last ball

from such an urn model, we see that color (topic) k may be selected by choosing one of the

n
(d)−(d,i)
k previous balls, or choosing one of the αk balls. If αk < 1, the chance to pick this

“partial ball” becomes correspondingly smaller.

An important property of this model is that when a color is drawn, by adding a new ball of

the same color it becomes more likely that the color will be drawn again. This is known as

a “rich get richer” property, or the Matthew effect (Merton, 1968).7 In the context of LDA,

if we marginalize the θ(d)’s, we can write LDA as such an urn scheme, given in Algorithm 3.

7The “Matthew effect” refers to a Biblical quote: “For unto every one that hath shall be given, and he
shall have abundance: but from him that hath not shall be taken even that which he hath” — Matthew
25:29.
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Algorithm 3 Polya urn interpretation of the generative process for LDA documents

• For each topic k

• Φ(k) ∼ Dirichlet(β) //Sample a topic

• For each document d

• Document d has an empty urn
• For each topic k

• add αk balls of color k to the urn for document d

• For each word i in document d

• Reach into the urn and draw a ball uniformly at random
• Observe its color, k. Assign z

(d)
i = k

• Sample a word by rolling a D-sided die, w
(d)
i ∼ discrete(Φ(z

(d)
i ))

• Place the ball back in the urn, along with a new ball of the same color.

When selecting the hyperparameters in LDA, we typically set them to be values much less

than one, corresponding to only a small fraction of a ball of each “color” (topic) initially.

Since an entire ball is added in each draw, it is very likely that previously selected colors

will continue to be selected in the process. This leads to count vectors which are very sparse

in the prior, which effectively acts as a sparsity-inducing regularizer which often improves

interpretability and generalization performance. It can also be beneficial to learn the hy-

perparameters, typically using an asymmetric α parameter and a symmetric β parameter

(Wallach et al. , 2009a; Asuncion et al. , 2009). Finally, conditional LDA models can be con-

structed by performing regression to learn a unique α for each document, in a model called

Dirichlet multinomial regression (DMR) (Mimno & McCallum, 2008). The DMR model

parameterizes the α’s for each document d as

α
(d)
k = exp(x(d)⊺λ(k)) , (1.20)

where x(d) is a feature vector for document d, and λ(k) is a parameter vector for topic k. In

Chapter 3 of this thesis we consider a variant of DMR which has an intuitive interpretation

in terms of the Polya urn scheme. In this variant of the model, we perform linear regression
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on the α’s, and constrain λ to have positive entries. The α vector for each document is

parameterized as

α
(d)
k = x(d)⊺λ(k) + α , (1.21)

where x(d) is binary. Thus, if feature j is present (i.e. x
(d)
j = 1), then λkj is added to entry

k of the Dirichlet prior for the document. This can be understood as placing λkj + α balls

of color k into the urn for document d before beginning the Polya urn scheme to draw the

document.

As a historical note, the use of Dirichlet priors in LDA was refined over several papers.

Inspired by latent semantic analysis (LSA) (Deerwester et al. , 1990), Hofmann (1999a,b)

proposed probabilistic LSA (PLSA), a model which is essentially equivalent to LDA but

without the Dirichlet priors.8 Blei et al. (2003) introduced the Dirichlet prior on the distri-

butions over topics θ(d). The addition of the Dirichlet prior on the topics themselves Φ(k),

which is now standard in LDA models, is due to Griffiths & Steyvers (2004).

1.5.4 LDA as Matrix Factorization

We have seen that many latent variable models can be understood as performing matrix

factorization. LDA is a probabilistic version of the matrix factorization algorithm LSA, and

as such can be understood as a probabilistic matrix factorization method (Hofmann, 1999a,b;

Buntine & Jakulin, 2006; Griffiths et al. , 2007). Let Θ be the N ×K matrix with the θ(d)’s

on the rows, and Φ be the D×K matrix with the Φ(k)’s on the columns. Then conditioning

on θ(d) and Φ, the probability of any word i in document d being word j is

8PLSA is an instance of a slightly earlier model, the aspect model (Hofmann et al. , 1998).
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Figure 1.5: A comparison of the matrix factorization representations of LSA, PLSA and
LDA topic models. Figure inspired by a diagram in Griffiths et al. (2007).
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Pr(w
(d)
i = j|θ(d),Φ) =

∑

k

Pr(w
(d)
i = j, z

(d)
i = k|θ(d),Φ) (1.22)

=
∑

k

Pr(z
(d)
i = k|θ(d))Pr(w

(d)
i = j|z

(d)
i = k,Φ) (1.23)

= ΘdΦ
⊺
j , (1.24)

where Ai is the ith row of matrix A. Let x be the N × D matrix of word counts for each

document in the corpus. Then, in the framework of Section 1.2,

Pr(x|Θ,Φ) = f(η) (1.25)

η = ΘΦ⊺ , (1.26)

where f is a multinomial distribution on each row d of η which generates the appropriate

number of words Nd for that document d. The matrix factorization interpretations of LDA

and related topic models are given in Figure 1.5.

Having covered the essential background material, the remainder of this chapter describes

the contributions made in this thesis, and an outline of its structure.

1.6 Contributions

This dissertation makes the following contributions:

• We develop a latent variable model for social networks observed over time, which we

refer to as the Dynamic Relational Infinite Feature model (DRIFT). The model posits

a binary latent vector of features for each actor. The features are allowed to change
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over time, including the introduction and deletion of new features, in a nonparametric

Bayesian way.

• We show how to infer the semantics of such latent binary social network features

in a model-based way, by incorporating text into the models using a topic modeling

framework.

• Continuing the theme of networks and text, we introduce and evaluate a model known

as Topical Influence Regression (TIR) which discovers latent influence relationships

between scientific articles, leveraging both the citation network and the text of the

articles. Although we focus on scientific articles, the model is a general framework for

exploring document corpora where dependencies between the topics of the documents

follow a Bayesian network.

• We design a fast, accurate, scalable and easy to implement algorithm for learning

topic models. The algorithm, called Stochastic Collapsed Variational Bayesian In-

ference, order Zero (SCVB0), is a stochastic algorithm which exploits the collapsed

representation of LDA topic models. We evaluate the algorithm, showing the superior

performance of the model over baselines in both the large and small scale settings.

• We also prove the convergence of SCVB0. The proof involves a detailed re-interpretation

of the algorithm as an online expectation maximization algorithm for MAP estima-

tion in topic models, where the MAP estimation is performed with adjusted hyper-

parameters.

• The evaluation of topic models, often performed by computing the likelihood for held-

out documents and comparing this to baseline methods, is a difficult computational

challenge which must be addressed for every new topic model variant or learning algo-

rithm explored. We introduce ratio-AIS, an algorithm for comparing the performance

of two topic models. The algorithm has lower empirical variance in its estimates of the
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relative performance of a pair of models than previous approaches. A downside is the

potential for a directional bias in the comparison when given insufficient computation.

However, this can frequently be detected in practice by comparing the results of two

runs of the algorithm performed in different “directions” of comparison. For most other

methods, detection of convergence failures is very difficult to do in practice.

• We leverage ratio-AIS to provide an algorithm for efficiently evaluating the progress

of topic model learning algorithms, at each iteration during training. The algorithm,

which we call iteration-AIS, is shown empirically to find better per-iteration curves,

in some cases with an order of magnitude less computational effort than previous

methods.

1.7 Thesis Outline

The remainder of the dissertation proceeds as follows.

• Chapter 2 introduces models for social networks, exploring latent feature representa-

tions as they vary over time, and the automatic recovery of their semantics using a

topic modeling framework.

• Chapter 3 proposes a latent variable model for inferring influence relationships between

scientific articles.

• Chapter 4 describes and evaluates an efficient algorithm for learning topic models on

corpora with millions of documents.

• Chapter 5 develops algorithms for evaluating topic models by computing the likelihood

of held-out documents under the models. Specifically, methods are introduced for

36



comparing the performance of two models, and for evaluating the progress of topic

model learning algorithms on a per-iteration basis.

• We conclude in Chapter 6, and also indicate potential directions for future work.

• More detailed proofs and derivations are given in the appendices.
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Chapter 2

A Dynamic Latent Feature Model for

Social Networks

If you can look into the seeds of time,

and say which grain will grow and which will not ...

William Shakespeare, Macbeth

“Looking into the seeds of

time,” in a social

network model.

See Figure 2.2.
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In Chapter 1, we overviewed how a latent variable model can be constructed by first selecting

a latent representation, and then choosing priors and a link function to connect the latent

variables and parameters to the observed data. We discussed Bayesian nonparametric priors

which allow the latent representation to have potentially infinite dimension, and described
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how sequential data can be modeled using hidden Markov dynamics. Finally, we reviewed

statistical techniques that can be used to learn our new model from data.

This chapter makes all of these concepts more concrete with a study on the modeling of

social networks using latent variable techniques. The starting point of our study is the

latent feature relational model (LFRM) of Miller et al. (2009), which represents actors in

a social network with latent vectors of binary features. Miller et al. showed how to learn

the dimension of these vectors based on the data by using a nonparametric Bayesian prior

distribution known as the Indian buffet process (Griffiths & Ghahramani, 2006).

The first research contribution of the chapter is to extend this model to facilitate the analysis

of longitudinal social network data, where the network in question is measured repeatedly

over time.1 The model is evaluated both qualitatively and quantitatively, demonstrating its

utility for this task. In the second half of the chapter, we also explore an extension of the

LFRM designed to recover the semantics of the latent features by using topic models.

The chapter is organized as follows. We set the scene in Section 2.1 with an introduction to

the modeling of social networks using statistical techniques. Section 2.2 describes the latent

feature relational model, and Section 2.3 reviews a nonparametric prior distribution, called

the Indian buffet process, which can be used to infer the latent dimensionality of the model.

The remainder of the chapter details original research contributions. Sections 2.4 and 2.5

discuss the proposed longitudinal extension and an inference algorithm for this model, re-

spectively. In Section 2.6 we evaluate the model (relative to baselines) on prediction tasks

for both simulated and real-world network data sets.

The second part of the chapter, in Section 2.7, shows an extension of the LFRM, which

uses topic models to recover the semantics of the latent features. Section 2.7.1 details the

proposed model, and a demonstration of the model for two exploratory data analysis tasks

1This portion of the chapter corresponds to collaborative work, published in Foulds et al. (2011).
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is given in Section 2.7.2. Finally, section 2.8 concludes and summarizes the contributions of

the chapter.

2.1 Social Network Analysis

Social network analysis is the study of the structure of social relationships between social

actors such as humans, animals, countries and organizations. The quantitative modeling of

social networks has a long history, dating back at least as far as the 1930s (e.g. Moreno

(1934)). In recent years there has been a resurgence in interest in the analysis of social

networks due to the advent of the internet and the meteoric rise of “web 2.0” digital social

media technologies on websites such as Facebook, Twitter and Tumblr. Thanks in part to

these digital social networks, an increasingly large percentage of human social interactions

are occurring online, and hence can be more easily recorded and studied. This opens the way

for sociologists to study human interaction behavior at a larger scale than has previously

been possible, e.g. Gopalan et al. (2012); Sutton et al. (2013); Myers & Leskovec (2014).

Many of the web 2.0 technology corporations which developed these digital social networks

also rely on revenue generated from targeted advertising, meaning that understanding human

interaction through social network data has in some cases become a financial necessity.

Social networks are relational data, meaning that they contain information that goes beyond

the attributes of each of the data points considered in isolation. In this case, the data

represent the relationships between social actors. In the field of social network analysis, a

network on N actors is typically represented by an N × N binary matrix Y, sometimes

referred to as a sociomatrix. In this matrix, relations between actors i and j are represented

by binary variables yij, which take the value 1 if a relationship exists and 0 otherwise.

The sociomatrix can be interpreted as the adjacency matrix of a graph, with each node
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being associated with an actor. For example, the nodes may represent individuals, with yij

indicating the presence or absence of a friendship link between individual i and individual j.

This chapter concerns the statistical modeling of social network data. A useful feature of

the statistical approach (as opposed to, say, purely graph theoretic analysis, qualitative

study or task-oriented ad-hoc solutions) is that it provides a framework which can readily go

beyond the simple assumption that the matrix Y is the whole story. For example, statistical

models can be adapted and extended for handling both missing edge information, and for

incorporating additional information such as weighted edges, time-varying edges, the effects

of covariates for actors and edges, and additional data associated with the network such as

text, audio and images (Wasserman, 1994).

To parameterize statistical network models, exponential-family random graph models (ERGMs)

(Wasserman & Pattison, 1996) are a canonical approach, in the sense that any distribution

over graphs can be represented as one of these models. ERGMs posit that the probability

distribution over graphs can be written in exponential family form,

Pr(Y) =
exp(θ⊺t(Y))

Z
, (2.1)

where θ is a parameter vector, t(Y) maps Y to a vector of sufficient statistics, and Z =

∑

Y′ exp(θ⊺t(Y′)) is a normalization constant, also known as the partition function. One

specifies a family of ERGM models by choosing the sufficient statistics captured by t, such as

the number of edges, triangles, star configurations and so on. Although ERGMs are a flexible

and natural framework they can be difficult to work with, both from a computational and

statistical estimation viewpoint. Even very simple ERGM models can suffer from degeneracy

problems, where almost all of the probability mass belongs to a small number of graphs

such as the complete graph or the empty graph (Handcock et al. , 2003). This leads to

further problems with fitting the models, where MCMC algorithms become trapped at these
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degenerate graphs. The intractability of the partition function also makes learning and

inference very difficult with these models.

Latent variable modeling provides an alternative to ERGMs which largely avoids these dif-

ficulties. As discussed in Chapter 1, this approach uses hidden vectors zi as “coordinates”

to represent the characteristics of each network actor i. The edge indicator variables yij are

modeled as being conditionally independent given the latent variables and parameters of the

model.

Like ERGMs, latent variable methods can be justified by their generality. By symmetry,

models of social networks should generally treat the nodes as being exchangeable, i.e. the

ordering of the nodes should not affect the probability of the network. In this case, the matrix

variable Y is said to be row-column exchangeable (Hoover, 1982). A variant of de Finetti’s

theorem, due independently to Hoover (1982) and Aldous (1985) states that if a model of

an array random variable satisfies this exchangeability property, then that model can be

represented as a latent variable model, in which the entries are conditionally independent

given the latent variables. Hoff (2007) describes this result in the context of social network

modeling.2

As per the matrix factorization framework of the previous chapter, edge probabilities in these

models can often be cast in the following form:

Pr(yij = 1|Z,W, ρ, ξ, ǫ) = g−1(ziWz⊺j + ρi + ξj + ǫ) , (2.2)

where g is a link function (e.g. g−1 is the logistic function), W is a K×K parameter matrix

specifying how the latent variables interact, ρ and ξ are effects terms reflecting tendencies

2Hoff (2007) states that “any statistical model for a sociomatrix in which the nodes are exchangeable
can be written as a latent variable model.” This appears to neglect a caveat, in that the theorem is proved
for arrays of infinite size, just as de Finetti’s theorem holds for sequences of infinite length. In the real
world, our matrices are finite. The theorem still applies if the matrix random variable can be embedded in
a row-column exchangeable array-valued random variable of infinite size, and is likely to be approximately
true for sufficiently large arrays otherwise.
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of sending and receiving ties and ǫ is a parameter controlling network density. For example,

the blockmodel (Fienberg & Wasserman, 1981; Nowicki & Snijders, 2001), which represents

each actor with a latent class, is a classic latent variable modeling approach. We now turn

to a more recent example, namely the latent feature relational model of Miller et al. (2009).

2.2 The Latent Feature Relational Model

According to sociological theories espoused by Simmel (1955), Feld (1981) and others, inter-

actions between human actors are often mediated by shared foci. For example, the propen-

sity of individuals to interact may be characterized by their job type (e.g., dentist, graduate

student, professor), their leisure interests (e.g., mountain biking, salsa dancing), club mem-

berships, location, social cliques, and so on. If such foci are known to us, we may include

them in our models of the network as vectors of observed binary variables.

In real world applications, however, we are very unlikely to observe every possible property

which may affect the probability of a link between actors. The latent feature relational model

(LFRM) of Miller et al. (2009) assumes that at least some of them are unobserved. In this

model, the presence and absence of each of these foci for a given actor is represented using

a binary feature. In other words, each actor i is represented by a K-dimensional binary

row vector zi, where each feature k corresponds to a property such as being interested in

mountain biking. For the most part these binary features are assumed to be latent, although

the zi’s may include observed features when they are available. Latent features can be

understood as clusters or latent class memberships that are allowed to overlap, in contrast

to the mutually exclusive classes of traditional blockmodels (Fienberg & Wasserman, 1981)

from the social network literature.
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In the LFRM model, the probability of an edge between two individuals is determined by

the interactions of the features that are switched “on” for each of the individuals. For

example, graduate students that salsa dance might have a much higher probability of having

a link to professors that mountain bike, rather than to dentists that salsa dance. The

relationship between feature k and feature k′ is encoded by the entry wkk′ of the K × K

real-valued feature-feature interaction matrix W. The inverse link function is chosen to be

the “sigmoid” logistic function σ(x) = 1
1+exp(−x)

, which squashes real-valued numbers into

probability values between zero and one:

Pr(yij = 1|Z,W, ρ, ξ, ǫ) = σ(ziWz⊺j + ρi + ξj + ǫ) . (2.3)

We can readily see that

ziWz⊺j =
∑

k

zik(Wz⊺j )k =
∑

k:zik=1

(Wz⊺j )k =
∑

k:zik=1

∑

k′:zjk=1

wkk′ . (2.4)

Furthermore, the logistic function σ(x) is the inverse of the logit function. It can be inter-

preted as converting its input x = log p

1−p
, the logarithm of the odds of p, into the probability

p. Thus, we can interpret the model as performing the following process, where each for loop

corresponds to one of the sums in Equation 2.4:

• For each feature k present for actor i

• For each feature k′ present for actor j

• Add wkk′ to the log-odds of the probability that yij = 1

• Add ρi, ξj and ǫ to the log-odds of the probability that yij = 1.

To finish specifying the model in a Bayesian context, we need to select priors for the param-

eters, consisting of the feature interaction matrix W and the effects and intercept terms ρ,
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ξ, ǫ, as well as the latent feature matrix Z. The parameters can simply be given elementwise

univariate Gaussian priors,

wkk′ ∼ Gaussian(0, σw) (2.5)

ρi ∼ Gaussian(0, σρ) (2.6)

ξj ∼ Gaussian(0, σξ) (2.7)

ǫ ∼ Gaussian(0, σǫ) (2.8)

although other choices are possible. For example, W can instead be constrained to be

diagonal, meaning that actors i and j must both have feature k if it is to affect the probability

of a link between them. Another option is to ensure that the W’s are positive, by using

an alternative prior such as an exponential distribution. This changes the semantics so that

features can only increase the probability of a link – an assumption which is realistic in many

scenarios, and which may make the features more interpretable by preventing the model from

creating many small compensatory features to correct for the “mistakes” of other features.

We now consider the prior on the latent features. In the model, each column k of Z (i.e. each

feature) is given its own probability of occurrence ak, and the latent features are generated

via

ak ∼ beta(
α

K
, 1) (2.9)

zik ∼ Bernoulli(ak) . (2.10)

Here, in the prior for ak the hyperparameter α is divided byK to bound the expected number

of ones in the matrix as K is increased. This will become important for the nonparametric

version of the model, which we discuss in the next section.
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2.3 Nonparametric Modeling with the Indian Buffet

Process

Miller et al. (2009) showed how to learn the dimensionality K of the LFRM’s latent features

automatically from the data in a Bayesian way, using a nonparametric Bayesian prior known

as the Indian buffet process (IBP), due to (Griffiths & Ghahramani, 2006).3 This section

introduces the IBP prior, which then allows us to define the complete, nonparametric version

of the LFRM model. It also foreshadows the derivation we will make as part of the new

research described in subsequent sections of this chapter. Much of that more complicated

derivation proceeds in parallel to this one, so this section may be useful as a gentle precursor

to that work.

The IBP is a probability distribution on (equivalence classes of) sparse binary matrices Z with

a finite number of rows but an unbounded number of columns. It can be derived by taking

the limit of the distribution Pr(Z) given by Equations 2.9 and 2.10 as the dimensionality K

goes to infinity.

We outline the derivation of the IBP from Griffiths & Ghahramani (2006) here. A longer

version is available in Griffiths & Ghahramani (2005). From Equation 2.10,

Pr(Z|a) =
∏

k

∏

i

Pr(zik|ak) =
∏

k

amk

k (1− ak)
N−mk , (2.11)

where mk is the number of ones in column k. The first step in the derivation is to marginalize

out the feature probabilities ak to obtain Pr(Z). This is done by exploiting the conjugacy

relationship between the beta and Bernoulli distributions.

3Meeds et al. (2007) earlier described a similar IBP-based model for rectangular binary matrices.
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Recall the probability density function for a beta distribution with parameters r and s:

Pr(p|r, s) =
1

B(r, s)
pr−1(1− p)s−1 (2.12)

B(r, s) =

∫ 1

0

pr−1(1− p)s−1dp =
Γ(r)Γ(s)

Γ(r + s)
, (2.13)

where B(r, s) is known as the beta function, and Γ(n) is the gamma function, which is a

generalization of the factorial function to real values. For integer n, Γ(n) = (n − 1)!. An

important property is that Γ(n+1) = nΓ(n). In Equation 2.9, r = α
K

and s = 1 for each ak,

in which case we have

B(
α

K
, 1) =

Γ( α
K
)

Γ( α
K
+ 1)

=
K

α
. (2.14)

Making use of Equations 2.11 – 2.14, we can now obtain Pr(Z) as

Pr(Z) =

∫

Pr(Z|a)Pr(a)da

=
K
∏

k=1

∫

∏

i

(

Pr(zik|ak)
)

Pr(ak)dak

=

K
∏

k=1

∫

(

amk

k (1− ak)
N−mk

) 1

B( α
K
, 1)

ak
α
K
−1(1− ak)

1−1dak

=
K
∏

k=1

B(mk +
α
K
, N −mk + 1)

B( α
K
, 1)

=
K
∏

k=1

α
K
Γ(mk +

α
K
)Γ(N −mk + 1)

Γ( α
K
+N + 1)

. (2.15)

We would like to create our infinite-dimensional model by taking the limit of this distribution

as K goes to infinity. However, this will cause the probability of any one matrix to go to

zero. To avoid this, we can instead reason over equivalence classes of matrices. Griffiths

and Ghahramani define such equivalence classes by way of the many-to-one function lof(Z).

The lof(Z) function maps Z to its left-order form, in which the columns of Z are sorted left-
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to-right in descending order of the binary numbers which they encode. The binary numbers

are computed by treating each column as a sequence of bits, with the first row having the

highest significance. Consider the equivalence relation Z ∼ Z′ IFF lof(Z) = lof(Z′). The

lof -equivalence class [Z] of Z is defined to be the set of matrices with the same left-order

form as Z, {Z′|Z′ ∼ Z}.

Changing the order of the columns does not affect Pr(Z) in Equation 2.15, so Pr(Z) is

column exchangeable and every element of [Z] has the same probability. So the probability

of drawing an element of a particular lof -equivalence class [Z] is

Pr([Z]) =
∑

Z′∈[Z]

Pr(Z′)

= |[Z]|Pr(Z)

=

(

K

K0, K1, . . . , K2N−1

) K
∏

k=1

α
K
Γ(mk +

α
K
)Γ(N −mk + 1)

Γ( α
K
+N + 1)

, (2.16)

where Kh is the number of columns of Z which encode the number h in binary, and
(

K

K0,K1,...,K2N−1

)

= K!
∏2N−1

h=0 Kh!
is the multinomial coefficient of their counts. Griffiths and

Ghahramani take the limit of this equation as K approaches infinity. The details are de-

scribed in an appendix of Griffiths & Ghahramani (2005). The result of this limit defines

the Indian buffet process,

lim
K→∞

Pr([Z]) =
αK+

∏2N−1
h=1 Kh!

exp(−αHN)

K+
∏

k=1

(N −mk)!(mk − 1)!

N !
, (2.17)

where K+ is the number of “active” features, i.e. those which contain a one, and HN =
∑N

j=1
1
j
is the Nth harmonic number.

The IBP is named after a metaphorical process that also gives rise to this probability dis-

tribution, where N customers enter an Indian buffet restaurant and sample some subset of

an infinitely long sequence of dishes. The first customer samples the first Poisson(α) dishes.
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The ith customer then samples the previously sampled dishes proportionately to their pop-

ularity, with probability mk

i
, and samples Poisson(α/i) new dishes. The matrix Z of dishes

sampled by customers is a draw from the IBP distribution.

A typical application of the IBP is to use it as a prior on a matrix that specifies the presence

or absence of latent features which explain some observed data. The motivation of such

an infinite latent feature model in this context is that the number of features can be auto-

matically adjusted during inference, and hence does not need to be specified ahead of time.

In the case of interest in this chapter, Miller et al. (2009) complete the full nonparametric

Bayesian version of their LFRM model by using the IBP, as given in Equation 2.17, as the

prior over Z, instead of its finite version in Equations 2.9 and 2.10.

2.4 The Dynamic Relational Infinite Feature Model

Social network data are becoming increasingly digitized. Measurement of digital social net-

works can be automated, and so it is becoming much less costly to obtain repeated mea-

surements of networks. The result is the increasing availability of social network data sets

with a temporal component, such as email, online social networks, instant messaging, and so

on. Consequently, there is considerable motivation to develop latent representations for net-

work data over time. A primary contribution of this chapter is to develop a nonparametric

Bayesian generative model for such time-varying social network data, by creating a dynamic

extension of the LFRM model. We shall to refer to the model as the Dynamic Relational

Infinite Feature model (DRIFT).

The DRIFT model leverages ideas from the infinite factorial HMM (Van Gael et al. , 2009),

an approach that modifies the IBP into a factorial HMM with an unbounded number of

hidden chains. Modeling temporal changes in latent variables for actors in a network has
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previously been proposed by Sarkar & Moore (2005), Sarkar et al. (2007) and Fu et al.

(2009). Sarkar & Moore (2005) and Sarkar et al. (2007) use continuous representations

of the actors which evolve via Gaussian linear motion models, while we use binary latent

feature representations which evolve by Markov switching. It is not always as straightforward

to interpret unconstrained continuous representations like the ones used in those models,

while the latent feature representation we use can be understood as performing community

detection or clustering with overlapping clusters.

Fu et al. (2009) use a mixed membership model which does provide a community detection

interpretation. This model considers the dynamics of the priors on the latent representations.

In contrast, our approach explicitly models the dynamics of the actors’ latent representa-

tions, which makes it more suitable for forecasting. Other statistical models for dynamic

network data have been also proposed but typically deal only with the observed graphs Y(t)

(e.g. Snijders (2006); Butts (2008)) and do not use latent representations. Fan & Shelton

(2009) model the relationships between (partially) observed features and social networks, in

continuous time. Although they do not use a latent variable approach to model the network,

they consider the case where the social graph itself is latent.

Subsequently to its publication in Foulds et al. (2011), an extension of the finite version of

the DRIFT model was proposed by Heaukulani & Ghahramani (2013), in which the features

of an actor’s neighbors may propagate to the actor in each timestep. Another extension was

proposed by Kim & Leskovec (2013), who explicitly model the birth and death of groups

(“features,” in our terminology), as well as the effects of non-membership on interaction. To

the best of our knowledge, the proposed DRIFT model was the first nonparametric Bayesian

latent variable model for social networks over time. We now detail the assumed generative

process of the DRIFT model.
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2.4.1 Generative Model

With time-varying (“longitudinal”, or “panel”) network data, we have a sequence of observed

networks Y(t) indexed by time t = 1, . . . , T , rather than a single observed network Y. In

this chapter, we extend the LFRM of Miller et al. (2009) to model such data via a hidden

Markov process. By introducing temporal dependence at the feature level, an individual’s

features z
(t)
i may change over time t as that individual’s interests, group memberships, and

behavior evolve. In turn the relational patterns in the networks Y(t) will change over time

as a function of the z
(t)
i ’s.

Thus, if Alice moves from Los Angeles to New York and abandons her hobby of playing

tennis, she may be less likely to correspond with Bob, who lives in nearby Orange county

and is an avid tennis player. However if Bob takes up mountain biking, and Alice is a road

cyclist, they may resume a frequent pattern of correspondence due to their related interests.

Similarly to our treatment of the LFRM model, we start by defining the finite version of

the model with K latent features. The final model is defined to be the limit of this model

as K approaches infinity. First, we consider the “likelihood” portion of the model, which

corresponds closely to the LFRM except that it is defined for multiple timesteps.4

The Likelihood

Let there be N actors, and T discrete time steps. At time t, we observe Y(t), an N × N

binary sociomatrix representing relationships between the actors at that time.5 At each time

step t there is an N ×K binary matrix of latent features Z(t), where z
(t)
ik = 1 if actor i has

4A frequentist statistician reserves the term likelihood for the probability of the data given the parameters,
marginalizing out the “nuisance” latent variables. We use the term more loosely, to refer to the portion of
the model which connects to the data.

5 We will typically assume thatY(t) is constrained to be symmetric, corresponding to a symmetric relation
such as research collaboration, although it is straighforward to relax this assumption.
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feature k at that time step. As in the LFRM, the K ×K matrix W is a real-valued matrix

of weights, determining the way in which pairs of features affect the network. The edges

between actors at time t are assumed to be conditionally independent given Z(t) and W.

The probability of each edge is as in the LFRM:

Pr(y
(t)
ij = 1|Z,W, ρ, ξ, ǫ) = σ(z

(t)
i Wz

(t)⊺
j + ρi + ξj + ǫ) , (2.18)

where z
(t)
i is the ith row of Z(t), and all other terms are defined as in Equation 2.3.

A Prior on the Latent Variables and their Dynamics

In the prior distribution on the latent variables there are assumed to be null states z
(0)
ik = 0

before the process begins, implying that each feature is effectively “off” before the first

timestep. Each feature k for each actor i is given independent Markov dynamics, wherein

if its current state is zero, the next value is distributed Bernoulli with ak, otherwise it is

distributed Bernoulli with the persistence parameter bk for that feature. In other words,

the transition matrix for actor i’s kth feature is Q(ik) =
(

1−ak ak
1−bk bk

)

. These Markov dynamics

resemble the infinite factorial hidden Markov model (iFHMM) of Van Gael et al. (2009).

Note that W is not time-varying, unlike Z. This means that the semantics of the features

themselves do not evolve over time; rather, the network dynamics are determined by the

changing presence and absence of the features for each actor.

In the model, the ak’s are given prior probability beta( α
K
, 1), which is the same prior as for the

features in the IBP. Importantly, this choice of prior allows for the number of introduced (i.e.

“activated”) features to have finite expectation when K → ∞, with the expected number

of “active” features being controlled by hyper-parameter α. The bk’s are drawn from a beta

distribution. The prior on the latent variables corresponds to N iFHMM chains running in
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parallel, one for each actor in the network, but sharing the same transition parameters a and

b for all of the actors’ iFHMM chains.

We also need to specify priors for the parameters involved in the likelihood. We use the

same priors as for the LFRM. Specifically, the wkk′’s are each assumed to be drawn from a

univariate Gaussian with mean zero, as are the ρ, ξ and ǫ.

Complete generative model

Ignoring the intercept and effects terms for simplicity, the full generative model is

ak ∼ beta(
α

K
, 1)

bk ∼ beta(γ, δ)

z
(0)
ik = 0

z
(t)
ik ∼ Bernoulli(a

1−z
(t−1)
ik

k b
z
(t−1)
ik

k )

wkk′ ∼ Gaussian(0, σw)

y
(t)
ij ∼ Bernoulli(σ(z

(t)
i Wz

(t)⊺
j )) .

Our proposed framework is illustrated with a directed graphical model in Figure 2.1. The

model is a factorial hidden Markov model with a hidden chain for each actor-feature pair,

and with the observed variables being the networks (Y’s). It is also possible to include

additional covariates by adding regression terms inside the logistic function (Miller et al. ,

2009). These terms do not complicate inference, and this allows for the potential use of the

model for operating in a “semi-parametric” fashion, where the nonparametric latent feature

model is used to “absorb” any additional structure not captured by the covariates. In our

experiments we do not consider covariates or sender and receiver effects terms, and only use

the additional intercept term ǫ that determines the prior probability of an edge when no
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Figure 2.1: Graphical model for the finite version of DRIFT. The full model is defined to be
the limit of this model as K →∞.

features are present. Note that including ǫ does not increase the generality of the model, as

the same effect could be achieved by introducing an additional feature shared by all actors.

However, it does free the latent variables from the responsibility of having to explain the

base density of the network.

2.4.2 Taking the Infinite Limit

The full model is defined to be the limit of the above model as the number of features

approaches infinity. Let c00k , c01k , c10k , c11k be the total number of transitions from 0 → 0,

0 → 1, 1 → 0, 1 → 1 over all actors, respectively, for feature k. In the finite case with K

features, we can write the prior probability of Z = (Z(1),Z(2), . . . ,Z(T )) as:

Pr(Z|a, b) =

K
∏

k=1

a
c01
k

k (1− ak)
c00
k b

c11
k

k (1− bk)
c10
k . (2.19)
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Before taking the infinite limit, using Equations 2.12 – 2.14 we integrate out the transition

probabilities with respect to their priors,

Pr(Z|α, γ, δ) =
K
∏

k=1

α
K
Γ( α

K
+ c01k )Γ(1 + c00k )Γ(γ + δ)Γ(δ + c10k )Γ(γ + c11k )

Γ( α
K
+ c00k + c01k + 1)Γ(γ)Γ(δ)Γ(γ + δ + c10k + c11k )

. (2.20)

Similarly to the construction of the IBP, we must compute the infinite limit for the proba-

bility distribution on equivalence classes of the binary matrices, rather than on the matrices

directly. The next step is to define these equivalence classes.

Recall that Z is a length T sequence of N ×K matrices Z(t). We rewrite it as an NT ×K

matrix Z̄, where the sequences of feature values for each actor over time are concatenated

one after another to form a single matrix, using the ordering of the actors in Y. Define the

history of a column k of Z̄ to be the binary number that it encodes when its entries are

interpreted to be binary digits. As stated in Section 2.3, lof(M) maps a binary matrix M to

its left-order form, where the columns of M are permuted so that their histories are sorted

in decreasing order. Note that the model is column-exchangeable so transforming Z̄ to lof

does not affect its probability. We denote [Z̄] to be the set of binary matrices that have the

same left-order form as Z̄. Let Kh be the number of columns in Z̄ whose history has decimal

value h. Then the number of elements of [Z̄] equals
(

K

K0,K1,...,K2NT −1

)

= K!
∏2NT −1

h=0 Kh!
, yielding

the following:

Pr([Z̄]) =
∑

Z̄′∈[Z]

Pr(Z̄′|α, γ, δ)

=

(

K

K0, K1, . . . , K2NT−1

)

Pr(Z̄|α, γ, δ). (2.21)

The limit of Pr([Z̄]) as K →∞ can be derived similarly to the iFHMM model. Let K+ be

the number of features that have at least one non-zero entry for at least one actor. Using a

lemma of Van Gael et al. (2009), we obtain
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lim
K→∞

Pr([Z̄]) =
αK+

∏2NT−1
h=0 Kh!

exp(−αHNT )

K+
∏

k=1

(c01k − 1)!c00k !Γ(γ + δ)Γ(δ + c10k )Γ(γ + c11k )

(c00k + c01k )!Γ(γ)Γ(δ)Γ(γ + δ + c10k + c11k )
, (2.22)

where Hi =
∑i

k=1
1
k
is the ith harmonic number.6

2.5 MCMC Inference Algorithm

We now describe how to perform posterior inference for DRIFT using a Markov chain Monte

Carlo algorithm. The algorithm performs blocked Gibbs sampling updates on subsets of the

variables in turn.

First, we consider the sampling procedure for the latent variables Z. In practice, we can-

not store the infinite dimensional matrices needed to represent these variables explicitly.

Fortunately, we need only store the K+ “active” features, with the columns for the non-

represented features consisting of all zeros. Since the number of active features is not fixed,

we need a sampler which allows K+ to grow and shrink per sampling iteration as dictated

by the posterior distribution of the model.

To this end, we adapt the “slice sampling” procedure originally derived by Teh et al. (2007b)

for the IBP, which makes use of the stick-breaking construction of the IBP portion of DRIFT.

Slice sampling (Neal, 2003) is an auxiliary variable MCMC sampling strategy which can be

useful when it is difficult to specify an optimal proposal distribution for Metropolis-Hastings

moves. Although the particular technique of Teh et al. is not a direct application of Neal’s

algorithm, it uses an auxiliary variable very much in the spirit of that algorithm. Teh et

6A thorough derivation of the lemma used here is given in Van Gael’s Ph.D. thesis (Van Gael, 2011).

56



al. showed that this method mixes better than the naive sampling algorithm, which in non-

conjugate models requires Metropolis-Hastings moves when introducing new features. The

method is also straightforward to implement, making it useful as a general-purpose method

for sampling IBP-based models in the non-conjugate case.

Since the distribution on the ak’s is identical to the feature probabilities in the IBP model,

the “stick breaking” properties of these variables carry over to our model. Specifically, if we

order the features so that they are strictly decreasing in ak, Teh et al. (2007b) showed that

we can write the ak’s in “stick-breaking” form as

vk ∼ beta(α, 1) (2.23)

ak = vkak−1 =

k
∏

l=1

vl , (2.24)

Here, we can metaphorically view this process for generating the ak’s as beginning with a

“stick” a0 of length 1. At iteration k, we take the stick of length ak−1 and break it into two

pieces, retaining a portion vk of it. This becomes our new stick length ak, and we proceed

recursively to break ak further to obtain ak+1, and so on.

To leverage this construction of the IBP in a sampling context, the technique is to introduce

an auxiliary “slice” variable s to adaptively truncate the represented portion of Z while still

performing correct MCMC inference on the infinite model. We first sample the slice variable

s uniformly on the set of numbers between 0 and ak for the active feature k that has the

smallest ak:

s|Z, a ∼ Unif(0, min
k:∃t,i,Z

(t)
ik

=1

ak) . (2.25)

Having drawn s, we condition on it for the remainder of the MCMC iteration, which forces the

features for which ak < s to be inactive. This ensures that we will not have to introduce such
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features into the represented portion of Z at this time. We now extend the representation

so that we have a and b parameters for all features k such that ak ≥ s. Here we are using

the semi-ordered stick-breaking representation of the IBP feature probabilities (Teh et al. ,

2007b), so we view the active features as being unordered, while the inactive features are in

decreasing order of their ak’s. Consider the matrix whose columns each correspond to an

inactive feature and consist of the concatenation of each actor’s Z values at each time for

that feature. Since each entry in each column is distributed Bernoulli(ak), we can view this

as the inactive portion of an IBP with M = NT rows. So we can follow Teh et al. (2007b)

to sample the ak’s for each of these features:

Pr(ak|ak−1,Z
:
:,>k = 0) ∝ exp(α

M
∑

i=1

1

i
(1− ak)

i)aα−1
k (1− ak)

M
I(0 ≤ ak ≤ ak−1) , (2.26)

where Z:
:,>k is the entries of Z for all timesteps and all actors, with feature index greater

than k. We do this for each introduced feature k, until we find an ak such that ak < s, at

which point we cease extending the representation. The Zs for these features are initially

set to Z
(t)
ik = 0, and the other parameters (W, bk) for these are sampled from their priors,

e.g. bk ∼ beta(γ, δ).

Having adaptively chosen the number of features to consider, we can now sample the fea-

ture values. The Zs are sampled one Zik chain at a time via the forward-backward algo-

rithm (Scott, 2002). In the forward pass, we create the dynamic programming cache, which

consists of the 2×2 matrices P2 . . .PT , where Pt = (ptrs). Letting θik be all other parameters

and hidden variables not in Zik, we have the following standard recursive computation,

ptrs = Pr(Z
(t−1)
ik = r,Z

(t)
ik = s|Y(1) . . .Y(t), θik)

∝ πt−1(r|θ)Q
(ik)(r, s)Pr(Y(t)|Z

(t)
ik = s, θik),

where πt(s|θ) = Pr(Z
(t)
ik = s|Y(1) . . .Y(t), θik) =

∑

r

ptrs . (2.27)
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In the backward pass, we sample the states in backwards order via Z
(T )
ik ∼ πT (.|θik), and

Pr(Z
(t)
ik = s) ∝ p

t+1,r,Z
(t+1)
ik

. We drop all inactive columns, as they are relegated to the

non-represented portion of Z.

Next, we sample the IBP hyperparameter α, for which we assume a gamma(αa, αb) hyper-

prior, where αa is the shape parameter and αb is the inverse scale parameter. We temporarily

integrate out the ak’s, after which Pr(Z|α) ∝ αK+
e−αHNT from Equation 2.22. By Bayes’

rule, Pr(α|Z) ∝ αK++αa−1e−α(HNT+αb) is a gamma(K+ + αa, HNT + αb).

Next, we sample the a’s and b’s for non-empty columns. Starting with the finite model,

using Bayes’ rule and taking the limit as K →∞, we find that ak ∼ beta(c01k , c
00
k + 1). It is

straightforward to show that bk ∼ beta(c11k + γ, c10k + δ).

We next sample W, which proceeds similarly to Miller et al. (2009). Since it is non-

conjugate, we use Metropolis-Hastings updates on each of the entries in W. For each entry

wkk′, we propose w
∗
kk′ ∼ Gaussian(wkk′, σw). When calculating the acceptance ratio, since the

proposal distribution is symmetric, the transition probabilities cancel, leaving the standard

acceptance probability

Pr(accept w∗
kk′) = min{

Pr(Y|w∗
kk′, . . .)Pr(w

∗
kk′)

Pr(Y|wkk′, . . .)Pr(wkk′)
, 1} . (2.28)

The intercept term ǫ and the effects terms ρi, ξj are also sampled using Metropolis-Hastings

updates with a Gaussian proposal centered on the current location. Slice sampling (Neal,

2003) is an alternative option for sampling the real-valued parameters, which has the advan-

tage that it is robust to its step size parameter and it does not reject proposed moves, unlike

Metropolis-Hastings. On the other hand, Metropolis-Hastings is simpler and requires fewer

evaluations of the likelihood per update.
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2.6 Experimental Analysis

We analyze the performance of DRIFT on synthetic and real-world longitudinal networks.

The evaluation tasks considered are predicting the network at time t given networks up

to time t − 1, and prediction of missing edges. For the forecasting task, we estimate the

posterior predictive distribution for DRIFT,

Pr(Yt|Y1:(t−1)) =
∑

Zt

∑

Z1:(t−1)

Pr(Yt|Zt)Pr(Zt|Zt−1)Pr(Z1:(t−1)|Y1:(t−1)), (2.29)

in Monte Carlo fashion by obtaining samples for Z1:(t−1) from the posterior, using the MCMC

procedure outlined in the previous section. For each sample, we then repeatedly draw Zt by

incrementing the Markov chains one step from Z(t−1), using the learned transition matrix.

Averaging the likelihoods of these samples gives a Monte Carlo estimate of the predictive

distribution. This procedure also works in principle for predicting more than one timestep

into the future.

An alternative task is to predict the presence or absence of edges between pairs of actors when

this information is missing. Assuming that edge data are missing completely at random, we

can extend the MCMC sampler to perform Gibbs updates on missing edges by sampling the

value of each pair independently using Equation 2.18. To make predictions on the missing

entries, we estimate the posterior mean of the predictive density of each pair by averaging

the edge probabilities of Equation 2.18 over the MCMC samples. This was found to be more

stable than estimating the edge probabilities from the sample counts of the pairs.

In our experiments, we compare DRIFT to its static counterpart, the LFRM. Several vari-

ations of the LFRM were considered. LFRM (all) treats the networks at each timestep as

i.i.d. samples. For forecasting, LFRM (last) only uses the network at the last time step t−1

to predict timestep t, while for missing data prediction LFRM (current) trains an LFRM
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model on the training entries for each timestep. The inference algorithm for the LFRM is

the algorithm for DRIFT with one time step. For both DRIFT and the LFRM, all variables

were initialized by sampling them from their priors.

We also consider a baseline method which has a posterior predictive probability for each

edge proportional to the number of times that edge has appeared in the training data (i.e. a

multinomial), using a symmetric Dirichlet prior with concentration parameter set to increase

with the amount of training data. This can be interpreted as an urn model, where each edge

in the network is associated with balls of a certain color. Selecting an edge corresponds to

drawing a ball from an urn, and then placing that ball back into the urn along with a new ball

of the same color. The concentration parameter corresponds to the number of balls of each

color in the urn initially. In this case, we set the concentration parameter to the number

of timesteps divided by 5. We also consider a simpler method (“naive”) whose posterior

predictive probability for all edges is proportional to the mean density of the network over

the observed time steps. In the experiments, hyperparameters were set to αa = 3, αb = 1,

γ = 3, δ = 1, and σW = .1. For the missing data prediction tasks, twenty percent of the

entries of each data set, across all time points, were randomly chosen as a test set, and the

algorithms were trained on the remaining entries.

2.6.1 Synthetic Data

We first evaluate DRIFT on synthetic data to demonstrate its capabilities. Ten synthetic

datasets were each generated from a DRIFT model with 10 actors and 100 timesteps, using

a W matrix with 3 features chosen such that the features were identifiable, and a different

Z sampled from its prior for each dataset.

Given this data, our MCMC sampler draws 20 samples from the posterior distribution, with

each sample generated from an independent chain with 100 burn in iterations. Figure 2.2
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Figure 2.2: Ground truth (top) versus Z’s estimated by DRIFT (bottom) on synthetic
data. Each image represents one feature, with rows corresponding to timesteps and columns
corresponding to actors.

shows the Zs from one scenario, averaged over the 20 samples (with the number of features

constrained to be 3, and with the features aligned so as to visualize the similarity with the

true Z). This figure suggests that the Zs can be correctly recovered in this case, noting as

in Miller et al. (2009) that the Zs and Ws are not in general identifiable.

Table 2.1 shows the average AUC and log-likelihood scores for forecasting an additional

network at timestep 101, and for predicting missing edges (the number of features was not

constrained in these experiments). DRIFT outperforms the other methods in both log-

likelihood and AUC on both tasks. This is because it is able to model the non-stationarity

of the data.Figure 2.3 illustrates this with the held-out Y and the posterior predictive dis-

tributions for one forecasting task.

62



2

4

6

8

10

2 4 6 8 10

2

4

6

8

10

2 4 6 8 10

2

4

6

8

10

2 4 6 8 10

2

4

6

8

10

2 4 6 8 10

True Y Baseline LFRM (all) DRIFT

Figure 2.3: Held out Y, and posterior predictive distributions for each method, on synthetic
data.

Table 2.1: Log-likelihood and AUC on Enron

Synthetic Naive Baseline LFRM LFRM DRIFT
Dataset (last/current) (all)

Forecast LL -31.6 -32.6 -28.4 -31.6 −11.6

Missing Data LL -575 -490 -533 -478 −219

Forecast AUC N/A 0.608 0.779 0.596 0.939

Missing Data AUC N/A 0.689 0.675 0.691 0.925

Enron Naive Baseline LFRM LFRM DRIFT
Dataset last/current) (all)

Forecast LL -141 -108 -119 -98.3 −83.5

Missing Data LL -1610 -1020 -1410 -981 −639

Forecast AUC N/A 0.874 0.777 0.891 0.910

Missing Data AUC N/A 0.921 0.803 0.933 0.979

2.6.2 Enron Email Data

We also evaluate our approach on the widely-studied Enron email corpus (Klimt & Yang,

2004). The Enron data contains 34182 emails among 151 individuals over 3 years. We

aggregated the data into monthly snapshots, creating a binary sociomatrix for each snapshot

indicating the presence or absence of an email between each pair of actors during that

month. In these experiments, we use a subset of the data involving interactions among the

50 individuals with the most emails.

For each month t, we train LFRM (all), LFRM (last), the baseline and DRIFT on all previous

months 1 to t − 1. In the MCMC sampler, we use 3 chains and a burn in length of 100,
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Figure 2.4: Test log-likelihood difference from baseline on Enron dataset at each time t.
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Figure 2.5: Held out Y at time t = 30 (top row) and t = 36 (bottom row) for Enron, and
posterior predictive distributions for each of the methods.
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Figure 2.6: Estimated edge probabilities vs timestep for four pairs of actors from the Enron
dataset. Above each plot the presence and absence of edges is shown, with black meaning
that an edge is present.
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k Baseline LFRM LFRM DRIFT
(current) (all)

10 10 5 10 10
20 19 6 19 20
50 36 12 36 48
100 60 22 62 90
500 192 78 197 301
1000 285 142 290 361

Table 2.2: Number of true positives for the k missing entries predicted most likely to be an
edge on Enron.
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Figure 2.7: ROC curves for Enron missing data.
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which we found to be sufficient. To compute predictions for month t for DRIFT, we draw 10

samples from each chain, and for each of these samples, we draw 10 different instantiations

of Zt by advancing the Markov chains one step. For LFRM, we simply use the sampled Z’s

from the posterior for prediction.

Table 2.1 shows the test log-likelihoods and AUC scores, averaged over the months from

t = 3 to t = 37. Here, we see that DRIFT achieves a higher test log-likelihood and AUC

than the LFRM models, the baseline and the “naive” method. Figure 2.4 shows the test

log-likelihood for each time step t predicted (given 1 to t − 1). This plot suggests that all

of the probabilistic models have difficulty beating the simple baseline early on (for t < 12).

However, when t is larger, DRIFT performs better than the baseline and the other methods.

For the last time step, LFRM (last) also does well relative to the other methods, since the

network has become sparse at both that time step and the previous time step.

For the missing data prediction task, thirty MCMC samples were drawn for LFRM and

DRIFT by taking only the last sample from each of thirty chains, with three hundred burn

in iterations. AUC and log-likelihood results are given in Table 2.1. Under both metrics,

DRIFT achieves the best performance of the models considered. Receiver operating char-

acteristic curves are shown in Figure 2.7. Table 2.2 shows the number of true positives for

the k most likely edges of the missing entries predicted by each method, for several values of

k. As some pairs of actors almost always have an edge between them in each timestep, the

baseline method is very competitive for small k, but DRIFT becomes the clear winner as k

increases.

We now look in more detail at the ability of DRIFT to model the dynamic aspects of the

network. Figure 2.5 shows the predictive distributions for each of the methods, at times

t = 30 and t = 36. At time t = 30, the network is dense, while at t = 36, the network

has become sparse. While LFRM (all) and the baseline method have trouble predicting a

sparse network at t = 36, DRIFT is able to scale back and predict a sparser structure, since
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it takes into account the temporal sequence of the networks and it has learned that the

network has started to sparsify before time t = 36. Figure 2.6 shows the edge probabilities

over time for four pairs of actors. The pairs shown were hand picked “interesting” cases from

the fifty most frequent pairs, although the performance on these pairs is fairly typical (with

the exception of the bottom plot). The bottom plot shows a rare case where the model has

arguably underfit, consistently predicting low edge probabilities for all timesteps.

Before concluding our discussion on DRIFT, we note that if a network is changing very

slowly relative to the time scale of the observations, it can potentially be well modeled by

simpler static methods such as LFRM (all) or the baseline method. In another scenario, it

is possible that the network, and any underlying latent representation, change much more

rapidly than the time scale of the observations, which would also thwart dynamic modeling.

However, the DRIFT model can be very useful in situations like the Enron data set where

the underlying communication patterns systematically and smoothly vary throughout the

observation period. In these cases, a dynamic model is needed, and we have shown that

DRIFT is up to the task.

2.7 Interpreting Network Models by Leveraging Text

As we have seen, the LFRM and DRIFT can be used to recover low-dimensional binary

vector representations of the actors in a social network. For example, Alice may email Bob

due to their unobserved mutual interest in salsa dancing. By learning such latent variable

models from observed communication patterns, we may be able to infer that Alice and Bob

have a feature in common. However it is not possible to infer from the network alone that

this feature corresponds to a salsa dancing hobby in particular.
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Fortunately, digital social networks such as email and social media are designed to facilitate

communication between members of the network. As such, they often have additional in-

formation associated with them, namely the text of the actors’ communications. This can

include messages between the actors (e.g. emails), or broadcast-style communications on

social media websites, such as tweets or facebook posts. We would like to be able to make

use of this text information together with the network data we have previously been consid-

ering, in order to automatically discover not only a latent feature representation of each of

the actors, but the semantics of these latent features. Thus we may be able to infer that

Bob and Alice share a salsa dancing hobby.

There are a multitude of potential applications for such a system. In a social science context,

recovering the semantics of latent features aids in the sociological interpretation of the mod-

els. For internet technology companies, inferring the interests of users in a social network

can potentially help to target advertisements to those users. It also increases the power of

the models for exploratory data analysis applications. For instance, the data set of emails

used above arose from a lawsuit after the financial collapse of the Enron corporation. In such

a setting, it would be very useful for the legal teams to be able to determine automatically

which employees communicated with each other due to reasons relevant to the lawsuit in

question, in order to focus their investigations into the data.

2.7.1 A Joint Model for Networks and Text

To discover latent features and their semantics, we introduce a framework for statistical

models of communication networks where both network and text data are observed. The

key idea is to model the network and the text jointly with a combination of the LFRM and

LDA, associating each LFRM binary latent feature to an LDA topic. The network model

is connected to the LDA topic model by allowing the latent features to affect the Dirichlet
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prior on each document’s distribution over topics. We can summarize the generative process

of the model, which we refer to as LFRM LDA, as

• Generate binary latent features Z and network Y via the LFRM

• Draw K topics Φ, where K is the number of latent features in Z

• For each node document ω(i)

• Select α(i) as a function of zi

• Draw ω(i) ∼ LDA(Φ, α(i))

• For each edge document ω(ij)

• Select α(ij) as a function of zi, zj

• Draw ω(ij) ∼ LDA(Φ, α(ij))

The Dirichlet parameters are chosen such that the topics corresponding to the latent features

belonging to the actors associated with the document get the most weight in the prior. We

assume that all documents have the same total Dirichlet prior concentration α+, and that a

proportion γ of the prior weight comes from the topics of the latent features of the entities

associated with the document, with the remaining weight coming from a flat distribution

over all the topics. For documents ω(ij) on edges, the γ proportion of the prior weight is

divided beween i’s features and j’s features with proportion λ going to i’s features. This

leads to K-dimensional Dirichlet priors over the K topics with parameters

α
(ij)
k = α+

( γλ
∑

k′ zik′
zik +

γ(1− λ)
∑

k′ zjk′
zjk +

(1− γ)

K

)

(2.30)

α
(i)
k = α+

( γ
∑

k′ zik′
zik +

(1− γ)

K

)

. (2.31)
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This modeling strategy is reminiscent of the Dirichlet-multinomial regression (DMR) model

of Mimno & McCallum (2008), except that the Dirichlet parameters are selected based on

latent features instead of observed features, and a different regression parameterization is

used. We can make use of an interpretation of the Dirichlet-multinomial distribution used

in LDA, in order to give an intuition regarding equations 2.30 and 2.31. The Dirichlet-

multinomial (cf. Minka (2000)) is the distribution that results from drawing a multinomial

parameter vector θ from a Dirichlet prior with parameter vector α, and then drawing a count

vector from a Multinomial(θ,N). LDA uses this distribution to select the number of words

per topic in each document.

We can also interpret the Dirichlet-multinomial as a multivariate generalization of Polya’s

urn scheme. In this interpretation, we begin by placing αk colored balls into an urn for each

k, 1 ≤ k ≤ K, and with each k corresponding to a different color. Then, we randomly draw

one of the balls in the urn, and record its color. We then place it back into the urn, along

with a new ball of the same color. This process is repeated N times, outputting the number

of balls of each color which were drawn. In our case, this corresponds to the counts of each

topic. For LDA, α is usually real-valued, so we must extend our intuition to drawing from an

urn with “partial” balls in it. In our model, α+ corresponds to the total number of balls in

the urn initially, and Equations 2.30 and 2.31 specify how these initial balls are distributed.

Thus, in Equation 2.31, a proportion γ of the α+ colored balls are initially placed in the urn,

colored so that they are distributed evenly across the topics corresponding to the actor i’s

active features. The remaining proportion 1− γ of the α+ balls are distributed across all of

the topics evenly. The per-topic counts are then generated using the urn process.

More details on the model, including an MCMC inference algorithm, are given in Appendix

A. It should be noted that a closely related model to the one proposed here was developed

independently to us by Zhang & Carin (2012). After this competing work was published, we

did not explore the model further. Therefore, this model is evaluated less comprehensively
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than for other parts of this thesis. Nevertheless, we demonstrate the use of the model for an

exploratory data analysis (EDA) task.

2.7.2 Exploratory Data Analysis

A key property of the model is that it assigns semantically meaningful topics to the discovered

latent features, aiding the use of the LFRM as an (EDA) tool. In this section we explore its

use in this setting on the Enron email corpus and a data set of Twitter accounts belonging

to emergency response organizations.

Enron Email Corpus

The Enron corpus contains 150 email folders belonging mainly to senior management of the

Enron corporation. In each email, we removed all words past an occurrence of the word

“forwarded” as a simple attempt to get only the new text of each message. We removed

a list of 571 common stopwords7, the most popular 100 baby names from the last century

according to the United States Social Security Administration8, and words that occurred

only once. After merging multiple folders and email addresses associated with the same

people and duplicating multi-recipient emails for each recipient, we find 140 distinct actors,

with 1379 within-network edges associated with text, after aggregating emails extracted from

the users’ “sent items” folders, and with a dictionary of 15150 distinct words. We model this

data set using LFRM LDA with a Poisson link function on the counts of the emails between

actors,

yij ∼ Poisson(exp(ziWZ⊺
j )) . (2.32)

7From http://jmlr.csail.mit.edu/papers/volume5/lewis04a/a11-smart-stop-list/english.stop .
8From http://www.ssa.gov/oact/babynames/decades/century.html .
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Topic Ten Most Probable Words
Management program company blackberry committee purpose continue

created important remains talent
Fantasy Football draft good back big time team make game day week
Fuel gas deal storage cycle day capacity OFO daily socal volumes
Meetings meeting call gas time make enron pm good discuss today
California Energy power state california energy utilities electricity commission

market rate prices

Table 2.3: Top words for several topics from the Enron data set. The topic names were
chosen manually. “OFO” stands for “operational flow order”.

We ran the MCMC algorithm on the Enron data set with 20 topics for 3000 iterations of burn-

in, then recorded 100 samples, computed the probability of each zik based on the samples

and reported the most likely assignment of each of the zik’s. The topics were fairly stable

after burn-in, and we verified that feature swapping, which would confound this analysis,

did not occur. Some examples (from the last sample) are shown in Table 2.3. The mean

number of active features per person across the samples was 4.5.

Figure 2.8 shows a graphical representation of a subset of the recovered latent features,

labeled according to their topics. This demonstrates how the BMF LDA framework can be

used to automatically extract semantically meaningful latent structure in a text-augmented

network data set. One interesting feature corresponds to a topic on a fantasy football league

that some members of Enron participated in. The model has automatically identified the

actors that participate in the league. Perhaps unsurprisingly, the majority of the Enron

employees (81/140) are associated with the “meetings” topic/feature.

Government Emergency Response Twitter Accounts

The Enron corpus, being an email data set, contains text on the edges of the graph. We also

explored the use of the model on a network where the text is instead associated with the

nodes, using a data set extracted from the social media website Twitter. The data set, due
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Figure 2.8: Bipartite graph of actors and a selected set of latent features that they possess.
Arrows indicate that the feature is active for that actor in more than half of the recorded
MCMC samples.
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to Spiro et al. (2011), records the complete activity in the year 2011 of 216 Twitter accounts

belonging to government organizations related to emergency response in the United States of

America. The data include roughly 100,000 microblogging status updates (“tweets”), as well

as the “follows” relation. On the website, if an account chooses to follow another account,

it subscribes to the posts of that account. These Twitter accounts largely belong to organi-

zations rather than to individuals and are designed primarily to disseminate information to

the public, so it is unlikely that the edges in this graph exist for subscription purposes alone.

Instead, it is more likely that the edges in the follows graph have been created to indicate

affiliation or association. There are 2800 edges in the graph. The tweets were aggregated to

create a single document for each account (i.e. each node in the graph), and the same text

preprocessing was used as for the Enron corpus.

We modeled the network using LFRM LDA with a logistic link function. The interaction

matrix W was constrained to be diagonal, with an exponential prior distribution which

further constrained it to have positive entries. This means that the semantics of the latent

features correspond to communities of nodes which are more densely connected than the

base rate of the network. The MCMC algorithm was performed for 3000 iterations of burn

in with 100 samples subsequently recorded, using 20 topics.

Table 2.4 shows three manually selected topics, and the twitter accounts associated with

the corresponding latent features. The emergency management topic was associated with a

cluster of twitter accounts from the Federal Emergency Management Agency (FEMA), other

regional EMA organizations, and other general emergency announcement organizations such

as the emergency preparedness website “ready.gov.”

The topic on storms was associated with a number of US Coastguard (USCG) accounts,

three accounts belonging to the national oceanic and atmospheric organization (NOAA),

NASA’s hurricane webpage, and the US environmental protection agency (EPA). These are

all accounts associated with organizations concerned with conditions in the ocean.
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Topic Most Probable Words Twitter Accounts
Emergency USA disaster FEMA gov readydotgov fema craigatfema
Management weather emergency www [fema regional accounts 1 through 10 ]

preparedness recovery femalro ntasalerts noradnorthcom
assistance cdcemergency alabamaema calema . . .

Storms tropical pacific full usnoaagov uscoastguard noaacio
storm FBI NASA satellite nasahurricane usoceangov epagov
NW man atlantic uscgpacificnw uscgheartland

icommandantuscg
Wildfires fire Texas acres contained chpsouthern calema capublichealth

water Colorado firefighters fbipressoffice cagovernment
south attorney acre jerrybrowngov cal fire

[several state police departments ]
[several highway patrols ]

Table 2.4: Top words for several topics from the Twitter data set, and the Twitter accounts
that the model associates with these topics.

A topic on wildfires was associated with the California Department of Forestry and Fire

Protection (CAL FIRE), as well as many organizations relating to the state of California,

state-level police departments, and highway patrol organizations. California is a state which

is at risk of wildfires, so its association with the wildfire topic makes sense, even though this

association is not a perfect match semantically. It should be noted that some topics were less

coherent than the ones we have shown, and not all of the features corresponded to coherent

communities of nodes. Nevertheless, we have seen that the model has been able to recover

some useful semantically labeled clusters in an unsupervised way.

2.7.3 Related Work

A number of connections can be made between the LFRM LDA model proposed here and

other work in the literature. The idea of using an Indian buffet process (or the finite version

of this, in our case) to select only a subset of the topics to be active for a given document,

has been explored previously in the focused topic model (FTM) of Williamson et al. (2010).

In the FTM, each document has a binary vector, a row of the IBP, specifying which topics
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are present. The Dirichlet (or Dirichlet process, in the infinite case) prior weights are fixed

for each topic, whereas in our case the weights, and the presence of the features, depend on

the row and column entity’s IBP feature vectors.

Other work has explored the idea of modeling matrix data with text associated with it.

Balasubramanyan & Cohen (2011) model a network jointly with text documents in which

the entities in the network are mentioned. Their Block-LDA model posits that a mixed

membership stochastic blockmodel framework (Airoldi et al. , 2008) generates the network,

and that the entity mentions are generated via LDA. The two components of the model are

connected by using the same distributions over entities (i.e. topics) in each.

As previously mentioned, Zhang & Carin (2012) independently proposed a model closely

related to the one proposed here. They build a joint model of networks and text using the

binary matrix factorization (BMF) of Meeds et al. (2007) in conjunction with the focused

topic model. BMF is the rectangular version of the LFRM, with feature matrices for both

row and column entities. As in LFRM LDA, they associate each topic with a binary latent

feature. Each row of the matrix has a document associated with it, drawn using the focused

topic model, with only the topics corresponding to the latent features being active in the

document. The model follows the same high-level model structure as the one presented here,

but differs in three ways: their model is designed for rectangular matrices only, the Dirichlet

priors linking features to topics are specified differently, and they do not model documents

associated with the edges of the network, but only with the nodes.

Wang & Blei (2011) presented collaborative topic regression (CTR), another related model

which also uses a latent factorization model for the matrix data. In CTR, the latent rep-

resentations of the row and column entities are real-valued instead of binary. Each feature

once again is associated with a topic, and each column entity has an associated distribution

over topics. The row entity’s latent representation has a spherical multivariate Gaussian

prior, while the column entity’s representation’s prior is it’s topic distribution, plus multi-
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variate Gaussian noise. The documents on each edge are drawn from the topic distribution

of the column entity. This real-valued setup gives different semantics to the latent space –

a real-valued embedding instead of an overlapping clustering. The preferred representation

may depend on the task of interest. Note that CTR only handles documents associated with

column entities, unlike our model which also handles documents on the row entities and on

the edges, and also handles the square matrix case gracefully.

The author recipient topic model (ART) of McCallum et al. (2007) is also a topic model for

documents on directed edges of a graph. In this model, each edge in the graph has its own

distribution over topics, but with a flat prior, unlike BMF. If there are multiple recipients for

an email, each word chooses a latent recipient from the list and the topic for that words is

sampled from the resulting author-recipient pair. The entities themselves do not have latent

representations. One can think of the text portion of LFRM LDA as a modified version of

ART, where the users themselves are modeled, allowing the latent representations of the

users to influence the prior on the topic distribution of that edge.

Relational Topic Models (RTMs) (Chang & Blei, 2009) are models for networks with docu-

ments associated with nodes. Each node is generated via standard LDA, and links between

documents are generated based on the similarity of their latent topic vectors. In other words,

documents that are topically similar to each other are more likely to have an edge between

them. Note that in this model, as in the other previous models discussed here, documents

are generated before generating links, rather than generating documents conditional on the

associated actors (such as senders and receivers) as in BMF LDA.

The idea of learning the prior for each document’s topic distribution from exogenous data

has been explored before by Mimno & McCallum (2008). In their Dirichlet Multinomial Re-

gression (DMR) model, LDA is extended such that the Dirichlet prior for the dth document’s

distribution over topics is parameterized by α
(d)
k = exp(x(d)⊺λ(k)) for each topic k. Here, x(d)

and λ(k) are feature vectors for the dth document and the kth topic, respectively, with the
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x(d)’s being observed and the latent λ(k)’s being learned via optimization steps inside an

MCMC sampler loop, similarly to our approach. Conditioned on the latent features, the

text portion of BMF LDA can be viewed as a variant of DMR using a different functional

form for the α’s.

2.8 Summary of Contributions

In this chapter, we have introduced a nonparametric Bayesian model for longitudinal so-

cial network data that models actors with latent features whose memberships change over

time. We detailed an MCMC inference procedure that makes use of the IBP stick-breaking

construction to adaptively select the number of features, as well as a forward-backward algo-

rithm to sample the features for each actor at each time slice. Empirical results suggest that

the proposed dynamic model can outperform static and baseline methods on both synthetic

and real-world network data.

We also introduced a model for social network data with a text component, such as com-

munication networks in online social media. The model leverages the text to aid in the

interpretation of the latent features. By fitting the model to data using an MCMC algo-

rithm, we showed how this method can be used for exploratory data analysis.

The primary contributions of this chapter are

• We proposed DRIFT, a nonparametric Bayesian latent variable model for social net-

works over time.

• An MCMC algorithm was proposed to fit the model to data. The MCMC algorithm

uses several sophisticated techniques which have previously been shown to improve

mixing properties over naive sampling algorithms.
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• Unlike the straightforward MCMC algorithm proposed by Miller et al. (2009),

the algorithm uses a slice sampling technique which exploits the stick-breaking

construction of the IBP, potentially leading to better mixing properties (Teh et al. ,

2007b). For instance, Miller et al.’s method needs a complex initialization scheme,

unlike our method. Since the LFRM is a special case of DRIFT, this method can

also be used for the LFRM.

• For the sequential aspects of the model, the algorithm also uses the forward-

backward block Gibbs sampler instead of the simple direct Gibbs method. This

technique is also known to improve mixing (Scott, 2002).

• We evaluated the model extensively, both qualitatively and quantitatively, on synthetic

and real data, and on both forecasting and missing data tasks, showing an improvement

over baseline approaches. We acknowledge and thank Christopher DuBois and Arthur

Asuncion for assistance with running experiments. Dr. DuBois also implemented the

baseline algorithm, and Dr. Asuncion improved the performance of the code. We also

thank Dr. Asuncion, Dr. DuBois and Carter Butts for helpful discussions.

• We also proposed LFRM LDA, which jointly models networks and text associated with

them such as communications within the network.

• We derived an MCMC algorithm to fit LFRM LDA (described in Appendix A).

• Finally, we demonstrated the application of the model by using it for exploratory data

analysis on email and Twitter data sets. We are grateful to Spiro et al. (2011) for

generously providing the Twitter data.
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Chapter 3

Topic Models for Exploring Scientific

Influence in Citation Networks

Thou weigh’st thy words before thou givest them breath.

William Shakespeare, Othello

In the latter part of the previous chapter we investigated data where network and text

information occur together. The focus was on communication data, such as email networks

and digital social media. This chapter continues the theme of modeling networks and text

simultaneously, but in a different application domain. Here, we consider instead the analysis

of corpora of scientific articles.

The key elements of the data in this domain are the text of the manuscripts, and the network

of the citation relationships between the articles. These elements are frequently studied

separately, but as we saw in the previous chapter, there is great potential for these two

aspects of the data to be used in conjunction with each other to gain a better understanding

of a data set.
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Statistical latent variable models provide a flexible and extensible framework for analyzing

networks and text data, both separately and together. In this chapter, we introduce a new

latent variable model for leveraging these two aspects of scientific literature, called topical

influence regression (TIR). The model is designed specifically to help answer the questions

that arise uniquely in this domain. Specifically, we would like to be able to compute data

driven assessments of scientific impact. We would also like to discover the nature of the

relationships between scientific articles, including the spread of ideas along the citation graph

and the extent of the influence that a cited article has on an article that cites it. Techniques

that can answer these kinds of questions open the door to the development of exploratory

analysis tools to help scientists quickly get their bearings in fields of study other than their

own.

To this end, we develop the topical influence regression model, which posits that articles

“coerce” the articles that cite them into having similar topical content to them. This is

modeled in an unsupervised way, using a latent Dirichlet allocation framework (Blei et al. ,

2003) and introducing latent variables which encode this influence. These latent variables

represent a new bibliometric measure called topical influence, which we define in the context

of our model. In the TIR model, articles with higher topical influence have a larger effect on

the topics of the articles that cite them. We model this influence mechanism via a regression

on the parameters of the Dirichlet prior over LDA topics.

This chapter shows how such models can be used to recover meaningful influence scores,

both for articles and for specific citations. By looking not just at the citation graph but

also taking into account the content of the articles, topical influence regression can provide

a more complete picture of scientific impact than the simple citation-based scores used in

traditional bibliometrics. A published version of the work in this chapter is available in

Foulds & Smyth (2013).
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The remainder of the chapter is structured in the following way. Section 3.1 motivates the

problem of automatically inferring scientific impact, and Section 3.2 discusses background

information on work related to this problem. In Section 3.3, we introduce the topical influ-

ence regression model, and we describe an inference algorithm for the model in Section 3.4.

An experimental analysis of the model is performed in Section 3.5, and we summarize the

contributions of this chapter in Section 3.6.

3.1 Motivation

Scientific articles are not created equal. Some articles generate entire disciplines or sub-

disciplines of research, or revolutionize how we think about a problem, while others contribute

relatively little. When we are first introduced to a new area of scientific study, we may not be

informed as to which are the most influential articles that we should focus our attention on,

or the history of how ideas were built upon each other. In this situation, it would be useful

to have tools which can automatically find the most important articles, and the relationships

of influence between articles. Understanding the impact of scientific work is also crucial for

hiring decisions, allocation of funding, university rankings and other tasks that involve the

assessment of scientific merit. If scientific works stand on the shoulders of giants, we would

like to be able to find the giants.

The most straightforward method for quantitatively assessing importance of a scientific work

is to simply count the number of times that it has been cited. However, citation counts are

not the whole story. The number of citations an article receives provides one indication of

importance, but this is confounded by the unknown function of each citation. Many citations

are made in passing, are relevant to only one section of an article, or make no impact on a

work but are referenced out of “politeness, policy or piety” (Ziman, 1968).
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In reality, scientific impact has many dimensions. Some articles are important because they

describe scientific discoveries that alter our understanding of the world, while some develop

essential tools and techniques which facilitate future research. Other articles are influential

because they introduce the seeds of new ideas, which in turn inspire many other articles.

We would like to take more of these dimensions into account when assessing scientific merit.

This motivates more in-depth bibliometric techniques, such as the model-based approach

which we take in this chapter, leveraging the content of the articles as well as the citation

graph. To put our method in context, we first overview relevant bibliometric techniques and

related work in the literature.

3.2 Bibliometrics and Related Work

We can categorize bibliometric techniques into those which are simply based on citation

counts, those which exploit the citation graph, and machine learning approaches which

frequently leverage additional data such as text. We overview the methods in each of these

categories in turn.

3.2.1 Metrics Derived from Citation Counts

Going one step beyond simply counting citations to measure impact, it is also possible to

computed other derived bibliometric measures based on these counts. For example, the

impact factor of a publication venue for a given year is defined to be the average number

of times articles from that venue, published in the previous two years, were cited in that

year. However, the quality of articles in a given publication venue can vary wildly, and it is

difficult to compare impact factors between different disciplines of study.
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Another metric based on citation counts is the h-index of a scientist (Hirsch, 2005). A scholar

is said to have “index h” if she has h papers with at least h citations, and this is not the case

for any larger value of h. This metric is designed to measure both the “quality” (in terms of

number of citations per paper) and quantity of the research of a given scholar. Other related

metrics are the i10-index, attributed to Google,1 which counts the number of publications

with at least ten citations, and the g-index (Egghe, 2006), which is the largest number of

publications such that the top g of them together receive at least g2 citations. These metrics

do not consider context such as the number of authors or their ordering in the author list,

the publication venue, or the function of the citations. Another limitation of these metrics

is that they apply at the level of the scholar, and not the individual publication (although

they can readily be applied to other publication-producing entities such as institutions and

journals).

3.2.2 Graph-Based Approaches

A more sophisticated approach than citation counting is to consider the structure of the

citation graph, instead of just the raw counts of the citations. For example, measures of im-

portance can be derived recursively from the citation graph, such as PageRank (Brin & Page,

1998). Such graph-based measures do not in general make use of the textual content of the

articles, although it is possible to apply them to graphs where the edges between articles are

determined based on the similarity of their content instead of the citation graph (Lin, 2008).

In an information retrieval context, Hypertext-Induced Topic Search (HITS) (Kleinberg,

1999) and topic-sensitive PageRank (Haveliwala, 2002) use textual content to bias these re-

cursive measures in a query-dependent way. These techniques output answers to information

1Cf.
www.googlescholar.blogspot.com/2011/11/google-scholar-citations-open-to-all.html.
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retrieval queries for search engines, which are not directly relevant to the analysis of scientific

literature.

3.2.3 Machine Learning Approaches

Machine learning methods for the study of scientific literature take a data-driven approach,

and thus tend to make use of other available sources of information such as text. These

approaches can broadly be divided into supervised methods, which require labeled informa-

tion regarding scientific impact, and unsupervised methods, which proceed without the use

of such labels.

In the supervised category, Teufel et al. (2006) use supervised classification algorithms to

predict the function of each citation. More closely related to the method presented in this

chapter, and published slightly after this work, Zhu et al. (2014) predict the presence or

absence of influence relationships along each citation edge, using support vector machines

and logistic regression. Similarly to the work in this chapter, they use the results of the

algorithms to adjust citation count-based metrics to take into account influence relationships.

The overall goals of Zhu et al. are very similar to what is presented here. One key difference

is that our approach uses unsupervised techniques instead of supervised methods, so it does

not require expensive labeled data.

A variety of unsupervised methods using LDA-style probabilistic models have also been

proposed to analyze both textual content and citation links. An early example is the work

of Cohn & Hofmann (2001), which combines PLSA and PHITS to model the connections

between words and citations. The passage impact model of Shaparenko & Joachims (2009)

uses a mixture modeling strategy to attempt to identify which parts of scientific articles are

novel, and which are “copied” from earlier work.
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Chang & Blei (2009)’s relational topic model (RTM) is another related model. The RTM

models the joint probability of citation links and document content, again via an extension

to LDA. The text of each document is assumed to be generated using standard LDA and

the links (e.g., citations) are then generated subsequently based on the text. Our goal and

approach is different in that we wish to make direct inferences about the influence of cited

articles on citing articles, rather than model the probability of citation links. Thus, we

model the conditional distribution of latent topics and latent influences, conditioned on an

observed citation graph, rather than a joint model of topics and links.

Another topic model for scientific corpora is TopicFlow (Nallapati et al. , 2011), a PLSA-

based model for the flow of topics in a document network. In their model, citing articles

“vote” on each cited article’s topic distribution in retrospect, via a network flow model.

Since this voting occurs in time-reversed order, it does not describe an influence mechanism

and is not a generative model that can simulate or predict new documents.

The document influence model of Gerrish & Blei (2010) can be viewed as orthogonal to this

work, in that it models the impact of documents on topics over time (specifically, how topics

change over time) rather than how articles influence the specific articles that cite them.

The previous method which is perhaps the closest in goals and methodology to the present

work is that of Dietz et al. (2007), who introduce the citation influence model (CIM). Build-

ing on the latent Dirichlet allocation (LDA) framework, CIM assumes that each word is

drawn by first selecting either (a) the distribution over topics of a cited article (with proba-

bility proportional to the influence weight of that article on the present article) or (b) a novel

topic distribution, and drawing a topic from the selected distribution, then finally drawing

the word from the chosen topic.2 In their approach, every word is assigned an extra latent

variable, namely the cited article whose topic distribution the topic was drawn from. For the

2A model similar to Dietz et al.’s CIM was also proposed later by He et al. (2009), in the context of
detecting the evolution of topics over time.
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model proposed in this paper, we do not need to introduce these additional latent variables,

which leads to a simpler latent representation and fewer variables to sample during inference.

Dietz et al. (2007) also assume that the citation graph is bipartite, consisting of one set of

citing articles and one set of cited articles—in contrast, our proposed models can handle

arbitrary citation graphs in the form of directed acyclic graphs (DAGs). While both the

CIM and our approach can identify the influence of specific citations between articles, our

model can also infer how influential each article is overall, and provides a flexible modeling

framework which can handle different assumptions about influence.

A more general topic model called Dirichlet-multinomial regression (DMR), due to

(Mimno & McCallum, 2008), provides a framework for building topic models conditioned on

arbitrary features. This model can also learn latent topics conditioned on citations. However,

unlike our method it does not model influence directly, does not make use of the content of

cited articles in the regression and does not model a full network of probabilistic dependence

relationships between articles. Nevertheless, in this chapter we build upon the ideas of DMR

to create models which have these properties.

3.3 Topical Influence Regression

Scientific research is seldom performed in a vacuum. New research builds on the research

that came before it. Although there are many aspects by which the importance of a scientific

article can be judged, in this work we are interested in the extent to which a given article

has or will have subsequent articles that build upon it or are otherwise inspired by its ideas.

We begin by defining topical influence, a quantitative measure for this type of influence.
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3.3.1 Topical Influence

It is not immediately obvious how one might quantify such a notion of “idea-based” influence.

However, the mechanism used in the scientific community for giving credit to prior work is

citation. The presence of a citation from article b to article a therefore indicates that article b

may have been influenced by the ideas in article a, to some unknown extent. We hypothesize

that the extent of this influence manifests itself in the language of b. Using latent Dirichlet

allocation (LDA) topics as a concrete proxy for the vague notion of “ideas”, we define the

topical influence of a to be the extent to which article a coerces the documents which cite it

to have similar topic distributions to it. Topical influence will be made precise in the context

of a generative model for scientific corpora, conditioned on the citation graph, called topical

influence regression (TIR).

The proposed model extends the LDA framework of Blei et al. (2003) in order to model

topical influence (see Section 1.5). In LDA, each word w
(d)
i of each document d is assigned to

one of K latent topics, z
(d)
i . Each topic Φ(k) is a discrete distribution over words. Document

d has a distribution over topics θ(d), which can be viewed as a “location in topic space” sum-

marizing its thematic content. The θ(d)’s have a Dirichlet prior distribution with parameters

α = [α1, α2, . . . , αK ]
⊺. Although the αk’s are often set to be equal, representing a relatively

uninformative prior over the θ’s, a unique α(d) for each document can also be used to en-

code prior information such as the effect of other variables on the topics of that document

(Mimno & McCallum, 2008). In our case, we want to model the influence that a document

has on the topic distributions of the documents that cite it. A natural way to encode such

influence, then, is to allow documents to affect the value of α(d) for each document d that

cites them.

Accordingly, we model each article d as having a latent, non-negative “topical influence”

value l(d). Let n(d) be number of words in article d, n
(d)
k be the number of words assigned to
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Figure 3.1: The graphical model for the portion of the TIR model connected to article a
(the links from the z’s and l’s to the α(d)’s are deterministic). The full model applies this
diagram recursively.

topic k, and let C(d) be the set of articles that d cites. We model α(d) as

α(d) =
∑

c∈C(d)

l(c)z̄(c) + α , (3.1)

where z̄(c) = 1
n(c) [n

(c)
1 , . . . , n

(c)
K ]⊺ is the normalized histogram of topic counts for document c,

and α is a constant for smoothing. Since the z̄(c)’s sum to one, the topical influence l(c) of

article c can be interpreted as the number of words of precision that it adds to the prior

of the topic distributions of each document that cites it. As we increase l(c), the articles

that cite c become more likely to have similar topic proportions to it. Thus, l(c) encodes the

degree to which article c influences the topics of each of the articles that cite it.
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3.3.2 Polya Urn Interpretation of Topical Influence

From another perspective, marginalizing out θ(d), we can view the topic counts (in the

standard LDA model) for document d as being drawn from a Polya urn scheme with α
(d)
k

(possibly fractional) balls of each color k ∈ {1, . . . , K} initially in the urn. For each word,

a ball is drawn randomly from the urn and the topic assignment is determined according to

its color k. The ball is replaced in the urn, along with a new ball of color k. In our model,

for each article c cited by article d we place l(c) balls, with colors distributed according to

z̄(c), into article d’s urn initially. Thus, article d’s topic assignments are more likely to be

similar to those of the more influential articles that it cites. The total number of balls that

d added to other articles’ urns,

T (d) ,
∑

b:d∈C(b)

l(d) = l(d)
∣

∣{b : d ∈ C(b)}
∣

∣ (3.2)

measures the total impact (in a topical sense) of the article. We refer to this as total topical

influence.

3.3.3 Generative Model

The full assumed generative process for articles in this model begins with a directed acyclic

citation graph G = {V,E}. Intuitively, citation graphs are typically DAGs because articles

can normally only cite articles that precede them in time. We assume that G is a DAG

so that influence relationships are consistent with some temporal ordering of the articles,

and so that the resulting model is a Bayesian network. Here, each vertex vi corresponds

to an article di, edge e = (v1, v2) ∈ E IFF d1 is cited by d2, and vertices (articles) are

numbered in a topological ordering with respect to G. Such an ordering exists because G

is a DAG. We model each article d’s word vector w(d) as being generated in topological
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sequence, similarly to LDA but with its prior over topic distribution being Dirichlet(α(d)),

as given by Equation 3.1. Note that each α(d) is a function of the topics of the documents

that it cites, parameterized by their topical influence values. We therefore call this model

topical influence regression (TIR). The graphical model for TIR is given in Figure 3.1, and

the generative process for TIRE is given in Algorithm 4.

Algorithm 4 Generative process for TIR

• For each topic k

• Φ(k) ∼ Dirichlet(β) //Sample a topic

• For each document d, in topological order

• l(d) ∼ exponential(λ) //Sample an influence weight
• α(d) =

∑

c∈C(d) l(c)z̄(c) + α //Assign a prior over topics
• θ(d) ∼ Dirichlet(α(d)) //Sample a distribution over topics
• For each word i in document d

• z
(d)
i ∼ discrete(θ(d)) //Sample a topic

• w
(d)
i ∼ discrete(Φ(z

(d)
i )) //Sample a word

3.3.4 Modeling Influence Along Citation Edges

The TIR model provides us with topical influence scores for each article, but it does not tell

us about topical influence relationships between specific pairs of cited and citing articles. To

model such relationships, we can consider a hierarchical extension to TIR, with edge-wise top-

ical influences l(c,d) for each edge (c, d) of the citation graph, l(c,d) ∼ truncGaussian(l(c), σ, l(c,d) ≥

0).3 In this case,

α(d) =
∑

c∈C(d)

l(c,d)z̄(c) + α . (3.3)

3We use a truncated Gaussian, rather than, say, a gamma distribution or a log-normal, because we
desire a roughly bell-shaped distribution which is parameterized by a measure of central tendency. If the
standard deviation is small relative to the un-truncated mean, the mean of the distribution will be close to
the un-truncated mean.
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This hierarchical setup allows us to continue to infer article-level topical influences, and

provides a mechanism for sharing statistical strength between influences associated with one

cited article. We shall refer to the model with influences on just the nodes (articles) as TIR,

and the hierarchical extension with influences on the edges as TIRE. The TIRE model is

detailed in Algorithm 5.

Algorithm 5 Generative process for TIRE

• For each topic k

• Φ(k) ∼ Dirichlet(β) //Sample a topic

• For each document d, in topological order

• l(d) ∼ exponential(λ) //Sample a node influence weight
• For each cited document c ∈ C(d)

• l(c,d) ∼ truncGauss(l(c), σ, l(c,d) ≥ 0) //Draw an edge influence weight

• α(d) =
∑

c∈C(d) l(c,d)z̄(c) + α //Assign a prior over topics
• θ(d) ∼ Dirichlet(α(d)) //Sample a distribution over topics
• For each word i in document d

• z
(d)
i ∼ discrete(θ(d)) //Sample a topic

• w
(d)
i ∼ discrete(Φ(z

(d)
i )) //Sample a word

3.3.5 Relationship to Dirichlet-Multinomial Regression

The TIR model can be viewed as an adaption of the Dirichlet-multinomial regression (DMR)

framework of Mimno & McCallum (2008) to model topical influence. DMR also endows each

document with its own unique α(d), but with α
(d)
k = exp(x(d)⊺λ(k)) being a function of the

observed feature vector x(d) parameterized by regression coefficients λ. The DMR model

can also be applied to text corpora with citation information, by setting the feature vectors

to be binary indicators of the presence of a citation to each article. TIR differs in that the

functional form of the regression is parameterized in a way that directly models influence,

and also differs in that the regression takes advantage of the content of the cited articles via

their topic assignments.
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Because an article’s prior over topic distributions depends on the topic assignments of the

articles that it cites, TIR induces a network of dependencies between the topic assignments

of the documents. Specifically, if we collapse out Θ, the dependencies between the z’s of

each document form a Bayesian network whose graph is the citation graph. In contrast,

DMR treats the documents as conditionally independent given their citations, and does not

exploit their content in the regression.

To illustrate this, Figure 3.2 shows an example citation graph and the resulting Bayesian

network. In the figure, an edge in (a) from c to d corresponds to a citation of c by d.

Conditioned on the topics, the dependence relationships between z nodes in (b) follow the

same structure as the citation graph.
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Figure 3.2: (a) An example citation network. (b) Graphical model for TIR on the example
network, collapsing out Θ but retaining topics Φ. Influence variables and hyper-parameters
not shown for simplicity.
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3.4 Inference

We perform inference using a Markov chain Monte Carlo technique. We use a collapsed

Gibbs sampling approach analogous to Griffiths & Steyvers (2004), integrating out Θ and

Φ. The update equation for the topic assignments is

Pr(z
(d)
i = k|z−(d,i), . . .) ∝(n

(d)−(d,i)
k + α

(d)
k )

n
(w

(d)
i )−(d,i)

k + β
w

(d)
i

n
−(d,i)
k +

∑

w βw
×

∏

d′:d∈C(d′)

Polya(z(d
′)|α(d′) : z

(d)
i = k, z−(d,i), l) (3.4)

where the nk’s are the counts of the occurrences of topic k over all of the entries determined

by the superscript. The −(d, i) superscript indicates excluding the current assignment for

z
(d)
i . The update equation is similar to the update equations of Griffiths and Steyvers, but

with a different α for each document d, and with multiplicative weights for each document

that cites it. These weights Polya(z(d)|α(d)) are the likelihood for a multivariate Polya (a.k.a.

Dirichlet-multinomial) distribution,

Polya(z(d)|α(d)) =
Γ(
∑

k α
(d)
k )

Γ(n(d) +
∑

k α
(d)
k )

∏

k

Γ(n
(d)
k + α

(d)
k )

Γ(α
(d)
k )

.

In the case of TIR, in the collapsed model the full conditional posterior for the topical

influence values l is

Pr(l|z, λ) ∝ Pr(z|l)Pr(l|λ) . (3.5)

Here, we have that

Pr(z|l) =
D
∏

d=1

Polya(z(d)|lC
(d)

, zC
(d)

) . (3.6)
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The topical influence values l can be sampled using Metropolis-Hastings updates, or slice

sampling. An alternative is to perform stochastic EM, optimizing the likelihood or the

posterior probability of l, interleaved within the Gibbs sampler, as in Mimno & McCallum

(2008) and Wallach (2006). In experiments on synthetic data we found that maximum

likelihood updates on l, obtained via stochastic EM using gradient ascent, resulted in the

lowest L1 error from the true l, so we use this strategy for the experimental results in this

chapter. The derivative of the log-likelihood with respect to the topical influence l(a) of

article a is

dPr(z|l)

dl(a)
=

∑

d:a∈C(d)

(

Ψ(
∑

k

∑

c∈C(d)

l(c)z̄
(c)
k +Kα)−Ψ(

∑

k

∑

c∈C(d)

l(c)z̄
(c)
k +Kα+ n(d))

)

+
∑

d:a∈C(d)

K
∑

k=1

z̄
(a)
k

(

Ψ(
∑

c∈C(d)

l(c)z̄
(c)
k + α+ n

(d)
k )−Ψ(

∑

c∈C(d)

l(c)z̄
(c)
k + α)

)

,

where Ψ(.) is the digamma function. For TIRE, the likelihood decomposes across documents

and we can optimize the incoming edge weights for each document separately. We have

dPr(z(d)|l)

dl(a,d)
=Ψ(

∑

k

∑

c∈C(d)

l(c,d)z̄
(c)
k +Kα)−Ψ(

∑

k

∑

c∈C(d)

l(c,d)z̄
(c)
k +Kα + n(d))

+
K
∑

k=1

z̄
(a)
k

(

Ψ(
∑

c∈C(d)

l(c,d)z̄
(c)
k + α + n

(d)
k )−Ψ(

∑

c∈C(d)

l(c,d)z̄
(c)
k + α)

)

.

We optimize the node-level l’s in TIRE via the least squares estimate (LSE),

l̂(a) =
1

|{d : a ∈ C(d)}|

∑

d:a∈C(d)

l(a,d) . (3.7)

Although the LSE for the mean of a truncated Gaussian is biased, it is widely used as it is

more robust than the MLE (A’Hearn, 2004).
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3.5 Experimental Analysis

In this section we experimentally investigate the properties of TIR and TIRE. We consider

two scientific corpora: a collection of 3286 of articles from the Association for Computational

Linguistics (ACL) conference4 (Radev et al. , 2013) published between 1987 and 2011, and

a corpus of articles from the Neural Information Processing Systems (NIPS) conference5

containing 1740 articles from 1987 to 1999. The corpora both contained a small number (53,

and 14, respectively) of citation graph loops due to insider knowledge of simultaneous pub-

lications. Some loops were removed by manual deletion of “insider knowledge” edges, and

others were removed by deleting edges in the loop uniformly at random. For computational

efficiency, we performed approximate Gibbs updates where we drop the multiplicative Polya

likelihood terms in Equation 3.4. This corresponds to only transmitting influence informa-

tion downward in the citation DAG, but not transmitting “reverse influence” information

upwards. Preliminary experiments on synthetic data indicated that this did not significantly

impact the ability of the model to recover the topical influence weights. As one might expect,

LDA is already capable of inferring topic distributions which are good enough to perform

the regression on, without fully exploiting the additional feedback from the regression. This

algorithm has a similar running time to the standard collapsed Gibbs sampler for LDA, as

the regression step is not a bottleneck.

In all experiments, we set the hyper-parameters to α = 0.1, β = 0.1 and the σ parameter

for the truncated Gaussian in TIRE to be 1. We interleaved regression steps every 10 Gibbs

iterations. For exploratory data analysis experiments the models were trained for 500 burn-in

iterations, and the samples from the final iterations were used for the analysis.

4http://clair.eecs.umich.edu/aan/
5http://www.arbylon.net/resources.html, published by Gregor Heinrich and based on an earlier col-

lection due to Sam Roweis.
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Figure 3.3: Topical influence per edge versus number of times cited by the citing article
(NIPS). Several articles had zero in-text citations due to author or dataset errors.

3.5.1 Model Validation using Metadata

It is not immediately obvious how to best validate an unsupervised model of citation influ-

ence. Ground truth is not well-defined and human evaluation requires extensive knowledge

of the individual papers in the corpora. Also note that citation counts are not useful for

validating topical influence, as they measure the number of articles that cite a given article,

and not the impact that the article has on the articles that do cite it. With this in mind,

we explore how topical influence scores relate to several kinds of document metadata, which

serve as a proxy for ground truth.

In many cases, if article c is repeatedly cited in the text of article d it may indicate that d

builds heavily on c. We would therefore expect to see an association between the number of

references to article c within the text of article d and edge-wise topical influence l(c,d). For

each of the 106 papers in the NIPS corpus with at least three distinct references, we man-

ually counted the number of repeated citations for the most influential and least influential
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Figure 3.4: Topical influence for self and non-self citation edges. Top: ACL. Bottom: NIPS.
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references according to the TIRE model. Box plots for the edge-wise topical influence scores,

computed over the citation edges containing a given number of repeated references, is given

in Figure 3.3. The figure shows that edge-wise topical influence tends to increase with the

number of in-text citations by the citing article.

Overall, the “most influential” references were cited 171 times in the text of their citing

articles, while the “least influential” references were cited 128 times. Of the 45 articles where

the counts were not tied, the most influential references had the higher citation counts 33

times. A sign test rejects the null hypothesis that the median difference in citation counts

between least and most influential references is zero at α = 0.05, with p-value ≈ 5 × 10−4.

Note that repeated citations only occurred for 30 percent of the edges considered, and so

they do not in general provide a precise influence metric which could be used in lieu of the

proposed model-based topical influence metric.

Self-citations, where at least one author is in common between cited and citing articles,

are also informative (Figure 3.4). Authors often build upon their own work, so we would

expect self-citations to have higher edge-wise topical influence on average. For ACL the mean

topical influence for a self citation edge is 2.80 and for a non-self citation is 1.40. For NIPS

the means are 5.05 (self) and 3.15 (non-self). A two-sample t-test finds these differences are

both significant at α = 0.05.

3.5.2 Prediction Experiments

We also used a document prediction task to explore whether the posited latent structure

is predictively useful. We selected roughly 10% of the articles in each corpus (170 and

330 documents for NIPS and ACL, respectively) for testing, chosen among the articles that

made at least one citation. We held out a randomly selected set of 50% of their words and

evaluated the log probability of the held out partial documents under each model. This is
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ACL NIPS
Wins Losses Average Wins Losses Average

Improvement Improvement
TIR 297 33 65.7 150 20 38.2
TIRE 276 54 63.0 148 22 38.7
DMR 302 28 79.1 157 13 48.4

Table 3.1: Wins, losses and average improvement for log probabilities of held-out articles,
versus LDA. Each “Win” corresponds to the model assigning a higher log probability score
for the test portion of a held-out document than LDA assigned to that document.

equivalent to evaluating on a set of new documents with the same set of references as the

held out set. Evaluation was performed using annealed importance sampling (Neal, 2001),

as in Wallach et al. (2009b) except we used multiple samples per likelihood computation.

The TIR models were compared to LDA and an “additive” version of DMR with regression

function α
(d)
k = x(d)⊺λk + α, where the λs were constrained to be positive and given an

exponential prior with mean one. In this DMR model, binary feature vectors encoded the

presence or absence of each possible citation. The additive variant of DMR can be understood

using the Polya urn interpretation of LDA, which we discussed in Section 3.3.2. If a feature

j is present (i.e. article j was cited), x
(d)
j = 1 and λkj is added to entry k of the Dirichlet

prior for the document. We can view this as adding λkj balls of color k into the urn for that

document before beginning the Polya urn process.

For each algorithm, we burned in for 250 iterations, then executed 1000 iterations, optimizing

topical influence weights/DMR parameters every 10th iteration. Held-out log probability

scores were computed by performing AIS with every 100th sample, and averaging the results

to estimate the posterior predictive probability,

Pr(held out article|training set, citations, model).

It was found that all of the regression methods had superior predictive performance to

LDA on these corpora, demonstrating that topical influence has predictive value (Table

3.1). Although DMR performed slightly better than TIR predictively, TIR was competitive
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despite the fact that it has a factor of K less regression parameters. Note that DMR does

not provide an interpretable notion of influence.

3.5.3 Exploring Topical Influence

In this section we explore the inferred topical influence scores l(d), total topical influence

scores T (d) and edgewise topical influence scores l(c,d) (recall their definitions in Equations

3.1, 3.2 and 3.3, respectively). Table 3.2 shows the most influential articles in the ACL

corpus, according to citation counts, topical influence and total topical influence (the latter

two inferred with the TIR model). The most frequently cited paper within the ACL corpus,

written by Papineni et al., introduces BLEU, a technique for evaluating machine translation

(MT) systems.6 This paper is of great importance to the computational linguistics commu-

nity because the method that it introduces is widely used to validate MT systems. However,

the BLEU article has a relatively low topical influence value of 0.58, consistent with the fact

that most of the papers that cite it use the technique as part of their methodology but do not

build upon its ideas. We emphasize that topical influence measures a specific dimension of

scientific importance, namely the tendency of an article to influence the ideas (as mediated

by the topics) of citing articles; papers with low topical influence such as the BLEU article

may be important for other reasons.

Ranking papers by their influence weights l(d) (Table 3.2, middle) has the opposite difficulty

to ranking by citation counts — the papers with the highest topical influence were typically

cited only once, by the same authors. This makes sense, given what the model is designed

to do. The lone citing papers were certainly topically influenced by these articles.

A more useful metric, however, is the total topical influence T (d) (the bottom sub-table in

Table 3.2). This is the total number of words of prior concentration, summed over all of

6Citations within the corpora are of course only a small fraction of the total set of citations for many of
these papers.
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Citation Count Top 5 Articles by Citation Count

140 BLEU: a Method for Automatic Evaluation of Machine
Translation.
K. Papineni, S. Roukos, T. Ward, W. Zhu.

105 Minimum Error Rate Training in Statistical Machine Translation.
F. Och.

64 A Hierarchical Phrase-Based Model for Statistical Machine
Translation.
D. Chiang.

64 Accurate Unlexicalized Parsing.
D. Klein, C. Manning.

59 Unsupervised Word Sense Disambiguation Rivaling Supervised
Methods.
D. Yarowsky.

Topical Influence Top 5 articles by Topical Influence

11.38 Refining Event Extraction through Cross-document Inference.
H. Ji, R. Grishman.

11.37 Bayesian Learning of Non-compositional Phrases with
Synchronous Parsing.
H. Zhang, C. Quirk, R. Moore, D. Gildea.

10.48 A Plan Recognition Model for Clarification Subdialogues.
D. Litman, J. Allen.

10.38 PCFGs with Syntactic and Prosodic Indicators of Speech Repairs.
J. Hale, I. Shafran, L. Yung, B. Dorr, and others.

10.30 Referring as Requesting.
P. Cohen

Total Topical Top 5 Articles by Total Topical Influence
Influence

111.46 (1.74 × 64) A Hierarchical Phrase-Based Model for Statistical Machine
Translation.
D. Chiang.

101.12 (6.74 × 15) Maximum Entropy Based Phrase Reordering Model for Statistical
Machine Translation.
D. Xiong, Q. Liu, S. Lin.

98.56 (5.80 × 17) A Logical Semantics for Feature Structures.
R. Kasper, W. Rounds.

85.15 (2.18 × 39) Discriminative Training and Maximum Entropy Models for
Statistical Machine Translation.
F. Och, H. Ney

81.82 (0.58 × 140) BLEU: a Method for Automatic Evaluation of Machine
Translation.
K. Papineni, S. Roukos, T. Ward, and W. Zhu.

Table 3.2: Most influential articles in the ACL corpus, according to citation counts (top),
topical influence l(d) inferred by TIR (middle), and total topical influence T (d) inferred by
TIR (bottom). For total topical influence, the breakdown of T (d) = l(d)× citation count is
shown in parentheses.
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Citation Count Top 5 Articles by Citation Count

26 Handwritten Digit Recognition with a Back-Propagation Network.
Y. Le Cun, et al.

19 Optimal Brain Damage.
Y. Le Cun, J. Denker, S. Solla.

17 A New Learning Algorithm for Blind Signal Separation.
S. Amari, A. Cichocki, H. Yang.

17 Efficient Pattern Recognition Using a New Transformation Distance.
P. Simard, Y. Le Cun, J. Denker.

14 The Cascade-Correlation Learning Architecture.
S. Fahlman, C. Lebiere.

Topical Influence Top 5 articles by Topical Influence

29.7 Synchronization and Grammatical Inference in an Oscillating
Elman Net.
B. Baird, T. Troyer, F. Eeckman.

26.3 Learning the Solution to the Aperture Problem for Pattern Motion
with a Hebb Rule.
M. Sereno.

25.9 ALVINN: An Autonomous Land Vehicle in a Neural Network.
D. Pomerleau.

25.1 Some Estimates of Necessary Number of Connections and Hidden
Units for Feed-Forward Networks.
A. Kowalczyk.

24.7 Complex- Cell Responses Derived from Center-Surround Inputs:
The Surprising Power of Intradendritic Computation.
B. Mel, D. Ruderman, K. Archie.

Total Topical Top 5 Articles by Total Topical Influence
Influence

84.7 (10.6 × 8) Gaussian Processes for Regression.
C. Williams, C. Rasmussen.

63.9 (7.1 × 9) Reinforcement Learning Algorithm for Partially Observable
Markov Decision Problems.
T. Jaakkola, S. Singh, M. Jordan.

57.9 (19.3 × 3) Optimal Stopping and Effective Machine Complexity in Learning.
C. Wang, S. Venkatesh, J. Judd.

54.7 (10.9 × 5) Links Between Markov Models and Multilayer Perceptrons.
H. Bourlard, C. Wellekens.

51.2 (3.7 × 14) The Cascade-Correlation Learning Architecture.
S. Fahlman, C. Lebiere.

Table 3.3: Most influential articles in the NIPS corpus, according to citation counts (top),
topical influence l(d) inferred by TIR (middle), and total topical influence T (d) inferred by
TIR (bottom).
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A Hierarchical Phrase-Based Model for Statistical Machine Translation.
D. Chiang.

Most influential 1.48 Discriminative Training and Maximum Entropy Models for
reference Statistical Machine Translation.

F. Och and H. Ney.

Least influential 0.00 BLEU: a Method for Automatic Evaluation of Machine
reference Translation.

K. Papineni, S. Roukos, T. Ward, W. Zhu.

Most influenced 2.54 Toward Smaller, Faster, and Better Hierarchical Phrase-based
citer SMT.

M. Yang, J. Zheng.

Least influenced 0.60 An Optimal-time Binarization Algorithm for Linear Context-
citer Free Rewriting Systems with Fan-out Two.

C. Gómez-Rodŕıguez, G. Satta.

Unsupervised Word Sense Disambiguation Rivaling Supervised Methods.
D. Yarowsky.

Most influential 2.52 Subject-dependent Co-occurrence and Word Sense
reference Disambiguation.

J. Guthrie, L. Guthrie, Y. Wilks, H. Aidinejad.

Least influential 0.53 Word-sense Disambiguation using Statistical Methods.
reference P. Brown, S. Della Pietra, V. Della Pietra, R. Mercer.

Most influenced 1.81 Discriminating Image Senses by Clustering with Multimodal
citer Features.

N. Loeff, C. Alm, D. Forsyth.

Least influenced 0.00 Semi-supervised Convex Training for Dependency Parsing.
citer Q. Wang, D. Schuurmans, D. Lin.

Accurate Unlexicalized Parsing.
D. Klein, C. Manning.

Most influential 3.87 Parsing with Treebank Grammars: Empirical Bounds,
reference Theoretical Models, and the Structure of the Penn Treebank.

D. Klein and C. Manning.

Least influential 0.81 Efficient Parsing for Bilexical Context-Free Grammars and
reference Head Automaton Grammars.

J. Eisner, G. Satta.

Most influenced 1.67 Evaluating the Accuracy of an Unlexicalized Statistical Parser
citer on the PARC DepBank.

T. Briscoe, J. Carroll.

Least influenced 0.00 Finding Contradictions in Text.
citer M. de Marneffe, A. Rafferty, C. Manning.

Table 3.4: Least and most influential references and citers, and the influence weights along
these edges, inferred by the TIRE model for three example ACL articles.
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Feudal Reinforcement Learning. P. Dayan, G. Hinton

Most influential 5.47 Memory-based Reinforcement Learning: Efficient
reference Computation with Prioritized Sweeping.

A. Moore, C. Atkeson.

Least influential 0.00 A Delay-Line Based Motion Detection Chip.
reference T. Horiuchi, J. Lazzaro, A. Moore, C. Koch.

Most influenced 3.36 The Parti-Game Algorithm for Variable Resolution
citer Reinforcement Learning in Multidimensional State-Spaces.

A. Moore.

Least influenced 1.71 Multi-time Models for Temporally Abstract Planning.
citer D. Precup, R. Sutton.

Optimal Brain Damage. Y. Le Cun, J. Denker , S. Solla.

Most influential 2.82 Comparing Biases for Minimal Network Construction with
reference Back-Propagation.

S. Hanson, L. Pratt.

Least influential 0.15 Skeletonization: A Technique for Trimming the Fat from a
reference Network via Relevance Assessment.

M. Mozer, P. Smolensky.

Most influenced 3.08 Structural Risk Minimization for Character Recognition.
citer I. Guyon, V. Vapnik, B. Boser, L. Bottou, S. Solla.

Least influenced 0.64 Structural and Behavioral Evolution of Recurrent Networks.
citer G. Saunders, P. Angeline, J. Pollack.

An Input Output HMM Architecture. Y. Bengio, P. Frasconi.

Most influential 5.29 Credit Assignment through Time: Alternatives to
reference Backpropagation.

Y. Bengio, P. Frasconi.

Least influential 0.00 Induction of Multiscale Temporal Structure.
reference M. Mozer

Most influenced 2.66 Learning Fine Motion by Markov Mixtures of Experts.
citer M. Meila, M. Jordan.

Least influenced 1.47 Recursive Estimation of Dynamic Modular RBF Networks.
citer V. Kadirkamanathan, M. Kadirkamanathan.

Table 3.5: Least and most influential references and citers, and the influence weights along
these edges, inferred by the TIRE model for three example NIPS articles.
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its citers, that the article has contributed, and is a measure of the total corpus-wide topical

influence of the paper. In the Polya urn interpretation of LDA, this is the total number of

balls that the article added to the urns of the other articles in the corpus. This metric ranks

the BLEU paper at 5th place, down from 1st place by citation count. The ACL paper with

the highest total topical influence, by David Chiang, won the ACL best paper award in 2005.

The behavior of the different metrics is echoed in the NIPS corpus (Table 3.3). The most

cited paper, “Handwritten Digit Recognition,” by Le Cun et al. (1990), is an early successful

application of neural networks. The paper does not introduce novel models or algorithms,

but rather, in the authors’ words, “show[s] that large back propagation (BP) networks can be

applied to real image recognition problems.” Thus, although it is has an important role as a

landmark neural network success story, it does not score highly in terms of topical influence.

This paper is ranked 13th according to total topical influence, with a score of 1.6. The

top two-ranked papers according to total topical influence, on Gaussian Process Regression

and POMDPs respectively, were both seminal papers that spawned large bodies of related

work. An interesting case is the third-ranked paper in the NIPS corpus, by Wang et al., on

the theory of early stopping. It is only referenced three times, but has a very high topical

influence of 19.3 words. All three citing papers are also on the theory of early stopping,

and one of the papers, by Wang and Venkatesh, directly extends a theoretical result of this

paper. Although it is easy to see why this paper scores highly on topical influence, in this

case the metric has perhaps overstated its importance. A limitation of topical influence

is that it can potentially give more credit than is due when an article is cited by a small

number of topically similar papers, due to overfitting. This is likely to be an issue for any

topic-based approach for modeling scientific influence. However, topics help to absorb lexical

ambiguity and author-specific idiosyncracies, mitigating the problem relative to word-based

approaches.
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Using the TIRE model, we can also look at influence relationships between pairs of articles.

Tables 3.4 and 3.5 show the most and least topically influential references, and the most and

least influenced citing papers, for three example articles from ACL and NIPS, respectively.

The model correctly assigns higher influence scores along the edges to and from relevant

documents. For the ACL papers, the BLEU algorithm’s article is inferred to have zero

topical influence on Chiang’s paper, consistent with its role in the paper as an evaluation

technique. The paper most topically influenced by Chiang’s paper, written by Yang and

Zheng, aims to improve upon the ideas in that paper. In the NIPS corpus, the article by

Bengio and Frasconi, on recurrent neural network architectures, extends previous work by

the same authors, which is correctly assigned the highest topical influence. A particularly

interesting case is the paper by Dayan and Hinton, which is heavily influenced by a paper by

Moore, and in turn strongly influences a later paper by Moore, thus illustrating the interplay

of scientific influence between authors along the citation graph. These three papers were on

reinforcement learning, while the lowest scoring reference and citer were on other subjects.

3.6 Summary of Contributions

This chapter introduced a latent variable model called topical influence regression (TIR).

The model is used to define the notion of topical influence, a quantitative measure of sci-

entific impact. TIR builds upon the ideas of Dirichlet-multinomial regression to encode

influence relationships between articles, creating a Bayesian network of dependencies be-

tween documents which follows the structure of the citation DAG. By training TIR, we can

recover topical influence scores that give us insight into the impact of scientific articles. The

model was applied to two scientific corpora, demonstrating the utility of the method both

quantitatively and qualitatively.

The main contributions of this chapter are
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• We introduced topical influence regression (TIR), a probabilistic model of corpora of

scientific articles with citation links between them.

• In the context of this model, we defined topical influence and total topical influence,

metrics of the importance of scientific works which make use of both text and citation

network information.

• We proposed a hierarchical extension of the TIR model, TIRE, where influence weights

are computed on the edges of the citation graph as well as the nodes, while sharing

statistical strength between edges through inference on node-level parameters.

• It was shown how to perform inference on these models using a Markov Chain Monte

Carlo technique, using a stochastic EM approach to learn the influence weights.

• We evaluated the models both qualitatively and quantitatively on two corpora of sci-

entific articles. The models were validated by comparing the results with relevant

metadata, namely within-article citation counts and self-citation relationships. We

also validated the models on a prediction task, and qualitatively explored the output

of the model on an exploratory data analysis task, demonstrating the utility of the

approach.
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Chapter 4

Fast Online Inference for Topic

Models

All we have to decide is what to do with the time that is given us.

J.R.R. Tolkien, the Fellowship of the Ring

In the previous chapters of this thesis, we have seen that latent variable models can be

powerful tools for finding meaningful hidden structure in our data. As discussed in Chapter

1, a key motivation for these models is to help make sense of the vast body of digital

information on the internet. As the amount of available data continues to grow, so does the

need for automatic tools to make sense of it. More data also brings with it the potential to

improve the accuracy of our methods, and to support complex models which capture more

aspects of the data.

There is a particularly clear need for tools which can learn topic models such as LDA at

the “web scale,” especially for web companies whose lifeblood is textual content on the

internet. For example, news aggregator websites such as Yahoo! News publish a continually

updated stream of online articles. These services need to analyze candidate articles for
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topical diversity, relevance to current trends, and personalized recommendation, all of which

can be facilitated by topic models (Ahmed et al. , 2011).

However, traditional inference techniques for these models such as Gibbs sampling and vari-

ational inference do not readily scale to such corpora, which frequently contain millions of

documents or more. In such cases it is very time-consuming to perform even a single iteration

of the collapsed Gibbs sampling (Griffiths & Steyvers, 2004) or variational inference algo-

rithms (Blei et al. , 2003) for topic models, let alone run them until convergence. Clearly,

more scalable approaches are needed.

A significant recent advance was made by Hoffman et al. (2010, 2013), who proposed a

stochastic variational inference algorithm for LDA topic models. Because the algorithm does

not need to see all of the documents before updating the topics, this method can often learn

good topics before even a single iteration of the traditional batch inference algorithms is

completed. The algorithm processes documents in an online fashion, so it can be applied

to corpora of any size, or even to never-ending streams of documents. Thus, the stochastic

approach is scalable in terms of the number of documents to process. A variant of the algo-

rithm has been proposed which is also scalable in the size of the vocabulary and the number

of topics (Mimno et al. , 2012).

A complementary direction that has been useful for improving inference in LDA is to take

advantage of its collapsed representation, where parameters are marginalized out, leaving

only latent variables. It is possible to perform inference in the collapsed space and recover

estimates of the parameters afterwards. For inference techniques that operate in a batch

setting, the algorithms that operate in the collapsed space are more efficient at improv-

ing held-out log probability than their uncollapsed counterparts, both per iteration and in

wall-clock time per iteration (Griffiths & Steyvers, 2004; Teh et al. , 2007a; Asuncion et al. ,

2009). For variational inference, perhaps the most important advantage of the collapsed rep-
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Collapsed Collapsed
Variational Bayes Gibbs Sampling Variational Bayes

Batch Blei et al. (2003) Griffiths & Steyvers (2004) Teh et al. (2007a)

Stochastic Hoffman et al. (2010) Mimno et al. (2012)
(VB/ Gibbs hybrid) This chapter

Table 4.1: LDA learning approaches can be divided into the algorithmic method used
(columns), and by whether the approach is stochastic or batch mode (rows). This chapter
fills in the bottom-right entry of the table by introducing a stochastic collapsed variational
Bayes algorithm for LDA.

resentation is that the variational bound is strictly better than that for the uncollapsed

representation, leading to the potential for collapsed variational algorithms to learn more

accurate topic models than uncollapsed variational algorithms (Teh et al. , 2007a). Existing

online inference algorithms for LDA do not fully take advantage of the collapsed represen-

tation.

In this chapter, we develop a stochastic algorithm for LDA that operates in the collapsed

space, thus gaining the aforementioned advantages of both collapsed and online algorithms

(see Table 4.1). This facilitates learning topic models both more accurately and more quickly

on large datasets. The proposed algorithm is also very simple to implement, requiring only

basic arithmetic operations. To validate the approach, we test its performance experimen-

tally on three large web-scale datasets, with comparison to the previous uncollapsed ap-

proach. We also explore the benefit of our method on small problems, showing that it is

feasible to learn human-interpretable topics in seconds.1

We begin the chapter with essential background material on the relevant prior work (Section

4.1). This includes introductions to variational inference, to the collapsed representation

of LDA, to the collapsed variational approach, and to stochastic optimization. Section 4.2

introduces the proposed inference algorithm for topic models, which we refer to as SCVB0. In

Section 4.3, we evaluate the SCVB0 algorithm on both large-scale and small-scale problems.

1Much of this chapter is published work, available in Foulds et al. (2013).
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The remaining technical sections of this chapter are more theoretical in nature. In Section 4.4

we take a close look at the approximations made by the CVB0 algorithm of Asuncion et al.

(2009), which is the basis for our method, and provide a new justification for the approach.

An alternative perspective is given in Section 4.5, where we show connections between SCVB0

and an algorithm which performs MAP estimation. Leveraging these connections, we prove

the convergence of the algorithm in Section 4.6. We put our approach in context in Section

4.7, by discussing related work in the literature on the scalable learning of topic models.

Finally, we conclude the chapter in Section 4.8 with a summary of the contributions made

here.

4.1 Background

This chapter develops a new algorithm for learning LDA topic models which leverages several

strands of research. The algorithm uses the framework of variational inference to cast the

problem of training a model as an optimization problem. The inference is performed using the

collapsed representation of LDA, where only the latent variables of the model are reasoned

over, thus simplifying and streamlining the process. Finally, the approach leverages stochastic

optimization techniques to make the algorithm scalable to large datasets. In this section,

we provide a tutorial on each of these concepts, as well as an overview of the previous work

on variational inference for collapsed LDA, before proceeding to detail our new approach in

Section 4.2.

4.1.1 Variational Inference

Variational inference (Dayan et al. , 1995; Jaakkola & Jordan, 1997; Jordan et al. , 1999) is

an optimization approach to solving inference problems. The word “variational” refers to
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a field of mathematical analysis, dating back to Euler and Lagrange, called the calculus of

variations, which concerns optimization over the space of functions. Variational methods are

applicable in a probabilistic modeling context because probability distributions are functions,

and inference problems can often be cast as optimization problems over these distributions.

The application of such variational methods to solving inference problems in a Bayesian

context is called variational Bayesian inference, or variational Bayes (VB). Typically, VB

corresponds to using variational inference to estimate a Bayesian posterior. The VB approach

is fully Bayesian in the sense that it estimates the full posterior distribution. This should be

contrasted to maximum likelihood estimation and maximum a posteriori probability (MAP)

estimation, which find only point estimates of the parameters of interest. However, while VB

is a Bayesian technique, variational methods are not inherently Bayesian, and they can be

applied in other contexts as well. For example, variational inference may be used within an

inner loop of an EM algorithm for performing maximum likelihood estimation, by estimating

a distribution over a set of hidden variables. This strategy is known as variational EM. A

well-known example of this is the original learning algorithm for LDA (Blei et al. , 2003).

In the context of variational inference, suppose we would like to compute a posterior distribu-

tion p(z|x) over hidden variables and parameters z, having observed data x.2 It is assumed

that the posterior is intractable, and so approximation techniques must be used. The key

idea of variational inference is to approximate p(z|x) with a more tractable distribution q(z),

and minimize some distance (or divergence) between the two distributions. We refer to q(z)

as the variational distribution. This is a variational technique because we are optimizing

over a function, in this case q(z), which is a mapping from variable assignments to their

probabilities (or probability densities).

2Here, we may also be implicitly conditioning on learned parameter values and/or hyper-parameters.
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KL-divergence and the Evidence Lower Bound

Typically the divergence to minimize is chosen to be the KL-divergence from q(z) to p(z|x),

DKL(q(z)‖p(z|x)) = Eq

[ log q(z)

log p(z|x)

]

= Eq[log q(z)]−Eq[log p(z|x)]

= Eq[log q(z)]−Eq[log p(z,x)] + log p(x) . (4.1)

The KL-divergence makes intuitive sense as such an objective function, as it is zero if the

distributions are equal, and greater than zero otherwise.3 We can think of it as the number

of extra bits of information needed to encode both the approximate posterior and the data,

beyond using the true posterior. This “bits back” motivation of the KL-divergence as a

minimization objective in a Bayesian context is due to Hinton & Van Camp (1993), in what

is perhaps the earliest paper on VB.4

The argmin of Equation 4.1 with respect to q(z) does not depend on the constant log p(x).

Minimizing it is therefore equivalent to maximizing

L(q) , Eq[log p(z,x)]−Eq[log q(z)] = Eq[log p(z,x)] +H(q) , (4.2)

where H(q) is the entropy (or differential entropy) of q(z). Here, the entropy of q(z) rewards

simplicity, while Eq[log p(z,x)], the expected value of the complete data log-likelihood under

the variational distribution, rewards accurately fitting to the data.

3Note that the KL-divergence is not symmetric, and we could instead to have chosen to optimize over
DKL(p(z|x)‖q(z)). This alternative variational inference strategy, known as expectation propagation (Minka,
2001), is sometimes used, but it results in a more difficult optimization problem. We will not consider it
further here.

4See also the follow-up papers by Hinton and colleagues, (Hinton & Zemel, 1994; Dayan et al. , 1995).
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As a side note, we can alternatively derive L(q) as a lower bound on the log of the marginal

probability of the data p(x) (the evidence),

log p(x) = log(
∑

z

p(z,x))

= log(
∑

z

p(z,x)
q(z)

q(z)
)

= log(Eq

[p(z,x)

q(z)

]

)

≥ Eq

[

log p(z,x)− log q(z)
]

(4.3)

= L(q) ,

where we have made use of Jensen’s inequality.5 In the above, summations can be replaced

with integrals for continuous z. Due to Equation 4.3, L(q) is referred to as the evidence lower

bound (ELBO). As we have seen, maximizing L(q) can be understood as either minimizing

the KL-divergence from our approximating distribution q(z) to the posterior (Equation 4.1),

or as maximizing a lower bound on the evidence p(x) (Equation 4.3). The ELBO L(q) will

be our objective function in what follows.

Mean Field Variational Inference

So far, we have not made the problem any easier, as our objective function L(q) still contains

expectations over the hidden variables z. What we have gained, however, is the option to

select a variational distibution q(z) for which these expectations are tractable, in order to

facilitate efficient optimization.

5In a probability context, Jensen’s inequality states that for any concave function f such as log, f(E[X ]) ≥
E[f(X)]).
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One strategy with a clear advantage in this regard is to use a fully factorized distribution,

q(z) =
∏

i

qi(zi) , (4.4)

which leads to the entropy term decomposing into a much more tractable form,

−Eq[log q(z)] = −Eq[log
∏

i

qi(zi)] =
∑

i

Eqi[− log qi(zi)] =
∑

i

H(qi) . (4.5)

The expected complete data log-likelihood also typically becomes much more tractable in

this setup. This factorization strategy for selecting a variational family q is known as mean

field, by analogy to behaviors of particles in statistical physics.

The Mean Field Update Equations

The mean field independence assumption in the variational distribution implies that each

factor is relatively tractable, individually. This suggests a coordinate ascent approach to the

optimization of the ELBO for mean field VB, in which each factor is optimized in turn. It

is possible to derive the general structure of the updates for this algorithm without making

any further distributional assumptions or assuming a specific parameterization for q(z). We

will derive this below. It is important to note that because we have not yet specified any

parameterization for q(z), the optimization we are performing is with respect to the function

q(z), rather than being with respect to specific parameters. This is sometimes referred to

as free-form optimization. Later, we will describe how this applies once we have specified a

parametric form for q(z) for the specific problem at hand.
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To derive the coordinate ascent updates, we first isolate the terms in L(q) associated with

factor i,

L(q) = Eq[log p(z,x)] +
∑

j

H(qj)

=
∑

z

∏

j

qj(zj)
(

log p(z,x)
)

+H(qi) + const

=
∑

zi

qi(zi)
∑

z¬i

∏

j 6=i

qj(zj)
(

log p(z,x)
)

+H(qi) + const

=
∑

zi

qi(zi)Eq¬i
[log p(z,x)] +H(qi) + const. (4.6)

Notice that this is starting to look like a negative KL-divergence from q to some “distribution”

Eq¬i
[log p(z,x)], except that Eq¬i

[log p(z,x)] is not a normalized distribution. If we can

rewrite this with some normalized distribution, we can interpret the equation as a KL-

divergence and we will be on familiar ground. To this end, let us construct a normalized

probability distribution

fi(zi) =
exp(Eq¬i

[log p(z,x)])

expAi

= exp(Eq¬i
[log p(z,x)]−Ai) , (4.7)

with Ai = log
∑

i′ exp(Eq¬i′
[log p(z,x)]) being the log of the normalizing constant, often

referred to as the log partition function. Then we have

L(q) =
∑

zi

qi(zi)(log fi(zi) + Ai) +H(qi) + const (4.8)

=
∑

zi

qi(zi) log fi(zi) +H(qi) + const (4.9)

= −DKL(qi(zi)‖fi(zi)) + const . (4.10)
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KL-divergences are minimized by setting the two distributions equal, in which case the

divergence is zero. So we can maximize the above by setting qi(zi) = fi(zi), which leads to

the update

qi(zi) :∝ exp(Eq¬i
[log p(z,x)]) , (4.11)

where :∝ means “assigned to be proportional to.”

When implementing this in practice, we typically will parameterize each qi(zi) using some

parametric form with variational parameters γi,

q(z) =
∏

i

qi(zi|γi) . (4.12)

For example, if z is a categorical variable, then γi is the parameter vector for a discrete dis-

tribution, which sums to one. In this case, parameterizing by γi has not required any further

assumptions on q(z), since any categorical random variable can be written this way. We can

obtain the update equations for the specific problem at hand by plugging our specific p(z,x)

into Equation 4.11 to deduce the update for each γi. Regardless of the parameterization for

the γi’s, the coordinate ascent algorithm optimizes L(q) with respect to γ by updating each

of the variational parameters γi for each factor qi(zi) in turn. The updates are iterated until

convergence. Each update monotonically improves L(q) so the algorithm is guaranteed to

converge.

4.1.2 Collapsed LDA

We now return our discussion to LDA models. In the collapsed representation of LDA, due

to (Griffiths & Steyvers, 2004), we marginalize out topics Φ and distributions over topics Θ,

and perform inference only on the topic assignments z. This is possible due to the conjugacy
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of the Dirichlet distribution and the multinomial distribution. Let us begin with the full

joint distribution, and then proceed by marginalization. Referring back to the graphical

model (Figure 1.4) and the generative process (Algorithm 2) for LDA, the joint distribution

for the parameters and latent variables can be written as

Pr(w, z,Φ,Θ|α, β) =

K
∏

k=1

(

Dirichlet(Φ(k)|β)
)

D
∏

d=1

(

Dirichlet(θ(d)|α)
)

×

D
∏

d=1

Nd
∏

i=1

(

Discrete(z
(d)
i )|θ(d))Discrete(w

(d)
i |Φ

(z
(d)
i ))

)

. (4.13)

The discrete and Dirichlet distributions used here are

Discrete(x|π) = πx (4.14)

Dirichlet(π|a) =
1

B(a)

K
∏

k=1

πak−1
k (4.15)

B(a) =

∫ K
∏

k

πak−1
k dπ =

∏K
k=1 Γ(ak)

Γ(
∑

k ak)
, (4.16)

where B(a) is the multivariate beta function, Γ(n) is the gamma function, and π sums to

one. Before deriving collapsed LDA, as a warm-up we will first pause to consider a simpler

model which can be constructed using these two distributions. The model is specified by the

following generative process:

• π ∼ Dirichlet(a)

• For i = 1 to N

• xi ∼ Discrete(π) .

We can write down the joint distribution of this simple model as

Pr(x, π|a) = Dirichlet(π|α)

N
∏

i=1

Discrete(xi|π) (4.17)
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=
1

B(a)

K
∏

k=1

πak+nk−1
k , (4.18)

where nk is the number of times that xi = k. We can compute Pr(x|a) =
∫

Pr(x, π|a)dπ

using an application of Equation 4.16,

Pr(x|a) =
B(a+ n)

B(a)
. (4.19)

The distribution Pr(x|a), known as the multivariate Polya distribution, corresponds to the

urn model which we discussed in Section 1.5 of the introduction to this thesis. Expanding

out the beta functions, we can write this as

Polya(x|a) , Pr(x|a) =
Γ(
∑

k ak)

Γ(
∑

k nk +
∑

k ak)

K
∏

k=1

Γ(nk + ak)

Γ(ak)
.

Returning to the LDA model, we can recover the collapsed model, marginalizing out Θ

and Φ, by applying the above argument once for every document d, with Pr(z(d)|α) =
∫

Pr(z(d), θ(d)|α)dθ(d) and once for each topic, Pr({w
(d)
i |z

(d)
i = k}|β) =

∫

Pr({w
(d)
i |z

(d)
i =

k},Φ(k)|β)dΦ(k). The resulting marginal distribution is

Pr(w, z|α, β) =

D
∏

d=1

(

Polya(z(d)|α)
)

K
∏

k=1

(

Polya({w
(d)
i |z

(d)
i = k}|β)

)

=

D
∏

d=1

( Γ(
∑

k αk)

Γ(n(d) +
∑

k αk)

K
∏

k=1

Γ(n
(d)
k + αk)

Γ(αk)

)

×

K
∏

k=1

( Γ(
∑

w βk)

Γ(nk +
∑

w βw)

W
∏

w=1

Γ(n
(w)
k + βw)

Γ(βw)

)

, (4.20)

where n(d) is the length of document d, n
(d)
k is the number of times that words in document

d are assigned to topic k, nk is the number of words assigned to topic k, and n
(w)
k is the

number of times words with index w are assigned to topic k.
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The collapsed Gibbs sampler (CGS) of Griffiths & Steyvers (2004) operates in this marginal-

ized (a.k.a. collapsed) representation, updating each z
(d)
i in turn. Starting from Equation

4.20, after some algebra we arrive at the Gibbs update equation for the CGS algorithm,

Pr(z
(d)
i = k|z−(d,i), . . .) ∝ (n

(d)−(d,i)
k + αk)

n
(w

(d)
i )−(d,i)

k + β
w

(d)
i

n
−(d,i)
k +

∑

w βw
. (4.21)

The CGS algorithm is perhaps the most widely used training algorithm for LDA. Reasons

for its popularity include the fact that it mixes much better than the naive Gibbs sampler,

it is computationally efficient and that it is also easy to implement. It is also amenable to

speed improvements using clever implementations (Porteous et al. , 2008; Yao et al. , 2009),

and is robust to parallel approximations (Newman et al. , 2009; Smola & Narayanamurthy,

2010). A high quality implementation using all of these optimizations is available in the

MALLET software package (McCallum, 2002).

4.1.3 Collapsed Variational Bayesian Inference for LDA

As well as facilitating an effective Gibbs sampling algorithm, the collapsed representation

for LDA is also advantageous for the variational approaches we will consider in this section.

The Gibbs sampling and variational strategies for performing inference each have different

strengths. The Gibbs sampler is unbiased, and so its long-run performance is better than

variational methods, at least if we are willing accept the cost of averaging over many samples

at prediction time. On the other hand, the variational method is an optimization procedure.

This allows variational algorithms to travel more directly “uphill” in the search space, instead

of the random walk behavior exhibited by MCMC algorithms, which often results in faster

convergence. An optimization framework such as VB also enables the use of stochastic

optimization techniques, as explored in the new technique introduced in this chapter.
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For the LDA model, Teh et al. (2007a) and Asuncion et al. (2009) showed how collapsing

can improve performance over the original variational approach of Blei et al. (2003), by

simplifying the algorithms and by improving the tightness of the variational bound. We will

sketch the derivation of this technique below.

The collapsed variational Bayesian inference (CVB) approach of Teh et al. (2007a) begins

by marginalizing out the topic Φ and distributions over topics Θ. In the collapsed space,

the method performs a mean field variational approximation on the topic assignments z,

q(z) =
D
∏

d=1

n(d)
∏

i=1

qid(z
(d)
i |γid) , (4.22)

where qid(z
(d)
i |γid) = Discrete(z

(d)
i |γid), and γid is a K-dimensional vector of variational pa-

rameters which sums to one. Here, γidk is the probability that z
(d)
i = k according to the

variational distribution. Since z
(d)
i is a categorical variable, parameterizing qid(z

(d)
i ) via a

discrete distribution with parameters γid does not correspond to any further assumption on

the variational distribution q(z) beyond the mean field assumption.

Motivating this mean field collapsed VB approach, Teh et al. note that the CGS update of

Equation 4.21 shows us that the z
(d)
i ’s affect each other only through aggregate counts of the

topic assignments. Thus, the dependence between any variable z
(d)
i and any other variable

z
(d′)
i′ is weak, which suggests that this is a scenario where a mean field assumption is likely

to be reasonable. Furthermore, Teh et al. show that the variational bound (i.e. Equation

4.3) which results from Equation 4.22 is strictly better than the variational bound for the

standard VB algorithm over all of the variables, as used in the algorithm of Blei et al.

(2003). This is because the standard VB approach assumes a factorized representation over

each of the parameters in Φ and Θ, while this assumption is not made when mean field VB

is performed in the collapsed space.
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To optimize the evidence lower bound (Equation 4.3) of collapsed VB, Equation 4.11 gives

us the mean field coordinate ascent update:

γidk :∝ exp(Eq¬id
[logPr(z¬id, z

(d)
i = k, w|α, β)]) . (4.23)

After plugging Equation 4.20 into Equation 4.23 and performing some algebraic manipula-

tion, Teh et al. arrive at

γidk :∝ exp
(

Eq¬id
[log(n

(d)−(d,i)
k + αk)] + Eq¬id

[log(n
(w

(d)
i )−(d,i)

k + β
w

(d)
i

)]

−Eq¬id
[log(n

−(d,i)
k +

∑

w

βw)]
)

. (4.24)

To implement the algorithmic update step corresponding to this equation, Teh et al. show

that each of the expectations in Equation 4.24 can be calculated with a running time

quadratic in the number of words involved in the expectation, using a convolution tech-

nique. Unfortunately, this algorithm is not efficient enough to be practical.

Nonetheless, Teh et al. introduce an algorithm based on an approximation to Equation

4.24. They find that this approximate algorithm works well in practice, outperforming the

standard VB algorithm in terms of predictive performance. The method approximates the

expectation terms in Equation 4.24 by

Eq¬id
[log(n

(d)−(d,i)
k + αk)] ≈ log(Eq¬id

[n
(d)−(d,i)
k ] + αk)−

Varq¬id
[n

(d)−(d,i)
k ]

2(αk + Eq¬id
[n

(d)−(d,i)
k ])2

(4.25)

and similarly for the other terms, Eq¬id
[log(n

(w
(d)
i

)−(d,i)

k +β
w

(d)
i

)] and Eq¬id
[log(n

−(d,i)
k +

∑

w βw)].
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This approximation is motivated by observing that in the variational distribution q, the

count variables, e.g. n
(w

(d)
i

)−(d,i)

k , are sums of independent Bernoulli variables,

n
(w

(d)
i )−(d,i)

k =
∑

i′6=i

1(z
(d)
i′ = k) , (4.26)

where 1(a) is an indicator function which is equal to one if a is true, and zero otherwise.

The independence of the Bernoulli variables follows from the mean field assumption. By the

central limit theorem, if the Bernoulli variables are numerous enough, the count variables

are well approximated by a Gaussian. Teh et al. arrive at Equation 4.25 by evaluating the

expectation under the Gaussian approximation, after first approximating the term with a

second-order Taylor expansion about the mean of the Gaussian.

CVB0

Asuncion et al. (2009) later showed that a simpler version of the CVB method, based on an

additional approximation, is much faster and easier to implement while still maintaining its

accuracy. This algorithm is derived by dropping the second order information in the Taylor

expansion used to derive the approximate update, thereby replacing Equation 4.25 with

Eq¬id
[log(n

(d)−(d,i)
k + αk)] ≈ log(Eq¬id

[n
(d)−(d,i)
k ] + αk) . (4.27)

The resulting algorithm is referred to by Asuncion et al. (2009) as CVB0, since only the

“zeroth order” information in the Taylor expansion is used (i.e. the Taylor series is not ex-

panded at all). However, the first order term in the Taylor series is zero, so the approximation

used to derive Equation 4.27 can be understood as a first order Taylor series expansion.
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By plugging the approximation from Equation 4.27 into the CVB update of Equation 4.24,

Asuncion et al. arrive at approximate coordinate ascent updates for each γid,

γidk :∝ (NΘ¬id
dk + αk)

NΦ¬id
widk

+ βwid

NZ¬id
k +

∑

w βw
(4.28)

with wid corresponding to the word index for the dth document’s ith word, and where

a :∝ b denotes that a is assigned to be proportional to b. The NZ , NΘ and NΦ variables,

henceforth referred to as the CVB0 statistics, are variational expected counts corresponding

to their indices, and the ¬id superscript indicates the exclusion of the current value of γid.

Specifically, NZ is the vector of expected number of words assigned to each topic, NΘ
d is the

equivalent vector for document d only, and each entry w, k of matrix NΦ is the expected

number of times word w is assigned to topic k across the corpus,

NZ
k ,

∑

id

γidk NΘ
dk ,

∑

i

γidk NΦ
wk ,

∑

id:wid=w

γidk . (4.29)

Note that normalizing NΘ
d + α results in a Rao-Blackwellized estimate of the document d’s

distribution over topics θ(d), and normalizing NΦ
:,k + β gives a Rao-Blackwellized estimate of

the topic Φ(k) (Griffiths & Steyvers, 2004; Teh et al. , 2007a). Also observe that the update

for CVB0 closely resembles the collapsed Gibbs update for LDA (Equation 4.21), but is

deterministic.

CVB0 is currently the fastest known technique for LDA inference for single-core batch infer-

ence in terms of convergence rate (Asuncion et al. , 2009). It is also as simple to implement

as collapsed Gibbs sampling, and has a very similar update procedure except that the update

is deterministic. Sato & Nakagawa (2012) showed that the terms in the CVB0 update can

be understood as optimizing the α-divergence, with different values of α for each term. The

α-divergence is a generalization of the KL-divergence that variational Bayes minimizes, and

optimizing it is known as power expectation propagation (Minka, 2004). A disadvantage of
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CVB0 is that the memory requirements are large as it needs to store a variational distribu-

tion γ for every token in the corpus (although this can be improved slightly by “clumping”

every occurrence of a specific word in each document together and storing a single γ for

them).

4.1.4 Stochastic Optimization

Having discussed variational methods and their application to collapsed LDA, we will now

describe stochastic algorithms, which are the final puzzle piece needed to build our approach.

Stochastic optimization methods (Robbins & Monro, 1951; Bottou, 1998) are a class of op-

timization algorithms which can tolerate, or even exploit, randomness. Such randomness

may arise from the environment, due to noise in the measurement of the input data. Al-

ternatively, the stochasticity may be introduced deliberately by the algorithm in order to

improve optimization performance. In a machine learning context, the latter is an important

case, with randomness being used to rapidly approximate expensive update steps in order

to scale the algorithms to very large data sets. Stochastic algorithms for machine learning

are often called online learning algorithms, particularly when applied in a streaming setting

(cf. Bottou (1998)). In a typical machine learning application of stochastic algorithms, the

learning problem is framed as the minimization of a function

g(w) =
1

n

n
∑

i=1

fxi
(w) , (4.30)

wherew is a vector of the parameters of interest, and each fxi
(w) is a cost function associated

with each observed data point xi, such as the squared error loss for a prediction, minus a

log-likelihood, or a variational objective function. To motivate the stochastic approach, let
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us first consider instead a standard iterative batch mode algorithm for optimizing g(w). Such

an algorithm generally has the following form:

• while (not converged)

• Process each input vector x1, . . . ,xn

• Update the parameters w based on this processing.

For example, in the gradient descent algorithm, the gradient of g(w) is computed by summing

over the gradients for each fxi
(w). In these batch mode algorithms, the first step in this

loop is O(n), where n is the number of data points. Unfortunately, many modern web-scale

datasets have very large n (e.g., at the time of writing, the free online encyclopedia Wikipedia

has around 14 million articles). In this case, it may take a long time to perform even a single

update of the parameters.

To make our algorithms scalable to such datasets, we would prefer to have algorithms whose

iteration cost is independent of n. This is accomplished by stochastic algorithms, which

generally have the form:

• while (not converged)

• Process a small subset of the input vectors

• Approximate the update step based on this subset

• Update the parameters w based on this processing.

This is a stochastic approach, in the sense that randomness arises in the selection of the subset

of the input vectors. Typically the approximate update is chosen so that its expectation

under the subset selection process is the exact update, and thus the stochastic updates will

128



take us in the correct direction on average. Thus, stochastic algorithms buy us an iteration

running time which does not depend on n, at the cost of introducing noise in the update.

Despite the stochasticity, convergence guarantees exist for most standard stochastic opti-

mization algorithms, as long as the updates are tempered with an appropriate sequence of

step sizes (Bottou, 1998; Andrieu et al. , 2005). However, the rate of convergence with re-

spect to the amount of data processed is provably slower for most stochastic algorithms than

their deterministic counterparts. For large data sets, this is a price we are often willing to

pay in order to be able to quickly begin making progress when on a computational budget.6

Furthermore, in a learning context, we are interested in generalization performance, rather

than in finding the optimal fit to the training data. Stochastic algorithms are often very effi-

cient in the early phase of optimization, which is where the most generalization performance

is gained, making them a good fit for learning problems (Bottou & LeCun, 2003). We will

consider several examples of stochastic algorithms below.

Robbins-Monro Stochastic Approximation

The original stochastic optimization method is the stochastic approximation (SA) algorithm

of Robbins & Monro (1951), which aims to find the roots of an equation

h(w) = 0 , (4.31)

in the scenario where we can only observe noisy measurements yt(w) of it:

yt(w) = h(w) + ξt, E[ξt] = 0 (4.32)

6An exception to the convergence rate limitation of stochastic algorithms is the recently proposed stochas-
tic average gradient (SAG) technique (Le Roux et al. , 2012), which maintains the convergence rate of batch
mode gradient descent, although it has a memory requirement which is O(n).
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at each iteration t. This may occur if h(w) is a function of a physical quantity measured

using a noisy instrument. Alternatively, we can select h(w) to be the average over data points

g(w) in Equation 4.30. A cheap, noisy measurement of g(w) is obtainable by estimating

it based on evaluations of fxi
(w) at a randomly selected subset of data points, and we can

then use the algorithm to find g(w) = 0.

The Robbins-Monro SA algorithm proceeds iteratively, performing the following update after

each measurement yt at iteration t,

w := w + ρtyt(w). (4.33)

Here, ρt is a step size at iteration t, which is typically annealed towards zero. Robbins and

Monro showed that this algorithm converges to a correct solution under certain conditions

and with an appropriately selected sequence of step sizes. To illustrate the method, we show

a simple one-dimensional demonstration in Figure 4.1, where h(w) = sin(w), measured with

standard Gaussian noise added. In this case, the update equation is w := w+ρt(sin(w)+ξt),

where ξt ∼ Gaussian(0, 1) has perturbed our measurement of sin(w).

It is worth pausing to reflect on the meaning of the update equation for Robbins-Monro SA,

while considering our example of the sine function. In each step, the algorithm measures the

target function, with some error in the measurement. If the measurement is above zero, the

algorithm increases w, although there is no particular reason to suspect that this is the best

choice. However, the algorithm makes consistent choices, in that when the measurement

is below zero it travels in the opposite direction, and w is decreased. The size of the step

that the algorithm takes is smaller if the measurement is closer to zero. Finally, if the

measurement is exactly zero, corresponding to having found a solution, the algorithm will

not move. The step size is annealed towards zero, allowing it to eventually ignore the noisy

readings and settle at a correct solution.
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Figure 4.1: Demo of the Robbins-Monro stochastic approximation algorithm. The algorithm
finds a root of the sine function at π, despite measuring the function with standard Gaussian
noise added to it. Top: The sine function. Middle: The state of the algorithm w per
iteration. Bottom: The target function, evaluated per iteration.
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A consequence of the update is that if w “overshoots” a zero and lands on a positive region

of the curve, it will not return towards the root but instead continue onwards. This is not a

problem for the sine function, which has the property that there is always another zero for

it to find at a larger value of w. However, if the target is the quadratic function h(w) = w2

and the algorithm overshoots the root at zero, it will diverge. For this reason, a boundedness

condition is usually required to ensure convergence (Andrieu et al. , 2005).

Stochastic gradient descent

The stochastic gradient descent (SGD) method (cf. Bottou (1998)), sometimes referred

to in a learning context as online learning, is a stochastic variant of gradient descent. The

elementary version of this algorithm optimizes g(w) in each iteration t by selecting a random

data point zt, and performing the update

w := w− ρt∇wfxzt
(w) , (4.34)

where ∇wfxzt
(w) is the gradient of fxzt

(w) with respect to w. Importantly, the average

of the gradients selected by this procedure is the gradient of the full objective function,

Ez[∇wfxzt
(w)] = ∇g(w).

In a more general framework, the objective function can instead be set to be Ez[fz(w)]

directly, for some distribution of events z. This means that we do not have to define g(w)

over a finite set of data points, allowing the algorithm to be used in a streaming setting, with

an infinite number of incoming data points. Furthermore, any unbiased estimate H(z,w) of

Ez[∇wfz(w)] may be used as a noisy gradient in each iteration, such as a minibatch estimate

computed over multiple data points.

132



In this general setting, the update of the algorithm becomes

w := w− ρtH(zt,w) . (4.35)

The SGD algorithm is guaranteed to converge to a local minimum, for an appropriate se-

quence of step sizes ρ (Bottou, 1998). Of course, the algorithm can also be used to solve

maximization problems by reversing the sign of the update,

w := w + ρtH(zt,w) . (4.36)

To illustrate the method with an example, let us return to the case of the sine function,

which we previously explored in Figure 4.1. The derivative of sin(x) is cos(x). Suppose we

can measure the derivative with standard Gaussian noise added to it, and we are interested

in maximizing over the function. Then the update becomes w := w+ ρt(cos(w) + ξt), where

ξt ∼ Gaussian(0, 1). The behavior of the algorithm is demonstrated in Figure 4.2.

Interestingly, the update w := w + ρt(cos(w) + ξt) is identical to the update step of a

Robbins-Monro SA algorithm for finding zeros of cos(w). This is not a coincidence. By

comparing Equation 4.36 and Equation 4.33, we can see that stochastic gradient ascent is a

Robbins-Monro algorithm for finding the zeros of the gradient, i.e. the stationary points of

the objective function. Similarly, the descent version of the algorithm in Equation 4.35 finds

the zeros of the negative of the gradient, which are also the stationary points, however the

Robbins-Monro algorithm takes steps in the reverse direction to the ascent algorithm.

As an aside, the name “stochastic gradient descent” is arguably a misnomer, because the

stochastic algorithm is no longer a descent method, as the random behavior may cause the

cost function to increase in some cases.7

7This observation was made by Stephen Wright, in a lecture at the IPAM Stochastic Gradient Methods
Workshop, held at UCLA in February 2014. As an organizer of the workshop, Wright changed the name of
the workshop from its original title, “Stochastic Gradient Descent Workshop” for this reason.
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Figure 4.2: Demo of the stochastic gradient algorithm. The algorithm finds a maximum
of the sine function at π/2, despite measuring the derivative with standard Gaussian noise
added to it. Top: The sine function. Middle: The state of the algorithm w per iteration.
Bottom: The objective function, evaluated per iteration.
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Stochastic Variational Inference

A stochastic algorithm for performing variational inference on very large data sets was pro-

posed by Hoffman et al. (2013). This algorithm applies to graphical models whose param-

eters can be split into “global” parameters G and “local” parameters Lj pertaining to each

data point xj , and whose complete conditional distributions for each variable are exponential

family distributions. The LDA model is an important example of a model with this property,

and indeed the stochastic variational inference algorithm was originally designed specifically

for LDA (Hoffman et al. , 2010).

The stochastic VB algorithm proceeds as follows in each iteration. First, it examines one

randomly selected data point and optimizes that data point’s local variational parameters

(such as θ(j) in LDA). It then updates the global variational parameters, such as topics

Φ(k), via a stochastic estimate of the natural gradient. In the field of information geometry,

the natural gradient is an alternative to the usual gradient which gives the steepest ascent

direction according to Riemannian geometry instead of Euclidean geometry (Amari, 1998).

In the case of stochastic VB, the stochastic natural gradient update ends up being a simple

convex combination of the current global parameters and an estimate of the global parameters

based on current data point. We can think of the algorithm as performing stochastic gradient

descent, but using the natural gradient instead of the usual Euclidean one. The general

scheme of stochastic VB is given in Algorithm 6.

For an appropriate local update and sequence of step sizes ρ, this algorithm is guaranteed

to converge to the optimal variational solution (Hoffman et al. , 2013). In the case of LDA,

let λk be the parameter vector for a variational Dirichlet distribution on topic Φ(k). For each

document j, the method computes variational distributions for both the topic assignments

and the document’s distribution over topics using regular VB updates. These values are

then used to update the topics. Specifically, for each topic k the algorithm computes λ̂k,
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Algorithm 6 Stochastic variational inference (Hoffman et al.)

• Input: Data points x1, . . . ,xD (e.g. word count histograms for documents), step sizes
ρt, t = 1 : m (where m is the maximum number of iterations)
• Randomly initialize “global” (e.g. topic) parameters G
• For t = 1 : m

• Select a random data point xj , j ∈ {1, . . . , D}
• Compute “local” (e.g. document-level) variational parameters Lj

• Ĝ = DLj

• G := (1− ρt)G+ ρtĜ

an estimate of what λk would be if all D documents were identical to document j. The

algorithm then updates the λk’s via a natural gradient update, which takes the form

λk := (1− ρt)λk + ρtλ̂k . (4.37)

The form of this update provides another insight into the advantages of the stochastic ap-

proach. In the standard VB algorithm for LDA, the topics are updated after a complete

pass through the data, by summing up the local parameters Lj . However, the parameters

are initialized randomly, and so in the early iterations these values will not be very good.

At the end of the iteration, the topics are finally updated, using an aggregation of these

largely random values. It takes a number of iterations to bootstrap away from the random

initialization. On the other hand, the online LDA algorithm updates the topics after every

document, meaning that it has an earlier chance to improve on the random initialization.

Furthermore, the update in Equation 4.37 uses the step size ρt as a “forgetting rate,” allowing

it to overwrite the old, poorly estimated values with new improved information. Typically

the step size is set so that the forgetting rate is high in the beginning, allowing it to quickly

escape from the random initialization.
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Online EM

In a somewhat broader context, the online EM algorithm of Cappé & Moulines (2009) is

another general-purpose method for learning latent variable models in an online setting.

Suppose there are independent and identically distributed observed variables x(i), each as-

sociated with latent variables z(i) and we are interesting in performing maximum likelihood

estimation over parameters θ. It is assumed that the complete data likelihood can be written

in exponential family form,

Pr(x, z|θ) ∝ h(x, z) exp(S(x, z)⊺η(θ)) , (4.38)

where S(x, z) maps the observed and hidden variables to a vector of sufficient statistics,

and η(θ) is a vector-valued function of θ. In each iteration, a new data point x(i) is ob-

served. The online EM algorithm consists of an E-step and an M-step, as in traditional EM

(Dempster et al. , 1977). However, these steps are performed for each data point x(i) instead

of involving a pass through the entire data set.

The E-step operates on a running estimate s of the expected value of the complete data suffi-

cient statistics EPr(z|x,θ)[S(x, z)]. A stochastic estimate ŝ(x(i); θ) = EPr(z(i)|x(i),θ)[S(x
(i), z(i))]

is made based on the current data point x(i), and then the running estimate s is updated

via an online average,

s := (1− ρt)s+ ρtŝ(x
(i); θ) . (4.39)

Finally, a standard M-step is performed, which maximizes the EM lower bound

EPr(z|x,θ)[logPr(x, z)], and hence the log-likelihood, with respect to parameters θ. Due to

the exponential family assumption, it is possible to perform the M-step update based on the

estimated expected sufficient statistics s.
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4.2 Stochastic CVB0

Our goal in this chapter is to develop a fast, scalable and accurate algorithm for training topic

models on large data sets. Given the discussion above, a desirable algorithm for training

LDA on web-scale corpora should have the following properties, each of which has been

attained by at least one algorithm for LDA in the literature:

1. An efficient, simple update.

(Collapsed Gibbs sampling, CVB0 )

2. The improved variational bound of the collapsed representation.

(CVB, CVB0. Not applicable to sampling approaches)

3. An update whose execution time does not depend on the size of the dataset.

(Collapsed Gibbs sampling, CVB0, stochastic VB)

4. Memory requirements that do not depend on the size of the dataset.

(Stochastic VB)

5. The ability to quickly “forget” the random initialization.

(Stochastic VB)

6. The ability to estimate the topics when only a subset of the data have been visited.

(Stochastic VB)

The first three conditions are met by the CVB0 algorithm of Asuncion et al. (2009), with

condition 3 holding after caching the CVB0 statistics, and notwithstanding a O(N) initial-

ization step. However, being a batch algorithm, it fails on conditions 4 – 6. This is because

it stores variational parameters γ for every word in every document, and these are updated

one at a time, with the updates being initially confounded by the original random values of
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the other γ’s. Fortunately, the remaining conditions 4 – 6 (as well as 3) are key properties

of stochastic optimization methods.

In this chapter, we show how to gain all of these properties in a single algorithm, stochastic

CVB0 (SCVB0), which performs stochastic variational inference in the collapsed represen-

tation of LDA. The proposed algorithm is inspired by the ideas of both stochastic VB and

online EM. The algorithm can also be understood both as a Robbins-Monro SA algorithm

and as an online EM algorithm, and we will make use of these connections to demonstrate

the convergence of the algorithm. For reference, the set of notation used to describe the

SCVB0 algorithm is provided in Table 4.2.

4.2.1 Estimating the CVB0 Update

Before building our new stochastic algorithm, let us pause to consider the anatomy of typical

stochastic algorithms for machine learning. These techniques begin with a batch-mode al-

gorithm, and modify it to estimate the update which the batch algorithm would take, based

on subsets of the data, in order to free the update from dependence on the full data set. For

example, stochastic gradient descent estimates the gradient of the objective function based

on one or more data points, and then takes a step in the direction of minus the estimated

gradient.

We will take this approach to make a stochastic version of the CVB0 algorithm. Specifically,

we would like to be able to estimate the CVB0 update from subsets of the data. Recall the

form of the CVB0 update from Equation 4.28:

γidk :∝ (NΘ¬id
dk + αk)

NΦ¬id
widk

+ βwid

NZ¬id
k +

∑

w βw
.
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We can see that the CVB0 statistics NZ , NΘ and NΦ, terms which are dependent on

the entire dataset, are what is needed to perform a CVB0 update. Thus, they are good

candidates for being estimated stochastically based only on the subset of tokens we have

observed. They are also sufficient to recover a Rao-Blackwellized estimate of the topics, as

in Griffiths & Steyvers (2004) and Teh et al. (2007a). An algorithm which stochastically

estimates the CVB0 statistics will thereby obtain the desired properties 5 and 6. This follows

from being unencumbered of a reliance on the full dataset, and specifically on the initial

random values for the γ’s associated with tokens which we may not even have examined yet.

If the algorithm does not maintain the γ’s, it will also gain property 4, and so it will have

all the properties which we have identified as necessary for scalability. In any case, it would

not make sense to maintain the γ’s when using stochastic estimates of the CVB0 statistics,

as the stochastic estimates would not match the values implied by the γ’s.

This strategy of performing stochastic estimation of the CVB0 statistics, in order to perform

a CVB0 update, is reminiscent of the online EM algorithm. That algorithm also estimates

a set of statistics, namely the expected sufficient statistics of the E-step of EM, in order to

perform an M-step update. We place this approach in the context of the other stochastic

algorithms in Table 4.3.

4.2.2 Estimating the CVB0 Statistics

As we have seen, in order to estimate the CVB0 update based on a subset of the data, the

task is to estimate the CVB0 statistics. Following Bottou (1998), these estimates should be

unbiased. Specifically, if we use some sampling distribution f(x) to select a subset of the

data x, and then estimate a statistic s of the full dataset (such as a CVB0 statistic or the

gradient) via an estimator H(x), then we desire that Ef(x)[H(x)] = s.
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K Number of topics
D Number of documents
C Number of words in corpus
W Size of dictionary
Cd Number of words in document d

z
(d)
i Topic for (i, d), the ith word of the dth document

w
(d)
i Dictionary index for word (i, d)

θ(d) Distribution over topics for document d, 1×K
α Dirichlet prior parameters for θ, 1×K
Φ(k) Distribution over words for topic k, W × 1
β Dirichlet prior parameters for Φ, W × 1
γid Variational distribution for word (i, d), 1×K
NΘ Expected topic counts per document, D ×K
NΦ Expected topic counts per word, W ×K
NZ Expected topic counts overall, 1×K
Y(id) Estimate of NΦ based only on word (i, d), W ×K
M Minibatch, a set of documents

N̂Φ Estimate of NΦ from current minibatch, W ×K

N̂Z Estimate of NZ from current minibatch, 1×K
ρΘt Step size for NΘ at timestep t
ρΦt Step size for NΦ and NZ at timestep t
wad Dictionary index for ath distinct word of d
mad Count of ath distinct word of d
γad Variational distribution for ath distinct word of d, 1×K

Table 4.2: Summary of notation for the SCVB0 algorithm.

Algorithm Stochastically Estimated Update Term
Robbins-Monro SA Value of the target function
SGD Gradient of the target function
Stochastic Variational Inference Natural gradient of the target function
Online EM E-step sufficient statistics
SCVB0 CVB0 statistics

Table 4.3: The terms of the corresponding deterministic update equations that each stochas-
tic algorithm estimates.
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In the context of our algorithm, suppose we have seen a token w
(d)
i , and its associated γid.

The information this gives us about the statistics depends on how the token was drawn. If

the token was drawn uniformly at random from all of the tokens in the corpus, then

E[Cγid] = NZ , (4.40)

where C is the number of words in the corpus, and the expectation is with respect to the

sampling distribution. Therefore, we can use Cγid as a stochastic estimate of NZ . Similarly,

for the same sampling procedure, to estimate the word-topic expected counts matrix we have

E[CY(id)] = NΦ , (4.41)

where Y(id) is a W × K matrix with the w
(d)
i th row being γid and with zeros in the other

entries. Now if the token was drawn uniformly from the tokens in document d,

E[Cdγid] = NΘ
d , (4.42)

where Cd is the length of document d.8 So with these sampling procedures, we can use Cγid,

CY(id) and Cdγid as stochastic estimates of NZ , NΦ and NΘ
d , respectively.

4.2.3 The SCVB0 Algorithm

Since we may not maintain the γ’s, we cannot perform these sampling procedures directly.

However, with a current guess at the CVB0 statistics we can update a token’s variational

distribution using the CVB0 update equation, and observe its new value. We can then use

this γid to improve our estimate of the CVB0 statistics. This suggests an iterative procedure,

8Other sampling schemes are possible, which would lead to different algorithms. For example, one could
sample from the set of tokens with word index w to estimate NΦ

w. Our choice leads to an algorithm that is
practical in the online setting.
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alternating between a “maximization” step, approximately optimizing the evidence lower

bound with respect to a particular γid via CVB0, and an “expectation” step, where we

update the expected count statistics to take into account the new γid. As the algorithm

continues, the γid’s we observe will change, so we cannot simply average them. Instead, we

can follow the strategy of Cappé & Moulines (2009) in the online EM algorithm and perform

an online average of these statistics as in Equation 4.39.

More specifically, in the proposed SCVB0 algorithm we process the corpus one token at a

time, examining the tokens from each document in turn. For each token, we first compute

a new γid. We do not maintain the γ’s, but compute (updated versions of) them as needed

via CVB0. This means we must make a small additional approximation in that we cannot

subtract current values of γid in Equation 4.28. With large corpora and large documents

this difference is negligible. The update becomes

γidk :∝ (NΘ
dk + αk)

NΦ

w
(d)
i k

+ β
w

(d)
i

NZ
k +

∑

w βw
. (4.43)

We then use this to re-estimate our CVB0 statistics. While we are processing randomly

ordered tokens i of document d, we are effectively drawing random tokens from it, so we can

stochastically estimate NΘ
d by Cdγid. We update NΘ

d with an online average of the current

value and its estimated value,

NΘ
d := (1− ρΘt )N

Θ
d + ρΘt Cdγid , (4.44)

where ρΘt is a step size. We use one sequence of step-sizes ρΦ for NΦ and NZ , and another

sequence ρΘ for NΘ. Although we process one document at a time, we eventually process

all of the words in the corpus. So for the purposes of updating NΦ and NZ , in the long-run

the algorithm is effectively drawing tokens from the entire corpus. As per Section 4.2.2, we

can estimate NΦ after observing one γid as CY(id), and we can estimate NZ as Cγid. Then,
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the updates are once again a convex combination of current and estimated values for the

statistics,

NΦ := (1− ρΦt )N
Φ + ρΦt CY

(id) (4.45)

NZ := (1− ρΦt )N
Z + ρΦt Cγid . (4.46)

The basic SCVB0 algorithm consists of iterating Equations 4.43 – 4.46 over all of the tokens

in all of the documents, with the order of the documents and of the words in each document

assumed to be shuffled. The γ’s are not maintained, and the NΘ’s are discarded after a

document is processed, so the memory requirements do not depend on the size of the corpus.

4.2.4 Extra Refinements

In practice, it is too expensive to update the entire NΦ after every token, as this requires

copying a W ×K matrix. This suggests the use of minibatches over tokens, to reduce the

frequency at which this update is performed. The estimated NΦ after observing a minibatch

M is the average of the per-token estimates, and similarly for NZ , leading to the updates:

NΦ := (1− ρΦt )N
Φ + ρΦt N̂

Φ (4.47)

NZ := (1− ρΦt )N
Z + ρΦt N̂

Z (4.48)

where N̂Φ = C
|M |

∑

id∈M Y(id) and N̂Z = C
|M |

∑

id∈M γid. Minibatch updates are also possible

for the NΘ’s, however we chose to avoid this in order to more rapidly update these parame-

ters. Depending on the lengths of the documents and the number of topics, it may also be

beneficial to perform a small number of extra passes to learn the document statistics before

updating the topic statistics. We found empirically that one such burn-in pass was sufficient

in all of the datasets we tried in our experiments. Pseudo-code for the algorithm, which we
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Algorithm 7 Stochastic CVB0

• Randomly initialize NΦ, NΘ; NZ :=
∑

w NΦ
w

• For each minibatch M

– N̂Φ := 0; N̂Z := 0
– For each document d in M

• For zero or more “burn-in” passes

– For each token i

• Update γid (Equation 4.43)
• Update NΘ

d (Equation 4.44)

• For each token i

– Update γid (Equation 4.43)
– Update NΘ

d (Equation 4.44)

– N̂Φ

w
(d)
i

:= N̂Φ

w
(d)
i

+ C
|M |
γid

– N̂Z := N̂Z + C
|M |
γid

– Update NΦ (Equation 4.47)
– Update NZ (Equation 4.48)

refer to as “Stochastic CVB0” (SCVB0) is given in Algorithm 7. It should be noted that

the algorithm is relatively straightforward to implement, as it consists of just a few update

rules involving simple arithmetic operations.

An optional additional optimization of the above algorithm is to only perform one update for

each distinct token in each document, and scale the update by the number of copies in the

document. This process, often called “clumping,” is standard practice for fast implementa-

tions of all LDA inference algorithms (e.g. see Teh et al. (2007a) and Jonathan Chang’s R

package for LDA)9, though it is only exact for uncollapsed algorithms, where the z
(d)
i ’s are

D-separated by θ(d).

9http://cran.r-project.org/web/packages/lda/
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Suppose we have observed wad, which occurs mad times in document d. Plugging Equation

4.44 into itselfmad times and noticing that all but one of the resulting terms form a geometric

series, we find that performing mad updates for NΘ
d while holding γad fixed is equivalent to

NΘ
d := (1− ρΘt )

madNΘ
d + Cdγad(1− (1− ρΘt )

mad) . (4.49)

4.3 Experiments

This section describes an experimental analysis of the proposed SCVB0 algorithm, with

direct comparison to the stochastic variational Bayes algorithm of Hoffman et al., hereafter

referred to as SVB. As well as performing an analysis on several large-scale problems, we also

investigate the effectiveness of the stochastic LDA inference algorithms in terms of learning

topics in near real-time on small corpora.

4.3.1 Large-Scale Experiments

We studied the performance of the algorithms on three large data sets. The corpora are:

• PubMed Central : A corpus of full-text scientific articles from the open-access PubMed

Central database of scientific literature in the biomedical and life sciences.10 After

processing to remove stopwords and words occurring less than 300 times, the corpus

contained approximated 320M tokens across 165,000 articles, with a vocabulary size of

around 38,500 words.

• New York Times : A corpus containing 1.8 million articles from the New York Times,

published between 1987 and 2007. After removing stopwords and words occurring less

10http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/
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than 500 times, the corpus had a dictionary of about 50,000 words and contained 475M

distinct tokens.

• Wikipedia: This collection contains 4.6 million articles from the online encyclopedia

Wikipedia. We used the dictionary of 7,700 words extracted by Hoffman et al. for

their experiments on an earlier extracted Wikipedia corpus. There were 811M tokens

in the corpus.

Comparison to SVB

We explored predictive performance versus wall-clock time for both SCVB0 and SVB. To

compare the algorithms fairly, we implemented both of them in the fast high-level language

Julia (Bezanson et al. , 2012). Our implementation of SVB closely follows the python imple-

mentation provided by Hoffman, and has several optimizations not mentioned in the original

paper including handling the latent topic assignments z implicitly, “clumping” of like to-

kens, and sparse updates of the topic matrix. The SCVB0 algorithm was implemented as it

is written in Algorithm 7, using the clumping optimization but with no additional algorith-

mic optimizations. Specifically, neither implementation used the complicated optimizations

taking advantage of sparsity that are exploited by the Vowpal Wabbit implementation of

SVB11 and in the variant of SVB proposed by Mimno et al. (2012). Instead, our imple-

mentations represent a “best-effort” attempt to implement each algorithm efficiently yet

following the spirit of the original pseudo-code.

In all experiments, each algorithm was trained with 200 topics, using minibatches of size 100.

We used a step-size schedule of s
(τ+t)κ

for document iteration t, with s = 10, τ = 1000 and

κ = 0.9. For SCVB0, the document parameters were updated using the same schedule with s

= 1, τ = 10 and κ = 0.9, with t referring to the word iteration of the current document. We

11https://github.com/JohnLangford/vowpal_wabbit/wiki
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used LDA hyper-parameters α = 0.1 and β = 0.01 for SCVB0. For SVB, we tried both these

same hyperparameter values as well as shifting by 0.5 as recommended by Asuncion et al.

(2009) to compensate for the implicit bias in how uncollapsed VB treats hyper-parameters.

We used a single pass to learn document parameters for SCVB0, and tried both a single pass

and five passes for SVB.

For each experiment we held out 10,000 documents and trained on the remaining docu-

ments. We split each test document in half, estimated document parameters on one half and

computed the log-probability of the remaining half of the document. Figures 4.3 through

4.5 show held-out log-likelihood versus wall-clock time for each algorithm. In the figures,

SVB-Bx-Oy corresponds to running SVB with x “burn-in” passes per document and with

hyper-parameters offset from α = 0.1 and β = 0.01 by y.

For the PubMed Central data, we found that all algorithms perform similarly after about

an hour, but prior to that SCVB0 is better, indicating that SCVB0 makes better use of its

time. All algorithms perform similarly per-iteration (see Figure 4.6), but SCVB0 is able to

benefit by processing more documents in the same amount of time. The per-iteration plots

for the other datasets were similar.

Our results find that SCVB0 shows a more substantial benefit when employed on larger

datasets. For both the New York Times and Wikipedia datasets (which are each significantly

larger than the PubMed Central dataset in terms of the number of documents), SCVB0

converged to a better solution than SVB for any of its parameter settings. Furthermore,

SCVB0 outperforms SVB throughout the run. The superior performance of SCVB0 over

the uncollapsed SVB method is consistent with the fact that the variational bound for the

collapsed representation is strictly better than the bound for the uncollapsed representation

of LDA (Teh et al. , 2007a).
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Comparison to Batch VB

We also compared SCVB0 to the batch VB algorithm on the Wikipedia dataset (Figure

4.7); other standard batch algorithms such as Gibbs sampling tend to perform similarly

to VB at convergence, particularly if the hyper-parameters are learned for each algorithm

(Asuncion et al. , 2009). Note that it was not possible to perform even a single iteration

of batch VB on the full dataset in the allotted time of twelve hours. Following Hoffman

et al., we show instead the performance of the algorithms on subsets of the data. This

facilitates faster convergence, but reduces the quality of the final solution as the algorithms

are consequently unable to exploit all of the data. In contrast, the stochastic algorithms are

able to make use of large datasets while still converging quickly.

4.3.2 Small-Scale Experiments

Stochastic algorithms for LDA have previously only been used on large corpora, however they

have the potential to be useful for finding topics very quickly on small corpora as well. The

ability to learn interpretable topics in a matter of seconds is very beneficial for exploratory

data analysis (EDA) applications, with a human in the loop. Near real-time topic modeling

opens the way for the use of topic models in interactive software tools for document analysis.

We investigated the performance of the stochastic algorithms in this small-scale scenario

using a corpus of 1740 scientific articles from years 1987 – 1999 of the machine learning

conference NIPS. We ran the two stochastic inference algorithms for five seconds each, using

the parameter settings from the previous experiments but with 20 topics. Each algorithm

was run ten times. In the five seconds of training, SCVB0 was typically able to examine

3300 documents, while SVB was typically able to examine around 600 documents.
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With the EDA application in mind, we performed a human-subject experiment in the vein

of the experiments proposed by Chang et al. (2009). The sets of topics returned by each

run were randomly assigned across seven human subjects. The participants were all ma-

chine learning researchers with technical expertise in the subjects of interest to the NIPS

community. The subjects did not know which algorithms generated which runs. The top

ten words of the topics in each run were shown to the subjects, who were given the following

instructions:

Here are 20 collections of related words. Some words may not seem to “be-

long” with the other words. Count the total number of words in each collection

that don’t “belong.”

The results provide an estimate of the number of “errors” that a topic model inference

algorithm makes, relative to human judgement. It was found that the SCVB0 algorithm had

0.76 errors per topic on average, with a standard deviation of 1.1, while SVB had 1.6 errors

per topic on average, with standard deviation 1.2. A one-sided two sample t-test rejected the

hypothesis that the means of the errors per topic were equal, with significance level α = 0.05.

Randomly selected example topics are shown in Table 4.4. As can be seen from the table,

both algorithms successfully learned coherent topics in this relatively short time frame.

We also performed a similar experiment on the Amazon Mechanical Turk crowd-sourcing

service using the New York Times corpus. We ran the two stochastic inference algorithms

for 60 seconds each using the same parameter settings as above but with 50 topics. Each

user was presented with 20 random topics from each algorithm. Again, the subjects did not

know which algorithms generated each set of topics. We included two easy questions with

obvious answers and removed results from users who did not answer them correctly. This

step eliminated 4 users, and the analysis was performed with the data from the remaining

52 participants.
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SCVB0 SVB
receptor data learning model results visual
protein classification function set learning data

secondary vector network data distribution activity
proteins class neural training information saliency

transducer classifier networks learning map noise
binding set time error activity similarity

concentration algorithm order parameters time model
odor feature error markov figure neural

morphology space dynamics estimate networks representations
junction vectors point speech state functions

Table 4.4: Randomly selected example topics after five seconds running time on the NIPS
corpus.

Comparing the number of “errors” for SCVB0 to SVB for each user, we find that SCVB0

had 2.1 errors per topic on average, with standard deviation 1.0, and SVB had 4.4 errors

on average with standard deviation 2.4. A paired t-test finds these differences significant for

the sampled population at the α = .05 level, with p-value < .001. Example topics selected

uniformly at random from a randomly selected run of each algorithm are shown in Table

4.5, illustrating the relative difference in the coherence of the topics recovered by the two

methods in this time period.

SCVB0 SVB
county station league president year mr
district company goals midshipmen cantatas company
village railway years open edward mep
north business club forrester computing husbands
river services clubs archives main net
area market season iraq years state
east line played left area builder
town industry cup back withdraw offense
lake stations career times households obscure
west owned team saving brain advocacy

Table 4.5: Randomly selected example topics after sixty seconds running time on the NYT
corpus.
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4.4 How Good is the CVB0 Approximation?

Despite the approximations made, CVB0 has been shown to work well empirically (Asuncion et al. ,

2009), and we have seen in Section 4.2.2 that its stochastic extension SCVB0 is also very

effective in practice. The next three sections of this chapter aim to increase our understand-

ing of why both CVB0 and SCVB0 perform well from a theoretical perspective. First, we

consider the approximation to the mean field update made by CVB0, and give an argument

which suggests that the approximation is reasonable in practice. In Section 4.5, we explore

the connection between CVB0 and a MAP estimation algorithm, also due to Asuncion et

al., and provide an alternative derivation for SCVB0 as an online EM algorithm for MAP.

We then use this alternative interpretation of the algorithm to prove convergence in Section

4.6.

4.4.1 An Explanation for the Success of CVB0

CVB0 makes several approximations to the terms in the collapsed variational Bayes up-

date. Specifically, Teh et al. invoke the central limit theorem (CLT) to justify a Gaussian

approximation, which is followed by a second-order Taylor series expansion approximation.

Asuncion et al. further approximate the terms in the update by reducing the second order

Taylor expansion to a first-order expansion. However, the first-order terms are zero, so this

is equivalent to performing no expansion at all. Given that three successive approximations

have been made, it is not immediately obvious how accurate the CVB0 update approximation

should be.

Here, we give an argument suggesting that the CVB0 update is very accurate with sufficiently

many words. Instead of using the CLT, a law of large numbers-style strategy is used. Roughly

speaking, we note that the variance of the count terms involved in the update grows more
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Figure 4.8: Mean and variance of CVB count variables, with respect to the mean field
distribution, versus the amount of data. Here, for each word we randomly draw its probability
of success γi ∼ Beta(0.1, 0.1) (the number of which is shown on the X-axis), and calculate
the mean and variance of the number of successes (on the Y -axis) analytically. The variance
will always grow more slowly than the mean.

slowly than the mean of the counts as we observe more data (see Figure 4.8), leading to

a rapid decay of the probability that the count term is different from the mean by any

significant fraction. Thus, with enough data, these count variables are well approximated by

their mean, which is what is done by CVB0. More formally, we begin with a lemma, which

is a slight variant on the weak law of large numbers, and has a similar proof.

Lemma 4.4.1. Let z1, z2, . . . be an infinite sequence of independent Bernoulli random vari-

ables with γ1, γ2, . . . being their success probabilities. Let the random variable ni be the number

of successes in z up to zi. Then for any ǫ > 0,

lim
i→∞

Pr(|ni − E[ni]| ≥ ǫE[ni]) = 0 . (4.50)
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Proof. First, by linearity of expectation, and by independence, the expected value and the

variance of ni are

E[ni] =
∑

i

γi

Var[ni] =
∑

i

γi(1− γi) .

Note that each term in the variance is smaller than the corresponding term in the expectation,

so the variance grows more slowly in i than the expectation does. For ǫ > 0, ǫE[ni] may

potentially have the reverse behavior and grow more slowly than the variance, for small

enough ǫ. Nevertheless, ǫE[ni] will increase with i at most linearly worse than Var[ni], and

so (ǫE[ni])
2 will increase more quickly than Var[ni], for sufficiently large ni. Therefore,

lim
i→∞

Var[ni]

(ǫE[ni])2
= 0 (4.51)

for any ǫ > 0. By Chebyshev’s inequality, we have

Pr(|ni − E[ni]| ≥ ǫE[ni]) ≤
Var[ni]

(ǫE[ni])2
. (4.52)

Finally, taking limits on both sides, we have

lim
i→∞

Pr(|ni − E[ni]| ≥ ǫE[ni]) ≤ lim
i→∞

Var[ni]

(ǫE[ni])2
= 0 . (4.53)

In Figure 4.9, we illustrate the Chebyshev bound in Equation 4.52, which is the key to the

lemma. The Y -axis bounds the error introduced by assuming that the count variable is equal

to its mean, relative to the size of the mean. The lemma states that the error will become
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Figure 4.9: A simulation-based exploration of the Chebyshev bound in Equation 4.52. For
each word, we draw its probability of being included in the count γi ∼ Beta(0.1, 0.1). On the
Y -axis, we report the bound on the probability of the count being more than 10% different
from the expected count, computed analytically.

arbitrarily small (relative to the mean) as the X-axis approaches infinity, which we can see

in the figure as the curve approaches the asymptote at zero.

This lemma applies to the count terms in the exact CVB update, n
(d)−(d,i)
k , n

(w
(d)
i

)−(d,i)

k and

n
−(d,i)
k . These count variables are each a sum of independent Bernoulli’s, due to the mean field

assumption. In the context of CVB0, this lemma says that for sufficiently many words, the

variance under the mean field distribution of each of the count variables becomes arbitrarily

small, relative to the magnitude of the count. E.g., n
(d)−(d,i)
k will be within ǫ percent of the

CVB0 statistic NΘ¬id
dk , for any ǫ > 0.

Thus, with sufficiently many words, most of the probability mass for the count variables will

be very close to the mean. The expectations needed for the update, e.g. Eq¬id
[log(n

(d)−(d,i)
k +

αk)], can then be well approximated by taking the expectation with respect to a delta

distribution δµ at the mean µ, which is equal to the corresponding CVB0 statistic.
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For example, in the case of document-level parameters,

Eq¬id
[log(n

(d)−(d,i)
k + αk)] ≈ Eδ

NΘ¬id
dk

[log(n
(d)−(d,i)
k + αk)] . (4.54)

Under the delta distribution δNΘ¬id
dk

, with probability one, n
(d)−(d,i)
k = NΘ¬id

dk , and so the

CVB0 approximation is exact:

Eδ
NΘ¬id
dk

[log(n
(d)−(d,i)
k + αk)] = log(NΘ¬id

dk + αk)] = log(Eδ
NΘ¬id
dk

[n
(d)−(d,i)
k ] + αk) . (4.55)

So for sufficiently large values of the count terms,

Eq¬id
[log(n

(d)−(d,i)
k + αk)] ≈ log(NΘ¬id

dk + αk)] = log(Eδ
NΘ¬id
dk

[n
(d)−(d,i)
k ] + αk) , (4.56)

which is the approximation made by CVB0. We can therefore expect the CVB0 approxima-

tion of the mean field update to be very accurate when there are sufficiently many words

involved in the computation of each term, i.e. when we have many documents and the doc-

uments contain many words. It should also be noted that the argument also applies for Teh

et al.’s second order approximation, because the second order term in Equation 4.25 will

drop out in the limit by Equation 4.51.

To corroborate these arguments, we also explored the accuracy of the approximation em-

pirically. We generated a synthetic variational distribution q by drawing a sequence of γ

variables Beta(0.1, 0.1). Varying the number of words i, we computed CVB0 and CVB ap-

proximations to Eq[log(ni+α)], where we set α = 0.01 (a reasonable value for LDA). Finally,

we computed Monte Carlo estimates of Eq[log(ni + α)] by simulating 10,000 draws from q,

and recorded the L1 error of the CVB and CVB0 from the Monte Carlo estimates of the true

value. The experiment was repeated 1,000 times, and we averaged over the repeats. The

results of the experiment are shown in Figure 4.10.
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Figure 4.10: Measuring the error of CVB0. Left: A semi-log plot, with a logarithmic scale
on the X-axis. Right: The same plot, on a log-log scale.

We found that both CVB0 and CVB were very accurate when given more than around ten

words. When few words were available, CVB0 was surprisingly more accurate than CVB.

We hypothesize that this is because the central limit theorem does not yet apply, so approxi-

mating the distribution by a delta function (CVB0) is more accurate than approximating the

distribution by a Gaussian (CVB). When the number of words increases the CLT becomes

more applicable, in which case CVB does better than CVB0. Nevertheless, by this time

both methods are already very accurate, and we need to use a log-log plot to observe this

difference clearly.

4.5 An Alternative Perspective: MAP Estimation

In the SCVB0 algorithm, because the γ’s are not maintained we must approximate Equa-

tion 4.28 with Equation 4.43, neglecting the subtraction of the previous value of γid from

the CVB0 statistics when updating γid. This approximation results in an algorithm which

is equivalent to an EM algorithm for MAP estimation which operates on an unnormalized

parameterization of LDA (Asuncion et al. , 2009). Therefore, the approximate collapsed

variational updates of SCVB0 can also be understood as MAP estimation updates. Us-
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ing this interpretation, we will give an alternative derivation of SCVB0 as a version of

Cappé & Moulines (2009)’s online EM algorithm as applied to MAP estimation for LDA,

thus providing an alternative perspective on the algorithm.

4.5.1 CVB0 and MAP Estimation

It can be shown that iterating the following batch algorithm update optimizes an EM lower

bound on the posterior probability of the parameters (Asuncion et al. , 2009):

γ̄idk :∝
N̄Φ

w
(d)
i k

+ β − 1

N̄Z
k +W (β − 1)

(N̄Θ
dk + α− 1) , (4.57)

where γ̄idk , Pr(z
(d)
i = k|N̄Φ, N̄Z , N̄Θ, w

(d)
i ) are EM “responsibilities,” and the other vari-

ables, which we will refer to as EM statistics, are aggregate statistics computed from sums

of these responsibilities,

N̄Z
k ,

∑

id

γ̄idk N̄Θ
dk ,

∑

i

γ̄idk N̄Φ
wk ,

∑

id:w
(d)
i =w

γ̄idk . (4.58)

Upon completion of the algorithm, MAP estimates of the parameters can be recovered by

Φ̂(k)
w =

N̄Φ
wk + β − 1

N̄Z
k +W (β − 1)

θ̂
(d)
k =

N̄Θ
dk + α− 1

Cd +Kα−K
, (4.59)

where Cd is the length of document d. We can interpret N̄Φ and N̄Θ as unnormalized

representations of Φ and Θ, so we will refer to this algorithm as unnormalized MAP LDA

(MAP LDA U). A derivation for this algorithm is given in Appendix B. Note that if we iden-

tify the EM statistics and responsibilities with CVB0 statistics and variational distributions,

Equation 4.57 is identical to the SCVB0 update in Equation 4.43, but with the hyper-

parameters adjusted by one. We can think of this as the batch version of SCVB0. After
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adjusting the hyper-parameters, the only difference from the batch CVB0 update (Equation

4.28) is that the previous value of the current parameter is not subtracted from the counts.

4.5.2 Online EM for MAP Estimation

We now use a slight generalization of the online EM algorithm (Cappé & Moulines, 2009)

which we outlined in Section 4.1.4 to derive a stochastic version of this unnormalized MAP

LDA algorithm. Online EM performs maximum likelihood estimation by alternating between

updating an online estimate of the expected sufficient statistics of the complete-data log-

likelihood, and optimizing parameter estimates via the usual EM M-step. We consider

this algorithm as applied to the unnormalized parameterization of LDA above, where the

parameters of interest are estimates ˆ̄NΦ, ˆ̄NΘ, ˆ̄NZ of the EM statistics, which are related

to Θ and Φ via Equation 4.59. We also adapt the online EM algorithm to perform MAP

estimation instead of finding the MLE, and to operate with stochasticity at the word-level as

well as at the document-level. The resulting algorithm is procedurally identical to SCVB0,

which gives us an alternative perspective on our algorithm.

Recall that online EM assumes that the complete data likelihood is in the exponential family,

and that the stochastic E-step operates on estimates of its expected sufficient statistics. The

first step of deriving the online EM algorithm is to write the complete data likelihood of

MAP LDA U in exponential family form. Making use of the derivations in Appendix B, we

find that the complete data likelihood for a word w
(d)
i and its topic assignment z

(d)
i is

exp
(

∑

wk

[w
(d)
i = w][z

(d)
i = k] log

(

ˆ̄NΦ
wk + β − 1

ˆ̄NZ
k +W (β − 1)

)

+
∑

k

[z
(d)
i = k] log

(

ˆ̄NΘ
dk + α− 1

Cd +K(α− 1)

)

)

∝ exp
(

∑

wk

[w
(d)
i = w][z

(d)
i = k] log( ˆ̄NΦ

wk + β − 1) +
∑

k

[z
(d)
i = k] log( ˆ̄NΘ

dk + α− 1)

−
∑

k

[z
(d)
i = k] log( ˆ̄NZ

k +W (β − 1))
)

, (4.60)
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where [a = b] is a Kronecker delta function, equal to one if a = b and zero otherwise, Cd is the

length of document d and ˆ̄N variables denote current estimates, not necessarily synchronized

with γ̄. There is a direct mapping between the ˆ̄N’s and the parameters Φ, Θ, so we should

interpret them here as parameters rather than as the EM statistics themselves – although we

will see below that they will soon be assigned to be equal to the EM statistics, which justifies

this notation. Now that we have written the equation in exponential family form, we can

see that the exponential family sufficient statistics are the delta functions (and products of

delta functions),

S(w)(w
(d)
i , z

(d)
i ) = ([w

(d)
i = 1][z

(d)
i = 1], . . . , [w

(d)
i = W ][z

(d)
i = K],

[z
(d)
i = 1], . . . , [z

(d)
i = K], [z

(d)
i = 1], . . . , [z

(d)
i = K])⊺ , (4.61)

and the expected sufficient statistics, given current parameter estimates, are appropriate

entries of the EM responsibilities vector γ̄,

s̄(w)(w
(d)
i , z

(d)
i ) = ([w

(d)
i = 1]γ̄id1, . . . , [w

(d)
i = W ]γ̄idK , γ̄id1, . . . , γ̄idK , γ̄id1, . . . , γ̄idK)

⊺ .

(4.62)

Cappe and Moulines normalize the likelihood, and the sufficient statistics, by the number of

data points n, so that n need not be specified in advance. However, since we are performing

MAP estimation, unlike the MLE algorithm described by Cappe and Moulines, we need

to modify the algorithm to estimate the unnormalized expected sufficient statistics for the

entire corpus in order to maintain the correct scale relative to the prior. This can be achieved

by scaling the per-word expected sufficient statistics by appropriate constants to match the

size of the corpus (or document, for per-document statistics)

s̄′(w)(w
(d)
i , z

(d)
i ) = (C[w

(d)
i = 1]γ̄id1, . . . , C[w

(d)
i = W ]γ̄idK ,

Cdγ̄id1, . . . , Cdγ̄idK , Cγ̄id1, . . . , Cγ̄idK)
⊺ . (4.63)
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The average of these corpus-wide expected sufficient statistics, computed across all tokens

in the corpus, is equal to the EM statistics. Collecting them into appropriate matrices, we

can write the the expected sufficient statistics as

N̄ = (N̄Θ, N̄Φ, N̄Z) , (4.64)

which are precisely the EM statistics of Equation 4.58. In fact, optimizing the EM objective

function with respect to the parameters, we find that the M-step assigns the estimated EM

statistics ˆ̄N to be consistent with the EM statistics N̄ computed in the E-step (cf. Appendix

B),

ˆ̄NΘ := N̄Θ ˆ̄NΦ := N̄Φ ˆ̄NZ := N̄Z . (4.65)

We therefore do not need to store parameter estimates ˆ̄N separately from expected suffi-

cient statistics N̄, as M-step updated parameter estimates are always equal to the expected

sufficient statistics from the E-step. Inserting Equation 4.63 into the online EM update

(Equation 4.39) and using separate step size schedules for document statistics and topic

statistics, the online E-step after processing token w
(d)
i is given by

N̄Z := (1− ρΦt )N̄
Z + ρΦt Cγ̄id (4.66)

N̄Φ
w := (1− ρΦt )N̄

Φ + ρΦt Cγ̄id[w
(d)
i = w] , ∀w (4.67)

N̄Θ
d := (1− ρΘt )N̄

Θ
d + ρΘt Cdγ̄id , (4.68)

with γ̄id computed via Equation 4.57. The online EM algorithm we have just derived is pro-

cedurally identical to SCVB0 with minibatches of size one, identifying EM responsibilities

and statistics with SCVB0 responsibilities and statistics, and with the hyper-parameters ad-

justed by one. Under this interpretation, an alternative name for SCVB0 might be stochastic

unnormalized MAP LDA (S MAP LDA U).
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4.5.3 Discussion Regarding the MAP and VB Interpretations of

SCVB0

We have shown that SCVB0 can be interpreted both as performing collapsed variational

Bayes, and as performing MAP estimation. The MAP interpretation of the algorithm im-

plicitly uses adjusted values of the hyperparameters, so this does not contradict the original

CVB interpretation, but suggests that there is a close relationship between the optimal

solutions of the CVB and MAP estimation problems. Furthermore, the variational Bayes

interpretation is particularly useful when performing inference on the z’s of unseen held-out

documents, as it allows us to reason over their full posterior.12

Interpreting SCVB0 as a MAP estimation algorithm may also help to explain the improve-

ment in predictive performance relative to SVB. The MAP estimate approximates the poste-

rior distribution by a delta function at its mode, while mean field variational Bayes approx-

imates the posterior by a factorized distribution. As the amount of training data increases,

the posterior distribution should become more peaked around the mode, i.e. more similar to

the delta function at the MAP. The factorized distribution of mean field, on the other hand,

may not be able to accurately represent the posterior distribution in the large data regime.

We conjecture that in many cases, given enough data it may be preferable to perform MAP

estimation instead of variational inference. This observation seems particularly relevant in

the case where stochastic algorithms are necessary due to the large amount of data available.

12This was pointed out by Dave Blei (personal communication). It is the same insight that motivates the
original formulation of LDA with the Dirichlet prior over document-level parameters Θ, and the original
variational EM approach, in Blei et al. (2003), which performs VB inference overΘ and maximum likelihood
estimation over Φ.
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4.6 Convergence Analysis

The MAP estimation interpretation of SCVB0 is the interpretation that is most amenable to

convergence analysis, since MAP LDA U exactly optimizes a well-defined objective function,

while CVB0 has approximate updates. Under the MAP estimation interpretation of SCVB0,

it can be shown that the algorithm converges to a stationary point of the MAP objective

function, computed as if the prior were modified by increasing the hyper-parameters by one.

The proof strategy broadly follows that of Cappe and Moulines. First, the algorithm is

written as a Robbins and Monro stochastic approximation (SA) algorithm. Then, it is

shown that there exists a Lyapunov function satisfying the conditions of Andrieu et al.

(2005), which are sufficient to establish convergence for an SA algorithm. In the context of

an SA algorithm, a Lyapunov function can be understood as an “objective function” which,

in the absence of stochastic noise, the SA would improve monotonically if small enough steps

were taken in the direction of the updates.

We now state the theorem and its proof more formally. In this section, the notation will

follow the MAP interpretation of the algorithm (summarized in Table 4.6, along with new

notation introduced for the convergence analysis). We have the following theorem:

Theorem 4.6.1. For an appropriate sequence of step sizes satisfying

• 0 < ρΦt ≤ 1 ∀t, 0 < ρΘt ≤ 1 ∀t,

•
∑∞

t=1 ρ
Φ
t =∞, limt→∞ ρΦt = 0,

•
∑∞

t=1 ρ
Θ
t =∞, limt→∞ ρΘt = 0,

in the limit as the number of iterations t approaches infinity SCVB0 converges to a stationary

point of the MAP objective function.
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γ̄id EM responsibility vector for word (i, d), 1×K
N̄Θ EM statistic: responsibility counts per (document, topic) pair, D ×K
N̄Φ EM statistic: responsibility counts per (word, topic) pair, W ×K
N̄Z EM statistic: responsibility counts per topic, 1×K
ˆ̄NΘ Current parameter estimate of N̄Θ, D ×K
ˆ̄NΦ Current parameter estimate of N̄Φ, W ×K
ˆ̄NZ Current parameter estimate of N̄Z, 1×K
ˆ̄N A parameter estimate of all EM statistics, tuple valued

ˆ̄N
(t)

Current parameter estimate of all EM statistics at step t, tuple valued
ˆ̄Nc A parameter estimate of EM statistic c (e.g. ˆ̄NΘ

d ), matrix valued

fc,w(
ˆ̄N) Updated value of ˆ̄Nc after MAP LDA U E and M steps at ˆ̄N with data w

w(t+1) Dictionary index for word examined by SCVB0 at step t + 1
γ̄(t+1) EM responsibility vector computed for word w(t+1), 1×K
Ȳ(t+1) Stochastic estimate of N̄Φ based on word w(t+1), W ×K

s̄c(w
(t+1), ˆ̄N) Stochastic estimate of fc,w(

ˆ̄N) based on w(t+1), matrix valued

ξ(t+1) Stochastic error made by s̄c(w
(t+1), ˆ̄N), matrix valued

Table 4.6: Summary of notation for the convergence analysis.

Proof. The first stage of the proof is to represent SCVB0 as a Robbins-Monro SA algorithm

which aims to find a stationary point of the MAP objective. We derive a deterministic algo-

rithm for MAP estimation which operates entirely on the EM statistics (which are equivalent

to the CVB0 statistics). We then show that SCVB0 is a stochastic approximation algorithm

for finding the roots of its update moves.

A deterministic algorithm for MAP estimation

Returning to the batch setting for the moment, let us consider the MAP LDA U algorithm

of Section 4.5.1. As usual for an EM algorithm (Neal & Hinton, 1998), this is a coordinate

ascent algorithm on the EM lower bound (see Appendix B). The coordinate ascent update

moves available to us are the CVB0-like update of Equation 4.57 to update the γ̄’s (the

E-step), and the synchronization of each entry of the ˆ̄N estimated EM statistics matrices

with the γ̄’s (the M-step, Equation 4.65).
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As a coordinate ascent method, we are free to select any ordering of the updates. We

previously considered an ordering of the updates where the ˆ̄N’s were synchronized with the

γ̄’s after every word, leading to an algorithm similar to CVB0. Instead, let us choose a

more typical EM update schedule which alternates between a full E-step, i.e. updating every

γ̄id without updating the estimated EM statistics ˆ̄N, and a full M-step, i.e synchronizing

ˆ̄N with the γ̄’s. We do not need to maintain the γ̄’s between iterations of this procedure

because they do not depend on each other given the estimated EM statistics. We can view

this version of MAP LDA U as operating on just the estimated EM statistics.

The updated value of the EM statistics, then, is a function of the previous value of these

statistics. We will now write the algorithm in terms of this function. For each EM statistic

c ∈ { ˆ̄NΘ

 , . . . ,
ˆ̄NΘ

D ,
ˆ̄NΦ, ˆ̄NZ}, let fc,w(

ˆ̄N) : S → Sc be a mapping from a current value of

the EM statistics ˆ̄N = ( ˆ̄NΘ

 , . . . ,
ˆ̄NΘ

D ,
ˆ̄NΦ, ˆ̄NZ) to the updated value of statistic ˆ̄Nc after

performing an E-step to estimate the γ̄’s, and then performing an M-step. Here, w is the

full corpus, S is the space of possible assignments for the EM statistics, and Sc is the space

of possible assignments for EM statistic c. By performing the mapping fc,w(
ˆ̄N) on all of the

EM statistics together, we take a complete step in the EM algorithm we have just described.

Casting SCVB0 as a Robbins-Monro SA Algorithm

We now switch to the stochastic case. Here, we will describe SCVB0 in terms of the deter-

ministic algorithm derived above, using the MAP interpretation of the algorithm. Let ˆ̄N
(t)

be the current EM statistics at word iteration t of the algorithm. Furthermore, at iteration

t+1, let γ̄(t+1) be the output of the MAP LDA U update (which is equivalent to the SCVB0

update) based on the latest randomly selected word w(t+1) and the current state ˆ̄N
(t)
. We

define s̄c(w
(t+1), ˆ̄N) to be SCVB0’s stochastic estimate of the updated statistic c based on

w(t+1), as per Equations 4.66 – 4.68, i.e.
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s̄ ˆ̄
NZ

(w(t+1), ˆ̄N) = Cγ̄(t+1) (4.69)

s̄ ˆ̄
NΦ

(w(t+1), ˆ̄N) = CȲ(t+1) (4.70)

s̄ ˆ̄
NΘ

d

(w(t+1), ˆ̄N) = Cdγ̄
(t+1) . (4.71)

The deterministic algorithm above computes all γ̄’s and then updates ˆ̄N
(t)
, while SCVB0

computes a single random γ̄(t+1), and uses this to noisily estimate the same update to ˆ̄N
(t)
.

By Equations 4.40 – 4.42, the estimate is unbiased, with E[s̄c(w
(t+1), ˆ̄N)] = fc,w(

ˆ̄N), where

the expectation is with respect to the sampling of w(t+1). Finally, let

ξ(t+1) = s̄c(w
(t+1), ˆ̄N

(t)
)− fc,w(

ˆ̄N
(t)
) (4.72)

be the stochastic error made at step t + 1, and observe that E[ξ(t+1)] = 0. We can rewrite

the SCVB0 updates for each EM statistic c as

ˆ̄N
(t+1)

c = (1− ρct+1)
ˆ̄N

(t)

c + ρct+1s̄c(w
(t+1), ˆ̄N)

= ˆ̄N
(t)

c + ρct+1(−
ˆ̄N

(t)

c + s̄c(w
(t+1), ˆ̄N))

= ˆ̄N
(t)

c + ρct+1(fc,w(
ˆ̄N

(t)
)− ˆ̄N

(t)

c + s̄c(w
(t+1), ˆ̄N)− fc,w(

ˆ̄N
(t)
))

= ˆ̄N
(t)

c + ρct+1(fc,w(
ˆ̄N

(t)
)− ˆ̄N

(t)

c + ξ(t+1)) . (4.73)

We have now written the update equations as the Robbins-Monro SA updates of Equa-

tion 4.33 (Robbins & Monro, 1951). In this form, we can see that iterating each of the

SCVB0 updates corresponds to a stochastic approximation algorithm for finding the zeros of

fc,w(
ˆ̄N

(t)
)− ˆ̄N

(t)

c , which are the steps that MAP LDA U takes. The full SCVB0 algorithm,

which performs an update on all of the statistics together, is therefore an SA algorithm for

finding the locations where the steps that MAP LDA U takes are 0, i.e. the fixed points of

MAP LDA U. Since MAP LDA U is an EM algorithm, its fixed points are the stationary
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points of the posterior probability of the parameters, with the parameters being associated

with the EM statistics by Equation 4.59.

A Lyapunov Function to Show that the SA Algorithm Converges

Having shown that SCVB0 is an SA algorithm for finding the stationary points of the MAP

objective function, we can now make use of known results for stochastic approximation

algorithms to prove convergence. Theorem 2.3 of Andrieu et al. (2005) states that under

mild conditions, the existence of a Lyapunov function, along with a boundedness condition,

implies that such a Robbins-Monro algorithm will converge to a root of the target function

with step size schedules such as those in the conditions of the theorem. In the context of an

SA algorithm, a Lyapunov function can be understood as an “objective function” which, in

the absence of stochastic noise, the SA would improve monotonically if small enough steps

were taken in the direction of the updates. In Appendix C, we show that the negative of the

Lagrangian of the EM lower bound is a Lyapunov function of the overall SCVB0 algorithm

and the set of fixed points of the EM algorithm, and that the required conditions on the

function hold. The boundedness condition, namely that the state variables stay within a

compact subset of the state space, follows by observing that 0 < ‖s̄c(w
(t+1), ˆ̄N)(:)‖∞ ≤ C for

every EM statistic c, where A(:) concatentates each entry of A into a vector. If the initial

state also satisfies this, by the convexity of the update, the ˆ̄N’s will always have their L∞

norms similarly bounded. Having demonstrated that the assumptions required by Theorem

2.3 of Andreiu et al. hold, the convergence result follows.

4.7 Discussion / Related Work

Connections can be drawn between SCVB0 and other methods in the literature. The SCVB0

scheme is reminiscent of the online EM algorithm of Cappé & Moulines (2009), which also

alternates between per data-point parameter updates and online estimates of the expected
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values of sufficient statistics. Online EM optimizes the EM lower bound on the log-likelihood

in the M-step and computes online averages of exponential family sufficient statistics, while

SCVB0 (approximately) updates the mean-field evidence lower bound in the M-step and

computes online averages of sufficient statistics required for a CVB0 update in the E-step.

As discussed in Section 4.5.2, when viewed as a MAP estimation algorithm SCVB0 can also

be derived as an extension of online EM, applied to LDA.

The SCVB0 algorithm also has a very similar structure to SVB, alternating between passes

through a document (the optional “burn-in” passes) to learn document parameters, and

updating variables associated with topics. However, SCVB0 is stochastic at the word-level

while SVB is stochastic at the document level. This allows SCVB0 to take the stochastic

approach further than SVB, by making stochastic estimates of the document parameters as

well as of the topics.

In more detail, the general framework of Hoffman et al. performs inference on “local” param-

eters specific to a data point, which are used to perform a stochastic update on the “global”

parameters. For SVB, variational parameters for θ(d) are local parameters for document

d, and variational parameters for topics are the global parameters. For SCVB0, the γid’s

are local parameters for a word, and both document parameters NΘ and topic parameters

NΦ are global parameters. This means that updates to the parameters can be made before

processing all of the words in the document, while SVB must wait to complete the processing

of a document before performing an update.

The incremental algorithm of Banerjee & Basu (2007), for MAP inference in LDA, is also

closely related to the proposed algorithm. They estimate topic probabilities for each word

sequentially, and update MAP estimates of Φ and Θ incrementally, using the expected

assignments of words to topics in the current document. SCVB0 can be understood as

the collapsed, stochastic variational version of Banerjee and Basu’s incremental uncollapsed

MAP estimation algorithm. Interpreting SCVB0 as a MAP estimation algorithm, SCVB0 is
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the online EM algorithm for MAP estimation operating on the unnormalized representation

of LDA, while Banerjee and Basu’s algorithm is the incremental EM algorithm operating

on the usual normalized representation of LDA. A related algorithm is the sequential Monte

Carlo (SMC) approach used by Ahmed et al. (2011), which sequentially Gibbs samples

the topic assignments of each document for each of F importance-weighted particles. This

method updates count statistics for each particle incrementally via sampling, while SCVB0

updates count statistics with online-averaged updates via optimization.

Another stochastic algorithm for LDA, due to Mimno et al. (2012), operates in a partially

collapsed space, placing it in-between SVB and SCVB0 in terms of representation. Their

algorithm collapses out Θ but does not collapse out Φ. Estimates of online natural gradient

update directions are computed by performing Gibbs sampling on the topic assignments of

the words in each document, and averaging over the samples. The gradient estimate is non-

zero only for word-topic pairs which occurred in the samples. When carefully implemented

to take advantage of the sparsity, the updates scale sub-linearly in the number of topics,

causing large improvements in high-dimensional regimes. For SCVB0, the minibatch updates

are sparse in the rows (words), so some performance enhancements along the lines of those

used by Mimno et al. are likely to be possible.

There has been a substantial amount of other work on speeding up LDA inference in the

literature. Porteous et al. (2008) improved the efficiency of the sampling step for the col-

lapsed Gibbs sampler, and Yao et al. (2009) explore a number of alternatives for improving

the efficiency of LDA. The Vowpal Wabbit system for fast machine learning,11 due to John

Langford and collaborators, has a version of SVB that has been engineered to be extremely

efficient. Parallelization is another approach for improving the efficiency of topic models.

Newman et al. (2009) introduced an approximate parallel algorithm for LDA where data is

distributed across multiple machines, and an exact algorithm for an extension of LDA which

takes into account the distributed storage. Smola & Narayanamurthy (2010) developed an
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efficient architecture for parallel LDA inference, using a distributed (key, value) storage for

synchronizing the state of the sampler between machines. All of these computational im-

provements are somewhat orthogonal to those proposed in this paper, and it is likely that

some of these ideas could be adapted to apply to SCVB0 as well.

4.8 Summary of Contributions

This chapter introduced SCVB0, an algorithm for performing fast stochastic collapsed vari-

ational inference in LDA, and showed that it outperforms stochastic VB on several large

document corpora, converging faster and often to a better solution. The algorithm is rela-

tively simple to implement, with intuitive update rules consisting only of basic arithmetic

operations. We also found that the algorithm was effective at learning good topics from small

corpora in seconds, finding topics that were superior than those of stochastic VB according

to human judgement.

To summarize, this chapter has made the following contributions:

• We presented a fast, scalable algorithm for training topic models, called SCVB0. The

algorithm performs variational Bayesian inference using a stochastic optimization tech-

nique, and operates on the collapsed representation of LDA. The algorithm is also

simple to implement. Unlike the standard variational algorithm of Blei et al. (2003),

and its stochastic extension (Hoffman et al. , 2010, 2013), it requires no expensive calls

to complicated mathematical library functions. Furthermore, the core inner loop (the

CVB0 update of Asuncion et al. (2009)) is similar to the update for the standard

collapsed Gibbs sampling algorithm of Griffiths & Steyvers (2004), but is even simpler

because it is deterministic.
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• We evaluated the algorithm on three large corpora (New York Times news articles,

the free online encyclopedia Wikipedia and scientific articles from PubMed Central),

showing the benefit of the algorithm in terms of both predictive performance and wall-

clock running time relative to the previous stochastic approach, and to standard batch

VB algorithms.

• The algorithm was also evaluated in the context of the very rapid analysis of small-scale

data for exploratory data analysis purposes, where a human is in the loop. In these

experiments, human participants were asked to count the “mistakes” made by topic

models. The test was performed using the New York Times dataset (with participants

from the Amazon Mechanical Turk crowdsourcing system) and articles from the NIPS

conference (with machine learning researchers as participants). In both cases, the

human participants found fewer errors were made by the SCVB0 algorithm than the

uncollapsed stochastic VB baseline.

• We suggested a new, simpler explanation for the accuracy of the CVB0 approximation.

The explanation uses a law of large numbers argument, as opposed to the original

central limit theorem and Taylor expansion approximations by Teh et al. (2007a) and

Asuncion et al. (2009).

• We analyzed the algorithm from another perspective by providing an alternate deriva-

tion as an online EM algorithm for performing MAP estimation, with modified hyper-

parameters.

• Using this alternative interpretation, we proved the convergence of the algorithm.

This chapter is joint work with Professor Max Welling, Dr Levi Boyles and Dr Christopher

DuBois, published in Foulds et al. (2013). We thank them and acknowledge their contribu-

tions here:
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• The original idea of using a stochastic algorithm in the collapsed representation of LDA

is due to Professor Max Welling.

• Professor Welling discovered the Lyapunov function, although its derivation as an EM

lower bound and the remainder of the convergence proof is due to the author of this

thesis.

• Dr Boyles provided expertise in converting matlab code to an efficient implementation

in the Julia language, and afforded much logistical support with the experiments. He

is also responsible for the geometric series argument for the clumping update.

• Dr DuBois performed the Amazon Mechanical Turk experiment on the New York Times

dataset.

• We thank Prof. Welling, Dr Boyles, Dr DuBois, and Dr Arthur Asuncion for many

helpful discussions.
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Chapter 5

Sampling Algorithms for Evaluating

Topic Models

Expectation is the root of all heartache.

Anonymous

A speedier course than lingering languishment

must we pursue, and I have found the path.

William Shakespeare, Titus Andronicus

An important property of topic models is that they can often play a useful role as building

blocks for developing richer latent variable models. In Chapters 2 and 3, for example, we

made use of the LDA framework to build models for data sets where both network and

text information are available. Latent variable model-building based on LDA has become a

widespread technique for finding meaningful latent structure, with broad applications to po-

litical science (Grimmer, 2010; Zhang & Carin, 2012), the humanities (Mimno, 2012, 2011),

sociology (McFarland et al. , 2013), conversational dialog (Nguyen et al. , 2013), scientific
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literature (Dietz et al. , 2007; Rosen-Zvi et al. , 2004; Chang & Blei, 2009; Foulds & Smyth,

2013) and more. With the growing adoption of these techniques, a number of algorithms

have been proposed for fitting them accurately and efficiently on increasingly large data sets,

including the algorithm we introduced in Chapter 4. The development of new models and

algorithms is likely to continue into the foreseeable future.

Evaluation of Topic Models

As these new ideas continue to be proposed in the literature, it becomes increasingly impor-

tant to evaluate them. Whenever we design a new sophisticated model, we need to ascertain

whether its complexity is warranted. Whenever we propose a novel learning algorithm, we

need to verify that it performs better than its competitors. To this end, a key measure of

performance of any statistical model is its ability to generalize beyond the training data to

predict held-out data (cf. Gneiting & Raftery (2007)). For example, we would like to be

able to compute the likelihood of held-out documents according to the trained model, and

compare this to the outputs of competing techniques.

However, in the case of topic models, and many other latent variable models, this presents a

considerable computational challenge. The difficulty arises from the latent variables them-

selves. Each document d is associated with topic assignments z(d) and a distribution over

topics θ(d). These variables are latent, i.e. they are hidden from us. We therefore must

consider every possible assignment to them in order to compute the likelihood of a held-out

document:

Pr(w(d)|Φ, α) =
∑

z(d)

Pr(w(d), z(d)|Φ, α) (5.1)

=

∫

Pr(w(d), θ(d)|Φ, α) dθ(d) . (5.2)
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The sum in Equation 5.1 is intractable because the number of possible assignments of z(d)

grows exponentially in the number of words in the document. Similarly, the integral in Equa-

tion 5.2 is hard to compute because we cannot exploit conjugacy to analytically integrate

out θ(d) when we do not observe z(d). Moreover, this already difficult computation must be

performed for every document in the held-out test set, which frequently contains hundreds

to thousands of documents. To make matters even more difficult, when we are evaluating

learning algorithms we would also like to repeat the entire process at many points of the

training process, in order to show the progress of the learning algorithm over time. The

evaluation task for topic models, then, frequently corresponds to the computation (or, more

likely, approximation) of possibly tens of thousands of intractable integrals.

To put the computational challenge in context, we have seen in the previous chapter that it

is now possible to learn topic models on extremely large datasets on a single core processor

in a matter of hours. For example, using SCVB0, as implemented in a high-level language,

we trained a topic model on Wikipedia to convergence in less than twelve hours. However,

to create Figure 4.5, which evaluates the progress of this SCVB0 training run, we needed

to use a cluster to parallelize the approximate evaluation process across documents and

iterations. Ironically, the time taken to evaluate the model was orders of magnitude greater

than the time it took to train it. Furthermore, for computational reasons, that experiment

was performed using a simpler evaluation task called document completion, where the goal

is to predict part of the document, given the remainder. It would be preferable to be able

to fully predict the held-out documents as in Equation 5.1, but at this scale, with 10,000

held-out documents and hundreds of training time periods at which to evaluate, this was

infeasible with current techniques.

In order to make a practical reality of the evaluation of topic models via Pr(w(d)|Φ, α),

a wide variety of approximation strategies have previously been proposed in papers such

as Wallach et al. (2009b), Buntine (2009) and Scott & Baldridge (2013). The techniques
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typically involve Monte Carlo simulation schemes designed to address the challenges of high-

dimensional integration. Although these methods can lead to significantly more accurate

results than naive approaches, the reliable and efficient evaluation of topic models remains

a relatively open problem of practical significance.

Contributions of this Chapter

In this chapter, we investigate new methods for the evaluation of topic models. The proposed

techniques are based on annealed importance sampling (AIS ) (Neal, 2001), a Monte Carlo in-

tegration technique which was previously applied to topic model evaluation byWallach et al.

(2009b). Given two probability distributions, AIS produces an estimate of the ratio of their

partition functions by annealing between them. Wallach et al. leverage this idea by an-

nealing from the prior over the latent topic assignments z(d) to the posterior, resulting in

an estimate of the probability of the held-out document. AIS can be very accurate given

enough computation time, although the amount of time needed may vary greatly between

different choices of annealing paths (Grosse et al. , 2013).

The first contribution of this chapter is to propose and evaluate an alternative annealing

strategy, using two AIS paths which anneal from one topic model to another. This strat-

egy (referred to as ratio-AIS) computes the ratio of the likelihoods of two models instead

of computing the likelihoods of each model separately. The result is an estimate of the

relative performance of the models, with significantly lower empirical variance across runs

than previous approaches.1 This in turn brings computational benefits, as fewer samples or

annealing temperatures may be required to achieve reliable results. The reduced variance

comes at the cost of potentially increased bias when insufficient iterations are performed to

achieve convergence. However, we also show how to detect such bias by annealing between

1“Variance” here refers to variance across Monte Carlo estimates of the difference in log-likelihood between
models, per document.
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the topic models in both directions and comparing the results. The consequence of this

bias-variance trade-off is that the proposed method is useful in cases where we would like

to perform in-depth analysis at the per-document level and when the two topic models are

similar to each other. The high-variance low-bias methods may still be preferred for general

full-corpus comparisons of topic models.

Finally, we show how to efficiently evaluate topic model learning algorithms by computing

held-out likelihood curves over the iterations of the learning procedure, making use of the

proposed ratio-AIS paths. This is achieved by annealing between the topic models at each

iteration of the learning algorithm in turn, which allows all previous computation to be

reused in each of the likelihood estimates. The proposed method, called iteration-AIS,

outperforms previous algorithms, in some cases even when it is given an order of magnitude

less computation time.

The remainder of the chapter proceeds as follows. In Section 5.1 we discuss in more detail the

different methods that are typically used for topic model evaluation. Section 5.2 introduces

our new proposed evaluation algorithms. Experimental results are given in in Section 5.3.

As an aside, we then consider the relationship between one of our proposed techniques and a

learning algorithm due to Asuncion et al. (2010), and speculate on potential improvements

to that technique (Section 5.4). Finally, we conclude the chapter in Section 5.6.

Note that although we focus on topic models, the ideas presented here could potentially be

useful for other latent variable models with intractable likelihoods.

5.1 Background

When proposing a new topic model or learning algorithm, it is important to evaluate its

performance. When the model is to be used for a certain task it may be possible to evaluate it
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with respect to an extrinsic, task-specific metric. For example one could evaluate the quality

of topics being used as features for a classification algorithm by measuring classification

accuracy. More generally, however, given that topic models are typically trained in an

unsupervised manner (with a few notable exceptions), a ground-truth evaluation metric is

usually not available.

Consequently, a number of intrinsic (i.e. task independent) validation strategies for topic

models have been developed in the literature. For example, Chang et al. (2009) proposed

the use of elicitations of judgments from humans to evaluate the quality of topic models.

Given that obtaining these judgments can be expensive and difficult, Newman et al. (2010),

Mimno et al. (2011) and Rosner et al. (2013) proposed automatic surrogate measures of

topic coherence, and showed that these measures, which are typically based on word co-

occurrence statistics, are correlated with human judgments.

However, as topic models are statistical models, we also would like to be able evaluate them

as such. In the context of unsupervised machine learning, the standard approach for evalu-

ating a statistical model is to compute the probability of held-out data. Regardless of the

utility of the aforementioned methods, it is generally useful to demonstrate good predictive

performance in addition to any other extrinsic or intrinsic validation results. Intuitively, as

our goal is to fit a statistical model to data, we would like to know both how well we are

able to fit the model, and how well the model is able to explain unobserved data.

5.1.1 Computing the Likelihood

As in Wallach et al. (2009b), we therefore focus on the computation of Pr(w(d)|Φ, α), the

likelihood of the words w(d) in a held out document d (or equivalently, perplexity), condi-

tioned on point estimates of the topic-word distributions Φ and (possibly document specific)
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priors α.2 This quantity can be used to evaluate a point estimate of the topics, or as an inner

loop to evaluate Bayesian evaluation metrics such as the posterior predictive probability of

held out documents.

Simple Monte Carlo Algorithms

As discussed above, it is in general infeasible to compute Pr(w(d)|Φ, α) directly, as it involves

an intractable sum
∑

z(d)
Pr(w(d), z(d)|Φ, α) or an intractable integral

∫

θ
Pr(w(d), θ(d)|Φ, α).

Consequently, an approximation strategy must be used. A variety of approximation tech-

niques were considered by Wallach et al. (2009b), the number of which alone is a testament

to the difficulty of the problem. The simplest strategies are Monte Carlo approaches which

simulate from the prior. We can write Equation 5.1 as

Pr(w(d)|Φ, α) =
∑

z(d)

Pr(w(d)|z(d),Φ)Pr(z(d)|α) (5.3)

= EPr(z(d)|α)[Pr(w
(d)|z(d),Φ)] (5.4)

≈
1

S

S
∑

i=1

Pr(w(d)|z(d)(i),Φ) , (5.5)

where z(d)(i) ∼ Pr(z(d)|α) is the ith sample of z(d), and Equation 5.5 follows from the law of

large numbers for sufficiently large S. Unfortunately, for any realistically sized document,

drawing from the prior is very unlikely to find the z(d)’s for which Pr(w(d)|z(d),Φ) is high.

This method consequently works poorly in practice, tending to greatly underestimate the

likelihood (Wallach et al. , 2009b). A similar Monte Carlo strategy can be applied based on

Equation 5.5 by sampling θ(d), but this encounters similar problems to Equation 5.5.

2It is standard practice to learn an asymmetric Dirichlet prior α in LDA models, following Wallach et al.

(2009a), so we include it as a parameter to evaluate. The prior may also be learned in a document dependent
way for models such as DMR (Mimno & McCallum, 2008).
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It should also be noted that Equation 5.4 shows why we cannot directly average over draws

from the standard collapsed Gibbs sampler for Pr(z(d)|w(d),Φ, α) to estimate the held-out

probability, as the expectation we are trying to compute is with respect to the prior over

z(d), not the posterior. It turns out that taking the harmonic mean of the predictions of

samples from the posterior is an unbiased estimator,

Pr(w(d)|Φ, α) ≈
1

1
S

∑S

i=1
1

Pr(w(d)|z(d)(i),Φ,α)

, z(d)(i) ∼ Pr(z(d)|w(d),Φ, α) , (5.6)

in a technique due to Newton & Raftery (1994). However, this estimator is very unstable and

Wallach et al. (2009b) found that it tended to give very different answers when compared

to other methods, typically greatly overestimating the likelihood of the held-out documents.

Left-to-Right Sampler

The most widely used of the approaches proposed by Wallach et al. (2009b) is the “left-

to-right” algorithm, inspired by sequential Monte Carlo techniques. This method uses the

product rule to factorize Pr(w(d), θ(d)|Φ, α) sequentially,

Pr(w(d)|Φ, α) =

Nd
∏

n=1

Pr(w(d)
n |w

(d)
<n,Φ, α) (5.7)

=

Nd
∏

n=1

∑

z
(d)
≤n

Pr(w(d)
n , z

(d)
≤n|w

(d)
<n,Φ, α) (5.8)

=

Nd
∏

n=1

∑

z
(d)
≤n

Pr(w(d)
n |z

(d)
n ,Φ)Pr(z

(d)
≤n|w

(d)
<n,Φ, α) (5.9)

=

Nd
∏

n=1

E
Pr(z

(d)
≤n

|w
(d)
<n,Φ,α)

[

Pr(w(d)
n |z

(d)
n ,Φ)

]

(5.10)

≈

Nd
∏

n=1

1

S

S
∑

i=1

Pr(w(d)
n |z

(d)(i,n)
n ,Φ) , z

(d)(i,n)
≤n ∼ Pr(z

(d)
≤n|w

(d)
<n,Φ, α) , (5.11)
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where z(d)(i,n) is the ith sample of z(d) at iteration n, which represents the z vector up to

the nth word, and the subscripts specify the word indices. This allows sampling to be

performed in an incremental “left to right” fashion, estimating each of the terms in 5.10 in

turn. At iteration n, which processes the nth word in the document, the algorithm maintains

S samples (a.k.a. “particles”) z
(d)(i,n)
≤n . Each iteration performs a collapsed Gibbs sampling

sweep conditioned on w
(d)
<n over each of the samples z

(d)(i,n−1)
≤n−1 from the previous iteration, then

increments all particles to include the topic assignment for the current word z
(d)
n . Averaging

over all of the particles at word n approximates one of the expectation terms in the product

in Equation 5.10.3,4 The algorithm was analyzed more closely by Buntine (2009), and a

faster, but less accurate, variant of the technique was proposed by Scott & Baldridge (2013).

Intuitively, this algorithm is likely to select much better z’s than the naive Monte Carlo

method because it is allowed to make use of the previous words instead of drawing blind

from the prior. A disadvantage of this approach is that the “resampling” Gibbs sweep in

each iteration makes the algorithm’s run time quadratic in the length of the document.

5.1.2 Importance Sampling

Many of the approaches proposed by Wallach et al. (2009b) and Buntine (2009), and also

the new methods introduced in this chapter, involve importance sampling, an approximate

algorithm for computing expectations. Suppose we would like to compute Ep(x)[f(x)] for

3Wallach et al. (2009b) describe the derivation of the left-to-right sampler up to Equation 5.8. We
complete the derivation up to Equation 5.11 here, resulting in essentially the same algorithm, but with
one small difference. Wallach et al. (2009b) and Buntine (2009) draw the topic assignment of the current

word z
(d)(i,n)
n ∼ Pr(z

(d)
n |w

(d)
n , z

(d)
<n,Φ, α) when estimating the expectation in Equation 5.10. Our deriva-

tion here finds that the current word should not be used, and it should instead be drawn z
(d)(i,n)
n ∼

Pr(z
(d)
n |z

(d)
<n, w

(d)
<n,Φ, α) = Pr(z

(d)
n |z

(d)
<n, α), because the expectation is conditioned on previous words only.

To verify the issue, note that for a document containing a single word, conditioning on the current word
corresponds to drawing z(d) from the posterior, while Equation 5.4 shows that it should be drawn from the
prior.

4As an aside, one potential improvement to the algorithm may be to sum out the current topic assignment

via Pr(z
(d)
n = k|z

(d)
<n, α) ∝ n

(d)
k + αk instead of sampling it, thus considering all possible values with a very

small additional overhead relative to the resampling step.
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some function f(x) and some distribution p(x) which we cannot sample from directly. The

key idea of importance sampling is to approximate drawing from p by drawing from another,

more manageable distribution q, and then re-weight the samples to correct for this process.

We can derive this procedure by

Ep(x)[f(x)] =
∑

x

p(x)f(x)

=
∑

x

q(x)
p(x)

q(x)
f(x)

= Eq(x)

[p(x)

q(x)
f(x)

]

≈
1

S

S
∑

i=1

ωif(x
(i)) , x(i) ∼ q(x) , (5.12)

where ωi = p(x)
q(x)

is the importance weight of sample i, and it is assumed that q(x) > 0

whenever p(x) > 0. The algorithm consists of simulating Equation 5.12. In some cases we

can only compute unnormalized versions p∗(x) and q∗(x) of p(x) and q(x), where q(x) = q∗(x)
Zq

and Zq =
∑

x
q∗(x). In this scenario, a ratio of two estimates is used,

Ep(x)[f(x)] =
∑

x

p∗(x)

Zp

f(x)

=
∑

x

(

q(x)
Zq

q∗(x)

)p∗(x)

Zp

f(x)

=
Zq

Zp

Eq(x)

[p∗(x)

q∗(x)
f(x)

]

= Eq(x)

[p∗(x)

q∗(x)
f(x)

]/Zp

Zq

, where

Zp

Zq

=
∑

x

p∗(x)

Zq

=
∑

x

(

q(x)
Zq

q∗(x)

)p∗(x)

Zq

= Eq(x)[
p∗(x)

q∗(x)
] , so (5.13)

Ep(x)[f(x)] ≈
1

S

S
∑

i=1

ωif(x
(i))

/ 1

S

S
∑

i=1

ωi (5.14)

=

S
∑

i=1

ωif(x
(i))

/

S
∑

i=1

ωi , (5.15)
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with x(i) ∼ q(x) and with importance weights computed using the unnormalized values,

ωi =
p∗(x)
q∗(x)

. It should be noted that although each of the two Monte Carlo estimates (the

numerator and the denominator) are unbiased, their ratio is biased for a finite number of

samples. Nevertheless, the strong law of large numbers applies and so asymptotically the

algorithm will recover Ep(x)[f(x)]. Importance sampling can also provide an estimate of the

ratio of these normalizing constants (“partition functions”) as the average of the importance

weights,

1

S

S
∑

i=1

ωi ≈ Eq(x)
p∗(x)

q∗(x)
=

∑

x

q(x)
p∗(x)

Zqq(x)
=

1

Zq

∑

x

p∗(x) =
Zp

Zq

. (5.16)

We will leverage this fact in the new methods introduced later in this chapter.

In the context of topic model evaluation, Buntine (2009) used mean field variational infer-

ence to select a proposal distribution for importance sampling the latent topic assignments.

Buntine found that this method did not perform as well as the left-to-right algorithm, al-

though it was considerably faster. More closely related to the present work, an importance

sampling scheme called annealed importance sampling was one of the more accurate strate-

gies investigated by Wallach et al. (2009b). This technique, which we describe below, forms

the basis of the methods proposed in this chapter.

5.1.3 Annealed Importance Sampling

When performing importance sampling with high dimensional data, each individual impor-

tance sample is unlikely to land in a high probability region unless the proposal distribution

is very good. Thus, the variability of the importance weights can be large. In practice,

this frequently results in the estimate being determined almost exclusively by a small set

of samples with the highest weights. This renders the procedure unreliable. An alternative

approach is to use Markov chain Monte Carlo methods. When run to convergence, these
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methods will eventually sample correctly from the distribution of interest, even in high di-

mensions. On the other hand, convergence assessment is difficult, so it is not always possible

to know whether the reported results are meaningful. The samples are also dependent, which

leads to issues when sampling from distributions with multiple modes.

Annealed importance sampling (AIS ) (Neal, 2001) is an attempt to find a middle ground,

by using MCMC to select a proposal distribution for importance sampling. In the method, a

Markov chain technique provides a mechanism for drawing samples from a high dimensional

distribution, and importance sampling is used to correct for convergence failures in the

Markov chain.

As in traditional importance sampling, suppose we are interested in estimating an expec-

tation of some function of a random variable x with respect to an intractable distribution

of interest p0. Consider a distribution pn (which is typically easy to sample from) and a

sequence of “intermediate” distributions pn−1, . . . , p1 leading from pn to p0. Using a physical

metaphor, the intuition is that pn is a “high temperature” distribution, i.e. it is easy to move

very quickly through the sample space by simulating it with a Markov chain. The target

distribution p0, on the other hand, is assumed difficult to sample from, and so is generally a

“low temperature” distribution whose Markov chain mixes poorly.

In order to sample from pn, the AIS algorithm simulates an annealing (i.e. controlled cool-

ing) process by reducing the “temperature” from pn towards p0, moving a set of samples

from pn through Markov chain updates from each of the successively cooler intermediate

distributions.

One could also imagine a “heating” process, which operates in the reverse direction to the

cooling process. This process begins with the low temperature distribution and increases the

temperature towards pn. In this reversed process, the first state is a draw from p0, which

is what we desire. The AIS algorithm simulates from the cooling process, and it then uses
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Draw from
distribution pn

Simulated annealing
towards

Target distribution
of interest p0

Use this as an importance sampling proposal distribution for:

Annealing in the reverse direction, from the target to the source.

Figure 5.1: Annealed Importance Sampling

the entire cooling simulation as a proposal distribution in an importance sampling scheme

where the target distribution is the sequence of states drawn from the “heating” process.

The resulting importance weights correct for the fact that the annealing process was used,

giving importance weighted samples of p0. Figure 5.1 illustrates the AIS method.

In more detail, let us assume that for each intermediate distribution pj we have a Markov

chain with transition operator Tj(x,x
′) which is invariant to that distribution. We need to

be able to sample from these Markov chains, and for each pj be to able to evaluate some

function fj which is proportional to it. In a manner similar to that of traditional importance

sampling, AIS produces a collection of samples x(1), . . . ,x(S) with associated importance
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weights ω1, . . . , ωS. As with importance sampling, the expectation of interest is estimated

using the samples, weighted by the importance weights.

The strategy for drawing each sample x(i) is to begin by drawing a sample xn−1 from pn,

then drawing a sequence of points xn−2, . . . ,x0 which “anneal” towards p0.
5 Each of the

remaining xj ’s in the sequence are generated from xj+1 via Tj . Importance weights ωi are

computed by viewing (x0, . . . ,xn−1) as an augmented state space, and performing importance

sampling on this new state space. The above procedure is used as a proposal distribution Q

for importance sampling from another distribution P :

Q(x0, . . . ,xn−1) ∝ fn(xn−1)

1
∏

j=n−1

Tj(xj,xj−1) (5.17)

P (x0, . . . ,xn−1) ∝ f0(x0)

n−1
∏

j=1

T̃j(xj−1,xj) , (5.18)

where T̃j(x,x
′) = Tj(x

′,x)
fj(x′)

fj(x)
is the reversal of the transition defined by Tj . This leads to

importance weights for each of the samples,

ωi =
P (x0, . . . ,xn−1)

Q(x0, . . . ,xn−1)
=

n−1
∏

j=0

fj(xj)

fj+1(xj)
. (5.19)

Note that the marginal probability of x0 under P is p0(x0), so after letting x(i) = x0 the

procedure correctly carries out importance sampling from p0. Since it is an instance of

importance sampling, AIS also provides an estimate for the ratio of normalizing constants

for f0 and fn. The normalizing constant for P is the same as the normalizing constant for

f0, and the normalizing constant for Q is the same as the normalizing constant for fn, and

so the average of the importance weights, S−1
∑S

i=1 ωi, converges to
∫
f0(x)dx∫
fn(x)dx

by Equation

5.16.

5For the remainder of the chapter, subscripts j and n will refer to a temperature, rather than indexing
into an array.
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5.1.4 AIS for Topic Models

Wallach et al. (2009b) showed how to apply the AIS procedure to the problem of calculat-

ing LDA likelihoods. They observe that the likelihood is the normalizing constant for the

posterior over z, when written as the joint distribution. By the definition of conditional

probability,

Pr(z(d)|w(d),Φ, α) =
Pr(w(d), z(d)|Φ, α)

Z(Φ, α)
, Z(Φ, α) = Pr(w(d)|Φ, α) . (5.20)

In this context, Pr(w(d)|Φ, α) is called the marginal likelihood, or sometimes, the evidence

(because we are conditioning on observed evidence w(d) to compute the posterior). The

marginal likelihood of a test document for a topic model can be estimated by using AIS

to estimate a normalization constant, operating on the latent topic assignments z(d) for the

document.6 We can set

f0 = Pr(w(d), z(d)|Φ, α) (5.21)

fn = Pr(z(d)|α) , (5.22)

with intermediate distributions

fj = Pr(w(d)|z(d),Φ, α)βjfn (5.23)

6The derivation here differs slightly from that of Wallach et al. (2009b). The present derivation suggests
that the procedure described in Wallach et al. produces just one importance sample. This may be repeated
many times, finally producing as output the average of the resulting importance weights. In practice however,
we found that a single sample with a longer annealing run, as in Wallach et al., may still be the best strategy
on a budget.
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and the transition operators Tj being the Gibbs sampler for fj. The ratio of normalizing

constants is

1

S

S
∑

i=1

ωi ≈

∑

z(d)
Pr(w(d), z(d)|Φ, α)

∑

z(d)
Pr(z(d)|α)

=
Pr(w(d)|Φ, α)

1
(5.24)

= Pr(w(d)|Φ, α) . (5.25)

The procedure for producing each importance sample, then, is to draw an initial z(d) from the

prior, and anneal it towards f0 by performing rj ≥ 1 Gibbs iterations at each intermediate

distribution. After repeating this procedure for each sample, the likelihood is estimated as

the average of the importance weights. Note that in what follows we define a run as the full

procedure, averaged over importance samples, while a sample refers to a single importance

sample.

5.1.5 Document Completion

As an alternative to computing Pr(w(d)|Φ, α), a strategy for side-stepping some of the

computational difficulty is to instead estimate (or sample) θ(d) on a subset w(d,a) of the

document, and predict only the remaining portion of the document w(d,b), thus estimating

Pr(w(d,b)|w(d,a),Φ, α). Having recovered an estimate θ̂(d) of θ(d) based on w(d,a), the document

completion probability can then be approximated via

Pr(w(d,b)|w(d,a),Φ, α) ≈ Pr(w(d,b)|θ̂(d),Φ) . (5.26)

This method is frequently used in practice (e.g. Rosen-Zvi et al. (2004); Asuncion et al.

(2009); Wallach et al. (2009a), and in Chapter 4 of this thesis). It is computationally and

conceptually easier than evaluating the full likelihood, because any algorithm for estimating
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θ (or a distribution over θ) such as standard VB or the Rao-Blackwellized Gibbs sampling

estimator can be applied to the first half of the document. In many cases it may be “good

enough” to determine a difference between methods, as we saw in Chapter 4. However,

Wallach et al. (2009b) found that it was able to detect less of a difference between ground

truth synthetic topics and perturbed copies than left-to-right and AIS (as applied to the

document completion task). They also reported that the “estimated θ” strategy performed

poorly relative to AIS, by significantly underestimating the likelihood. Intuitively, there is a

relatively small amount of data in a single document with which to learn a point estimate of

θ(d), which is one of the key motivations of the original LDA paper (Blei et al. , 2003) as a

Bayesian extension of PLSA. This problem can be mitigated by drawing multiple samples of

θ(d), but this reduces the computational advantages of the document completion approach.

Another issue with the “document completion” scenario is that it changes the task somewhat,

making it not necessarily the gold standard prediction task we would like it to be. It measures

the ability of the model to “orient” itself quickly when given partial documents, rather than

how likely the overall document is under the model.

The widespread use of the document completion strategy may be largely due to its conve-

nient computational properties (leading in turn to its use as a surrogate for fully held-out

prediction), rather being due to any intrinsic benefit of the metric itself. It is unclear how the

use of document completion as a surrogate for full-document prediction might affect our con-

clusions, particularly when using topic models which learn the Dirichlet hyper-parameter α,

as recommended by Wallach et al. (2009a), and including Dirichlet multinomial regression

models (Mimno & McCallum, 2008) and the Topical Influence Regression model of Chapter

3 (which we evaluated using AIS).

Specifically, learning α, especially with a per-document α(d), may help the model to recover

θ(d) better on the training portion of the document, thus increasing the performance of the

model for “estimated θ” document completion more than in the fully held-out case. On the
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other hand, observing more of the document decreases the relative impact of the prior on

the posterior distribution, which could reduce the observed improvement due to learning α.

Thus, we suspect that document completion may not always be a good surrogate for the full

prediction task. It should be noted that many methods for fully held-out prediction can also

be adapted for the document completion task (including those proposed in this chapter).

5.2 Alternative Annealing Paths for the Evaluation of

Topic Models

Having reviewed the necessary background material, the remainder of this chapter details

our contributions. First, we note that the AIS method described above can be very accurate

if given enough computation time, leading Wallach et al. (2009b) to use the procedure as

a gold standard approach. However, it is subject to several potentially avoidable sources

of variability. The method computes the ratio of the desired quantity Pr(w(d)|Φ, α) and a

quantity which equals one, so stochastic noise is introduced due to the denominator, even

though this is a constant. We would also expect that the prior may typically be very different

from the posterior, thereby requiring many annealing iterations to prevent the importance

weights ωi from having a large variance. This has consequences for the efficiency of the

sampler, which is reduced by a factor of approximately 1 +Varq[ωi/Eq[ωi]] relative to direct

sampling from the target density (Neal, 2001).7

Making matters worse, we typically must perform the AIS procedure many times across

all held-out documents, and therefore have a relatively limited computational budget per

document, preventing us from compensating for the high variance by collecting many im-

portance samples with a large number of temperatures. In this section, we introduce new

7Note that Eq[ωi] is equal to the ratio of normalizing constants of the target and proposal densities, which
in our case is the quantity of interest, e.g. the likelihood.
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AIS annealing paths for the evaluation of topic models which can have lower variance than

the standard approach. We first introduce AIS paths which compare two topic models by

annealing between them. We then show how to use these paths for evaluating topic model

learning algorithms by computing per-iteration predictive performance efficiently, reusing all

previous computation.

5.2.1 Comparing Topic Models by Annealing Between Them

The most typical evaluation scenario is model comparison—we want to determine whether a

particular model (model 1) performs better at predicting held-out documents than a baseline

method (model 2) such as vanilla LDA or a model trained using a previous learning algorithm.

Thus, in such situations, the quantity of interest is the relative log-likelihood score of the

model and the baseline:

logPr(w(d)|Φ(1), α(1))− logPr(w(d)|Φ(2), α(2))

= log
Pr(w(d)|Φ(1), α(1))

Pr(w(d)|Φ(2), α(2))
. (5.27)

To compute this in the framework proposed by Wallach et al., we must perform the AIS

procedure once for each model, incurring the stochastic error twice. To avoid this and the

aforementioned sources of variability, and given that the procedure is already designed to

compute a ratio, we propose to instead use AIS to compute Equation 5.27 directly. Let

f0(z
(d)) = Pr(w(d), z(d)|Φ(1), α(1)) and fn(z

(d)) = Pr(w(d), z(d)|Φ(2), α(2)). Then the desired

quantity can be estimated via

1

S

S
∑

i=1

ωi ≈

∑

z(d)
Pr(w(d), z(d)|Φ(1), α(1))

∑

z(d)
Pr(w(d), z(d)|Φ(2), α(2))

=
Pr(w(d)|Φ(1), α(1))

Pr(w(d)|Φ(2), α(2))
. (5.28)
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Topic Model 2

Simulated annealing
towards

Posterior for
Topic Model 1

Figure 5.2: Ratio-AIS

We will refer to this strategy as “ratio-AIS.” An illustration of the method is given in Figure

5.2. Note that although this is a direct application of AIS, we must modify our intuition

regarding the physical interpretation of the method. In a standard application of AIS, the

target distribution is at a “low temperature,” i.e. it is difficult to traverse via a Markov

chain. AIS addresses this by simulated annealing from a “high temperature” distribution

to the low temperature one. This metaphorically corresponds to the real-world metallurgic

technique of annealing, where a material is heated, followed by a controlled cooling process.

In our case, ratio-AIS “anneals” from one topic model towards the other instead of annealing

from a high temperature to a low temperature distribution. The collapsed Gibbs sampler

(CGS) mixes relatively well, as evidence by the fact that we are typically able to recover a

good solution in a reasonable number of Gibbs iterations (Griffiths & Steyvers, 2004). We

therefore might describe the Markov chains for topic models as being at “medium temper-

ature.” This is no longer strictly an annealing process in the physical sense as we are not

necessarily varying the temperature of the system, but instead interpolating between two

distributions which may be of similar temperature. Although we are using the AIS algorithm

without modification, our scenario is very different to the typical AIS use case, as we are
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able to approximately simulate from both the target and the source distributions via Gibbs

sampling. Nevertheless, AIS is still very useful to us in this scenario as it gives us an estimate

of the ratio of partition functions.

For the simulation to perform well in practice, we need our samples to be able to transition

between the distributions of the two models, which makes the AIS proposal distribution

accurate. For this to occur, we desire that (1) the Markov chains mix reasonably well, and

(2) the two models are similar enough that the transition between them is not too arduous.

As an argument for (1), the CGS algorithm is relatively effective at training topic models

from a random initialization. The inference problem in our case is easier than this because

we already know the topics, and so we do not have to bootstrap (Rao-Blackwellized estimates

of) both Φ and Θ.

For (2), the general efficacy of topic model training algorithms suggests that any two fully

trained topic models are likely to be somewhat similar to each other, up to a permutation

of the topics (which we address below). As for partially trained models, the topics typically

have high entropy in the beginning stages of the algorithm, at least in the case of collapsed

Gibbs sampling (cf. Figure 5.11). This means that the greater distance between models may

potentially be mitigated by a higher temperature Markov chain, improving (1).

Specifying the Ratio-AIS Path

To implement the ratio-AIS method, it remains to choose the annealing path, i.e. the

sequence of intermediate distributions. We first consider a geometric average

fj(z
(d)) = f0(z

(d))βjfn(z
(d))1−βj (5.29)
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of the initial and final distributions, a strategy suggested by Neal (2001) with analogy to

simulated annealing, where βj can be viewed as an “inverse temperature.” To choose a

transition operator Tj invariant to fj , we straightforwardly select the Gibbs sampler,

Pr(z
(d)
i = k|z−(d,i), . . .) ∝

(

(n
(d)−(d,i)
k +α

(1)
k )Φ

(1)

w
(d)
i ,k

)βj
(

(n
(d)−(d,i)
k +α

(2)
k )Φ

(2)

w
(d)
i ,k

)1−βj . (5.30)

We have importance weights

ωi =
n−1
∏

j=0

Pr(w(d), z
(d)
j |Φ

(1), α(1))βj

Pr(w(d), z
(d)
j |Φ

(1), α(1))βj+1

Pr(w(d), z
(d)
j |Φ

(2), α(2))1−βj

Pr(w(d), z
(d)
j |Φ

(2), α(2))1−βj+1

=

n−1
∏

j=0

Pr(w(d), z
(d)
j |Φ

(1), α(1))τ

Pr(w(d), z
(d)
j |Φ

(2), α(2))τ

logωi =
1

n

n−1
∑

j=0

log
Pr(w(d), z

(d)
j |Φ

(1), α(1))

Pr(w(d), z
(d)
j |Φ

(2), α(2))
, (5.31)

assuming βj − βj+1 = τ = n−1 ∀j, 0 ≤ j < n− 1. Elegantly, the log importance weights are

the average of the log ratios of the probabilities of w(d) and z(d) according to each model.

Observe that the same z assignments are used for the numerator and denominator in each

of the ratios in Equation 5.31, further reducing the variance of the estimate relative to the

standard AIS strategy.

Although geometric averages are the standard choice for an annealing path, in many cases

there exist annealing paths which perform much better. Grosse et al. (2013) introduced

an alternative annealing path for exponential families which converges much more quickly,

constructed by annealing averages of the moments of the sufficient statistics. The Dirichlet-

multinomial distribution Pr(z(d)|α) is not an exponential family so their method does not

directly apply. Nevertheless, we consider an annealing path inspired by their work, where

intermediate distributions are constructed by taking convex combinations of the parameters:
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fj(z
(d)) = Pr(w(d), z(d)|Φj = βjΦ

(1) + (1− βj)Φ
(2), αj = βjα

(1) + (1− βj)α
(2)) .

(5.32)

The intermediate distributions are topic models, so we set Tj to be the corresponding Gibbs

sampler of Equation 1.17. This Tj does not require power operations, providing substantial

execution time savings over the geometric path and Equation 5.24. The importance weights

are

logωi =

n−1
∑

j=0

(

logPr(w(d), z
(d)
j |Φj, αj)− logPr(w(d), z

(d)
j |Φj+1, αj+1)

)

. (5.33)

To implement this method we need to draw initially from fn(z
(d)), which we accomplish

via Gibbs sampling. These initial samples from fn(z
(d)) need not be independent for the

procedure to work, although we may choose to run independent chains if the cost of burn-in

is deemed to be less than time wasted due to running the annealing on correlated samples.

Finally, AIS will be more likely to converge if the initial and target distributions are similar to

each other. We therefore align the topics before running the algorithm, using the Hungarian

algorithm to minimize the L1 distances between topics. This operation, which is O(K3), is

not a computational bottleneck (relative to performing AIS) and needs only to be performed

once per corpus. Pseudocode for ratio-AIS using the path from equation 5.32 is given in

Algorithm 8.

Detecting Convergence Failures

AIS can produce poor estimates if the annealing fails to converge to a high-probability state

in the target distribution within the given iterations. In general, this may be very difficult

to detect. However, in our case we can interchange f0 and fn in our AIS strategy to compute
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Algorithm 8 Ratio-AIS, using the convex path

for i = 1 : S //importance samples

log ω[i] := 0

Φ(next) := Φ(2)

α(next) := α(2)

draw z(i) ∼ Pr(z|α(2))

for j = n− 1, n− 2, . . . , 0 //temperatures

Φ(curr) := Φ(next)

α(curr) := α(next)

Φ(next) := βjΦ
(1) + (1− βj)Φ

(2)

α(next) := βjα
(1) + (1− βj)α

(2)

for a = 1 : rj //rn−1 is large, for burn in

for l = 1 : length(w(d)) //words

draw z
(i)
l , Pr(z

(i)
l = k|.) ∝ (n

(i)
k + α

(curr)
k )Φ

(curr)

w
(d)
l

,k

log ω[i] := log ω[i] + logPr(w(d), z(i)|Φ(next), α(next))
− logPr(w(d), z(i)|Φ(curr), α(curr))

return logSumExp(log ω)− log(S)
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Prior ⇒ Model at ⇒ Model at ⇒ . . .⇒ Model at
Iteration 1 Iteration 2 Iteration I

Wallach et al. Ratio-AIS Ratio-AIS

Figure 5.3: Iteration-AIS

the reciprocal of the desired ratio, and compare the reciprocal of this to our estimate. If these

two values are wildly different, then we will know that the annealing has failed to converge.

This means that we are able to detect convergence failures in many practical cases. In our

experiments, we were easily able to catch convergence failures by observing a systematic

bias across documents in the results of the different annealing directions (see Section 5.3).

Interestingly, such a run in the reverse direction is exactly the target distribution which the

AIS importance sampler is attempting to draw from.

5.2.2 Efficiently Evaluating Topic Model Learning Algorithms with

Iteration-AIS

When evaluating algorithms for learning topic models (or monitoring their convergence), we

would ideally like to compute and plot held-out log-likelihood scores per learning iteration

(or unit of computation time) for each algorithm under consideration. This is extremely

expensive, requiring |T | × I ×M Monte Carlo approximations of already intractable high-

dimensional integrals, where T is the held-out test set, I is the number of iterations of the

learning algorithms to evaluate at, and M is the number of competing learning methods.

To address this computational challenge, a key insight is that we are free to set the annealing

path to any convenient sequence of intermediate distributions that we choose. Fortunately,

for many learning algorithms such as the collapsed Gibbs sampler, the topics at succes-

sive iterations are similar to each other, and the topics typically vary smoothly from “high

temperature” high entropy distributions at early iterations to more complicated later distri-
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butions. This suggests using a single AIS path to perform the entire evaluation across all of

the iterations, with the topic models at each iteration (or a subset of them) as intermediate

distributions. Ratio-AIS gives us a smooth path between each of the successive topic models,

ensuring that the “gap” between successive distributions is not too large.

The annealing path, then, begins by drawing from the prior Pr(z(d)|α(1)), and then an-

nealing from the prior to the first topic model Pr(w(d), z(d)|Φ(1), α(1)) as in Wallach et al.

(2009b). The path continues by using ratio-AIS to anneal between successive topic mod-

els Pr(w(d), z(d)|Φ(k), α(k)). At topic model k, the average S−1
∑S

i=1 ωi,k of the importance

weights computed up to that point ωi,k converges to the ratio of normalizing constants,

∑

z(d)
Pr(w(d), z(d)|Φ(k), α(k))
∑

z(d)
Pr(z(d)|α(1))

= Pr(w(d)|Φ(k), α(k)). (5.34)

With n temperatures per learning iteration k, importance weights are given recursively as

logωi,k =

k
∑

k′=1

n−1
∑

j=0

log
fk′,j(z

(d)
k′,j)

fk′,j+1(z
(d)
k′,j)

(5.35)

= logωi,k−1 +
n−1
∑

j=0

log
fk,j(z

(d)
k,j)

fk,j+1(z
(d)
k,j)

. (5.36)

This method, which we refer to as iteration-AIS, exploits all of the computation for selecting

z assignments and importance weights from the likelihood estimates at previous learning

iterations. By concatenating the annealing paths, the estimate at each iteration k gains a

successively longer annealing run as k increases, with no extra computation.

Neal (2001) argues extensively that longer annealing runs will reduce the variance of the

importance weights, which consequently improves the sampling efficiency of the estimates.

Intuitively, a greater number of temperatures means more MCMC iterations, and so a better

chance to converge to a high probability region. This also means that both the “cooling” and

“heating” processes will be closer to reaching equilibrium, and so more similar to (reversed
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versions of) each other, making the cooling process a better proposal distribution for the

reversed heating process.

Increasing the number of temperatures also allows the algorithm to explore more of the space,

thus taking more of the distribution into account when computing it estimates. In the case of

iteration-AIS, we can also think of the procedure as giving AIS a warm start at the previous

model, instead of starting blind from the prior. An initial sample from the previous model,

which is generally similar to the current model, is likely have much higher probability under

the current model than an initial sample from the prior. We show a diagram of the method

in Figure 5.3.

5.2.3 Application to Document Completion

In another application of ratio-AIS, suppose we would instead like to compare the perfor-

mance of two topic models on the document completion task described in Section 5.1.5,

where we observe some portion of a document w(d,a) and the goal is to predict the remainder

of the document w(d,b). The “estimated θ” strategy for document completion uses a point

estimate trained on w(d,a) to predict the remainder of the document, but this neglects to ac-

count for the uncertainty in the posterior for θ(d). Instead, we can use ratio-AIS to estimate

the document completion likelihood ratio, more fully taking into account this uncertainty

by approximately marginalizing over the hidden variables. The relative performance of our

two models at this task is

Pr(w(d,b)|w(d,a),Φ(1), α(d,1))

Pr(w(d,b)|w(d,a),Φ(2), α(d,2))
=

Pr(w(d)|Φ(1), α(d,1))

Pr(w(d,a)|Φ(1), α(d,1))
×
Pr(w(d,a)|Φ(2), α(d,2))

Pr(w(d)|Φ(2), α(d,2))

=
Pr(w(d)|Φ(1), α(d,1))

Pr(w(d)|Φ(2), α(d,2))
×
Pr(w(d,a)|Φ(2), α(d,2))

Pr(w(d,a)|Φ(1), α(d,1))
. (5.37)
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The two terms in the product can each be estimated via ratio-AIS, and then multiplied

together to get an estimate of the ratio of the document completion likelihoods of the two

models. Note that the first term, corresponding to the usual value computed by ratio-AIS

(Equation 5.27), is independent of which portion w(d,a) of the document is observed, which

means that it need only be computed once when varying the observed portion. The second

term can also be computed using ratio-AIS, annealing from model 1 to model 2 and only

executing the sampler on the observed portion w(d,a).

To provide an alternative perspective, we can also derive this procedure based on a single

annealing path which estimates the document completion ratio directly. In this case, we let

f0(z
(d)) = Pr(w(d,b), z(d)|w(d,a),Φ(1), α(d,1)) (5.38)

fn(z
(d)) = Pr(w(d,b), z(d)|w(d,a),Φ(2), α(d,2)) , (5.39)

where the state space z(d) consists of the z’s for the entire document (not just those associated

with w(d,b), for reasons which will become clear below). The average of the importance

weights will estimate the desired quantity as the ratio of partition functions

1

S

S
∑

i=1

ωi ≈

∑

z(d)
Pr(w(d,b), z(d)|w(d,a),Φ(1), α(d,1))

∑

z(d)
Pr(w(d,b), z(d)|w(d,a),Φ(2), α(d,2))

=
Pr(w(d,b)|w(d,a),Φ(1), α(d,1))

Pr(w(d,b)|w(d,a),Φ(2), α(d,2))
. (5.40)

To compute the importance weights, let us first rewrite

Pr(w(d,b), z(d)|w(d,a),Φ(1), α(d,1)) =
Pr(w(d), z(d)|Φ(1), α(d,1))

Pr(w(d,a)|Φ(1), α(d,1))
(5.41)

Pr(w(d,b), z(d)|w(d,a),Φ(2), α(d,2)) =
Pr(w(d), z(d)|Φ(2), α(d,2))

Pr(w(d,a)|Φ(2), α(d,2))
. (5.42)

We assume a geometric path with uniform step sizes βj − βj+1 = τ = n−1. Then the

importance weights are
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ωi =

n−1
∏

j=0

fj(zj)

fj+1(zj)

=
n−1
∏

j=0

( Pr(w(d), z
(d)
j |Φ

(1), α(1))βj

Pr(w(d), z
(d)
j |Φ

(1), α(1))βj+1

Pr(w(d), z
(d)
j |Φ

(2), α(2))1−βj

Pr(w(d), z
(d)
j |Φ

(2), α(2))1−βj+1

×
( Pr(w(d,a)|Φ(1), α(d,1))βj

Pr(w(d,a)|Φ(1), α(d,1))βj+1

Pr(w(d,a)|Φ(2), α(d,2))1−βj

Pr(w(d,a)|Φ(2), α(d,2))1−βj+1

)−1
)

=
n−1
∏

j=0

(Pr(w(d), z
(d)
j |Φ

(1), α(d,1))τ

Pr(w(d), z
(d)
j |Φ

(2), α(d,2))τ

)

×
Pr(w(d,a)|Φ(2), α(d,2))nτ

Pr(w(d,a)|Φ(1), α(d,1))nτ

=

n−1
∏

j=0

(Pr(w(d), z
(d)
j |Φ

(1), α(d,1))τ

Pr(w(d), z
(d)
j |Φ

(2), α(d,2))τ

)

×
Pr(w(d,a)|Φ(2), α(d,2))

Pr(w(d,a)|Φ(1), α(d,1))
. (5.43)

These importance weights consist of two terms: (1) the importance weights for ratio-AIS

samples of the ratio of likelihoods of the entire document (Equation 5.31), and (2) the

reciprocal ratio of likelihoods for just the observed portion of the document. We can estimate

(2) using ratio-AIS on the observed portion w(d,a) in order to estimate Equation 5.43, and

then average the resulting weights to estimate the desired quantity in Equation 5.40. By

distributivity, this is equivalent to the procedure implied by Equation 5.37.

1

S

S
∑

i=1

ωi =
( 1

S

S
∑

i=1

n−1
∏

j=0

Pr(w(d), z
(d)(i)
j |Φ(1), α(d,1))τ

Pr(w(d), z
(d)(i)
j |Φ(2), α(d,2))τ

)

×
Pr(w(d,a)|Φ(2), α(d,2))

Pr(w(d,a)|Φ(1), α(d,1))
(5.44)

≈
Pr(w(d)|Φ(1), α(d,1))

Pr(w(d)|Φ(2), α(d,2))
×

Pr(w(d,a)|Φ(2), α(d,2))

Pr(w(d,a)|Φ(1), α(d,1))
(5.45)

5.3 Experiments

We explored the performance of the proposed techniques using a corpora of scientific articles

from the Association of Computational Lingusitics (ACL) conference8 (Radev et al. , 2013),

8Available at http://clair.eecs.umich.edu/aan/index.php .
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and another from the Neural Information Processing Systems (NIPS) conference.9 The ACL

dataset consists of the 3286 articles from the years 1987 to 2011, while the NIPS corpus

contains the 1740 articles published between 1987 and 1999. In each experiment, topic mod-

els with 50 topics were fit to each corpus by performing 1000 iterations of collapsed Gibbs

sampling using the MALLET toolkit (McCallum, 2002). Roughly 10% of the documents in

each corpus were withheld for testing (130 NIPS articles, and 300 ACL articles). Although

cross-validation would have been preferable to a single hold-out set, the computational ex-

pense of the experiments prevented this. For example, across all algorithms and learning

iterations, Figures 5.7 – 5.10 required a total of 6.6 million Gibbs iterations for each one of

the test articles.

When using AIS we must select the number of temperatures n, the number of importance

samples S, and the temperature schedule β0, β1, . . . , βn. The variability of an AIS estimator

can be reduced by increasing S (due to the law of large numbers) or by increasing n (which

reduces the variance of the ωi). In the experiments, we focused on the case where S =

1, as in Wallach et al. (2009b). We found in preliminary experiments that S = 1 gave

essentially exactly the same answer as S = 100 importance samples for ratio-AIS with

10,000 temperatures. For simplicity, we used a uniform spacing of the temperatures βj .

We also compared to the left-to-right (LR) particle filtering algorithm of Wallach et al.

(2009b), using the implementation provided in MALLET. The left-to-right method requires

Nd(Nd + 1)/2 word-level Gibbs updates per particle for a document of length Nd. The

execution of p = 2 ∗ n/(Nd + 1) particles corresponds to the same number of Gibbs updates

as AIS with n temperatures and S = 1. We select the number of LR particles by rounding

p to the nearest integer greater than zero.

9The NIPS dataset, due to Gregor Heinrich, is available at http://www.arbylon.net/resources.html
.
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Ratio-AIS was designed for reliable per-document comparisons. To explore this, we ran

each algorithm twice on each document, and reported results comparing the two runs across

documents. To remove the effect of document length in the results, instead of reporting the

differences in log-likelihood scores for each model we consider instead perplexity scores

perplexity(w(d);Φ, α) = exp
(

−
logPr(w(d)|Φ, α)

Nd

)

. (5.46)

The ratio of the perplexity of model 1 over the perplexity of model 2 for a document is

readily computed from the output of ratio-AIS as

exp(− L1

Nd
)

exp(− L2

Nd
)
= exp

(L2 − L1

Nd

)

, (5.47)

where Lj is the log-likelihood for model j. We considered two evaluation scenarios for ratio-

AIS: comparing learned topics to perturbed versions of the same topics (Section 5.3.1), and

comparing topic models learned with symmetric and asymmetric Dirichlet priors (Section

5.3.2). Finally, we evaluated iteration-AIS for the estimation of per-iteration likelihood

values (Section 5.3.3).

5.3.1 Learned Topics versus Perturbed Topics

As the likelihoods we are trying to estimate are intractable, we do not in general have access

to ground truth. However, after learning topics Φ on a dataset and then creating a noisy

copy of them Φ′, we have good reason to believe that the original topics Φ are better than

the copy. This style of experiment was previously performed by Wallach et al. (2009b). We

took the word-topic assignments learned by MALLET, and created Φ′ by re-assigning 5%

of them to new word-topic assignments uniformly at random.10

10MALLET’s left-to-right implementation takes as input a count matrix, so the perturbed topics must be
representable as counts.
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% Correct Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS
to AIS Geometric Geometric Convex Convex

Right (reverse) (reverse)
NIPS (cheap) 63.8 48.8 83.8 89.2 84.6 87.7

NIPS (expensive) 84.6 62.3 86.9 87.7 87.7 87.7
ACL (cheap) 80.2 50.8 88.3 92.0 88.3 92.3

ACL (expensive) 90.7 75.2 90.3 90.3 90.3 90.3

Table 5.1: Percentage of documents where the learned topics Φ were estimated to have
higher likelihood than perturbed versions of them Φ′.

Ratios of the perplexities for the two models were computed with both cheap (100 temper-

atures) and expensive runs (10,000 temperatures). Overall results are given in Tables 5.1

and 5.2, and per-document results are plotted in Figures 5.4 and 5.5. Table 5.1 shows that

the two ratio-AIS paths were the most accurate methods by a significant margin in three

out of four of the scenarios, and with a similar result to left-to-right in the fourth (the ACL

dataset, in the expensive regime).

In the cheap regime, the ratio-AIS points are slightly off-diagonal in Figures 5.4 and 5.5,

with one annealing direction giving systematically lower results, representing a detected bias

due to convergence failure in at least one annealing direction. Nevertheless, these results

had much lower empirical variance (see also Table 5.2, top), and the bias disappeared in the

expensive regime. Surprisingly, the standard AIS method performed extremely poorly, with

most data points falling outside of the bounds of the figures, which are tight around the

results of the other methods (except for Figure 5.5 (top), which is tight around the ratio-AIS

results, and also has points for the left-to-right method falling out of the figure). Using many

importance samples would very likely mitigate this, at greater computational cost.

Table 5.2 shows the estimated variance of the per-document perplexity ratios (top), and the

overall perplexity ratio across the corpus (bottom). The variance of the perplexity ratio

estimates was orders of magnitude smaller than those from the left to right and standard

AIS approaches. In this case, the geometric path had lower variance than the convex path.

209



0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Ratio of Perplexities (run 1 / forwards)

R
a

ti
o

 o
f 
P
e

rp
le

x
it
ie

s 
(r

u
n

 2
 /

 r
e

v
e

rs
e

)

 

 

Standard AIS
Left−to−Right
Ratio−AIS Convex vs Convex (Reverse)
Ratio−AIS Geometric vs Geometric (Reverse)

0.96 0.97 0.98 0.99 1 1.01 1.02 1.03 1.04

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

Ratio of Perplexities (run 1 / forwards)

R
a

ti
o

 o
f 
P

e
rp

le
x

it
ie

s 
(r

u
n

 2
 /

 r
e

v
e

rs
e

)

 

 

Standard AIS
Left−to−Right
Ratio−AIS Convex vs Convex (Reverse)
Ratio−AIS Geometric vs Geometric (Reverse)

Figure 5.4: Comparing learned topics with perturbed versions of them, on the ACL dataset.
In the figures, every point corresponds to a document. Each axis corresponds to estimated
perp(Φ)

perp(Φ′)
for a repeat of the experiment, with the ratio-AIS repeats being performed in

different annealing directions. Points in the lower left quadrant are those which (likely
correctly) predict the unperturbed topics as the winner in both trials. Points near the
diagonal have consistent results across the two trials. Top: 100 temperatures. Bottom:
10,000 temperatures. Missing Standard AIS results are outside of the bounds of the figures.
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Figure 5.5: Comparing learned topics with perturbed versions of them, on the NIPS dataset.
Top: 100 temperatures. Bottom: 10,000 temperatures. Missing Standard AIS and left-to-
right results are outside of the bounds of the figures.
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Giving a sense of the role of the number of temperatures in the variance of the estimates,

Figure 5.6 plots log-likelihood estimates for a single NIPS article against n, averaged over 100

samples. The error bars in the plot show the standard deviations of the importance samples.

It was found that the empirical variance across the ratio-AIS samples was extremely small

relative to the standard AIS approach, unless a large number of temperatures was used, in

which case the variance of standard AIS eventually decreased. The standard AIS approach

also tended to underestimate the difference between the models relative to the other methods,

and to the results of very long annealing runs.

However, the number of temperatures did affect the likelihood estimates for both AIS and

ratio-AIS. This makes sense, as a greater number of temperatures allows the methods to

more fully explore the sample space. With 20,000 temperatures or more, both of the ratio-

AIS annealing directions and the standard AIS method converged on the same solution. The

figure suggests that a single importance sample can be accurate for both AIS and ratio-AIS

as long as a sufficient number of temperatures is used. This is consistent with Neal (2001)’s

arguments suggesting that the variance of the importance weights decreases as the number

of temperatures grows.

Overall perplexity results, computed across the entire corpus, are shown in Table 5.2 (bot-

tom). Since Φ′ is a noisy copy of the learned topics Φ, we expect that
perp(Φ)

perp(Φ′)
should be

less than one, and lower values correspond to a bigger detected difference. Ratio-AIS esti-

mated lower perplexity ratios than the baselines on NIPS. The left-to-right algorithm was

competitive on ACL, and in fact reported a slightly lower perplexity ratio in the expensive

regime (10,000 temperatures). However, in this regime ratio-AIS was remarkably consistent

across annealing directions and across annealing paths, reporting essentially identical results

in all cases, and on both datasets. The consistency of these results, along with the similarity

of the predictions to the AIS and left to right methods (e.g. on ACL, the ratio-AIS result

was between the ratios predicted by the two baseline methods) provides evidence that these
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Figure 5.6: Estimated differences in log-likehood for the perturbed topics task, varying the
number of temperatures (geometric annealing path). Error bars denote standard deviations
across 100 importance samples.

predictions are accurate. It should be noted that the task of comparing two very similar

topic models is difficult for standard methods, but is relatively easy for ratio-AIS due to the

distance to anneal between the distributions being smaller.

5.3.2 Symmetric versus Asymmetric Dirichlet Priors

Learning asymmetric α hyper-parameters can improve the predictive performance of topic

models (e.g., Wallach et al. (2009a)). To explore this, on each corpus we learned a topic

model with asymmetric α, and a model where α was fixed to be flat but its concentration

parameter was learned. The AIS and LR algorithms were used to compare the resulting

models, using runs with 1000 temperatures and 10,000 temperatures.

It was found that in the “cheap” 1000 temperature regime, the ratio-AIS estimates were the

most closely correlated with left-to-right estimates in the expensive regime, the best available

proxy for ground truth (Table 5.3, bottom).11 In all cases the ratio-AIS paths had one to two

11The standard AIS estimate of the perplexity ratios had too high a variance to be used (see Table 5.3).
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Variance of Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS
Perplexity to AIS Geometric Geometric Convex Convex

Ratio Right (reverse) (reverse)

NIPS (cheap) 3.9×10−4 1.2×10−2 1.8×10−6 1.1×10−6 1.3×10−6 1.5×10−6

NIPS (expensive) 1.9×10−5 5.1×10−4 9.8×10−9 1.3×10−8 1.6 × 10−8 1.3×10−8

ACL (cheap) 2.2×10−4 1.3×10−2 2.1×10−6 8.2×10−7 1.4×10−6 1.2×10−6

ACL (expensive) 1.6×10−5 5.2×10−4 1.0×10−8 1.1×10−8 1.2×10−8 1.2×10−8

Corpus-Level Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS
Perplexity to AIS Geometric Geometric Convex Convex

Ratio Right (reverse) (reverse)

NIPS (cheap) 0.991 0.996 0.991 0.989 0.991 0.989
NIPS (expensive) 0.991 0.993 0.9897 0.9897 0.9897 0.9897
ACL (cheap) 0.984 0.995 0.985 0.984 0.986 0.984

ACL (expensive) 0.983 0.985 0.9845 0.9845 0.9845 0.9845

Table 5.2: Comparing learned topics Φ with perturbed versions of them Φ′. Average empir-
ical variance (evaluated across two runs per document) of the per-document perplexity ratio
(top), and the overall perplexity ratio for the entire corpus (bottom). The “cheap” runs
performed 100 temperatures (or equivalent) and the “expensive” performed 10,000 temper-
atures (or equivalent).

orders of magnitude lower empirical variance in the estimates of per-document perplexity

ratios than the previous methods, with the convex path having the least variance (Table

5.3, top). Ratio-AIS therefore achieves the original goal of greatly reducing the variance of

per-document comparisons of topic models. This is particularly important if we want to

perform detailed analysis at a per-document level, such as exploring the effect of covariates

on topic model performance. In such a scenario, the previous methods have unacceptably

high variance for a reasonable level of computation (see also Figure 5.1), while the ratio-AIS

estimates of relative performance have very small empirical variance, even with an estimate

produced using just one importance sample.

Unfortunately, this reduction comes at a price of potentially increased bias in the estimated

perplexity ratio when given insufficient computation. Topic models which learn an asym-

metric α tend to perform better than those with a symmetric α (Wallach et al. , 2009a), and

the previous methods detected a larger advantage for the asymmetric approach (Table 5.3,

middle). The direction of the ratio-AIS annealing path also made a difference to the out-

214



Variance of Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS
Perplexity to AIS Geometric Geometric Convex Convex

Ratio Right (reverse) (reverse)

NIPS (cheap) 2.6×10−4 2.6×10−3 2.0×10−5 1.5×10−5 8.2×10−6 9.8×10−6

NIPS (expensive) 1.7×10−5 6.0×10−4 1.4×10−6 1.2×10−6 6.9×10−7 5.8×10−7

ACL (cheap) 1.7×10−4 3.6×10−3 1.6×10−5 1.3×10−5 7.7×10−6 6.6×10−6

ACL (expensive) 1.4×10−5 5.6×10−4 1.1×10−6 9.4×10−7 7.4×10−7 5.1×10−7

Corpus-Level Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS
Perplexity to AIS Geometric Geometric Convex Convex

Ratio Right (reverse) (reverse)

NIPS (cheap) 0.984 0.975 1.01 0.992 1.01 0.994
NIPS (expensive) 0.989 0.990 1.00 0.999 1.00 0.998
ACL (cheap) 0.984 0.980 1.00 0.985 1.00 0.988

ACL (expensive) 0.987 0.989 0.994 0.992 0.996 0.992

Correlation Left Standard Ratio-AIS Ratio-AIS Ratio-AIS Ratio-AIS
with Long to AIS Geometric Geometric Convex Convex
LR Run Right (reverse) (reverse)

NIPS (cheap) 0.947 0.619 0.973 0.975 0.976 0.981
NIPS (expensive) 0.993 0.852 0.981 0.982 0.981 0.982
ACL (cheap) 0.965 0.578 0.984 0.983 0.987 0.986

ACL (expensive) 0.995 0.892 0.989 0.989 0.990 0.989

Table 5.3: Comparing asymmetric α and symmetric α topic models. Correlation coefficient
with the perplexity ratio estimates from a run of left-to-right in the expensive regime (top),
average empirical variance (evaluated across two runs per document) of the per-document
perplexity ratio (middle), and the overall perplexity ratio for the entire corpus (bottom).
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come. In particular, the forward direction of annealing did not detect an overall advantage

to the asymmetric hyper-parameter model. On the other hand, the difference per direction

allowed us to detect a convergence failure, which is difficult to do in general. Also note that

for the perturbed topics task in Section 5.3.1, the overall perplexity ratios were very consis-

tent between annealing directions, and showed a clearer difference between models than the

baseline algorithms did.

5.3.3 Evaluating Topic Models per Iteration

The iteration-AIS annealing path evaluates the performance of topic model learning algo-

rithms on a per-iteration basis. We explored its performance using the convex path with

1000 and 10,000 temperatures per learned model, annealing between the models at every

10th learning iteration. At the first learning iteration Φ(1), the algorithms were given an

extra 1000 temperatures to compensate for the cold-start from the prior.

Results on ACL and NIPS are shown in Figures 5.7 – 5.10. It was found that iteration-AIS

estimated higher log-likelihoods than left-to-right and standard AIS in both temperature

regimes and data sets (Figures 5.7 and 5.8). The main failure mode of these algorithms

is to underestimate the likelihood by failing to find high probability regions, so higher val-

ues are likely to be better (Wallach et al. , 2009b). Consistent with this observation, the

iteration-AIS likelihood curve at 1000 temperatures coincided with the likelihood curves of

the baselines when they were given ten times more computation. The proposed method also

exhibited much lower variance in the likelihood estimates (Figures 5.9 and 5.10, computed

based on two evaluations of the likelihood per document, and averaged across documents).

This is expected, as the effective number of annealing temperatures is higher, which is known

to reduce the variance of the importance weights (Neal, 2001).
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Figure 5.7: Likelihood vs iteration for iteration-AIS on the ACL corpus. Jumps in log-
likelihood are due to hyper-parameter optimization.
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Figure 5.8: Likelihood vs iteration for iteration-AIS on the NIPS corpus. Jumps in log-
likelihood are due to hyper-parameter optimization.

218



10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

Iteration of Training Algorithm

A
ve

ra
ge

 E
m

pi
ric

al
 V

ar
ia

nc
e 

in
 L

og
−l

ik
el

ih
oo

d 
E

st
im

at
e

 

 

AIS (1000 temperatures)
Left−to−Right (equiv. 1000 temperatures)
Iteration−AIS (1000 temperatures)
AIS (10,000 temperatures)
Left−to−Right (equiv. 10,000 temperatures)
Iteration−AIS (10,000 temperatures)

Figure 5.9: Empirical variance vs iteration for iteration-AIS on the ACL corpus.

219



10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

Iteration of Training Algorithm

A
ve

ra
ge

 E
m

pi
ric

al
 V

ar
ia

nc
e 

in
 L

og
−l

ik
el

ih
oo

d 
E

st
im

at
e

 

 

AIS (1000 temperatures)
Left−to−Right (equiv. 1000 temperatures)
Iteration−AIS (1000 temperatures)
AIS (10,000 temperatures)
Left−to−Right (equiv. 10,000 temperatures)
Iteration−AIS (10,000 temperatures)

Figure 5.10: Empirical variance vs iteration for iteration-AIS on the NIPS corpus.
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Explaining the Behavior of the Baselines

The baselines reported decreasing held-out likelihood in later iterations of the learning al-

gorithm, while iteration-AIS did not. Such a decrease could be due to over-fitting, but is

more likely to be caused by convergence failures due to the topics becoming more complex.

As evidence for this, the dip in likelihood was smaller with increased computation, and all

methods exhibited higher variance in the likelihood estimates for later learning iterations

(Figures 5.9 and 5.10).

Figure 5.11 demonstrates this further by showing the entropy and the prior probability of

the topics. In early iterations, the topics have low entropy, and so annealing is easy –

the Markov chains to sample from them are “high temperature.” At iteration 300, after

optimizing the hyper-parameters, a phase transition occurs as a mode is found which is

far from the prior (Figure 5.11, bottom). This makes sampling from it difficult, and the

performance of the baseline likelihood estimation algorithms, which are initialized based on

the prior, correspondingly degrades.

5.4 Connections to Particle-Filtered MCMC-MLE

In this section we discuss the relationship between iteration-AIS and another algorithm in

the literature due to Asuncion et al. (2010). We have seen that iteration-AIS consecutively

moves a set of samples through a sequence of distributions, with the sequence containing the

models produced at different iterations of a learning algorithm. This is reminiscent of the

particle-filtered (PF) MCMC-MLE algorithm of Asuncion et al. (2010), which does this as

part of the learning algorithm itself. Similarly to iteration-AIS, Asuncion et al. draw a set

of samples based on the parameters at each training iteration by applying MCMC updates

to the samples from the previous iteration. Iteration-AIS uses these samples to approximate
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Figure 5.11: Total entropy and prior probability of the topics per iteration of the collapsed
Gibbs sampling learning algorithm (ACL corpus). The ridges at 100 iteration intervals
correspond to hyper-parameter optimizations.
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the probability of observed data after marginalizing hidden variables, while PF MCMC-

MLE estimates the gradient of the log-likelihood of an undirected model with respect to its

parameters based on these samples. Asuncion et al. use the resulting Monte Carlo estimate

of the gradient to perform a stochastic gradient update, and repeat this process in order to

learn the parameters of the model.

Unlike PF MCMC-MLE, iteration-AIS introduces a sequence of AIS intermediate distribu-

tions between the distributions implied by the models at each training iteration, using e.g.

the geometric and convex paths. When the number of AIS temperatures between learned

models is set to zero, the path of iteration-AIS reduces to the path of PF MCMC-MLE.

Conversely, we can think of the iteration-AIS path as augmenting the PF MCMC-MLE path

with intermediate distributions designed to facilitate a smooth transition between the model

distributions, and to improve the quality of the resulting importance weights.

Therefore, by applying the iteration-AIS path to the particles (a.k.a. samples) of PF MCMC-

MLE, we speculate that the sampling behavior of PF MCMC-MLE could potentially be

improved, which may improve the overall performance of the algorithm. The cost of the

method is the additional overhead of sampling from the intermediate distributions. The

motivation is that spending more effort on the inference step may lead to less time needed in

the learning step. By improving the quality of the particles, it may also lead to a reduction

or elimination of the need for a rejuvination step, which Asuncion et al. use to improve

the effective sample size. As a bonus, since the iteration-AIS path is used, the algorithm

will also obtain estimates of the partition function if the initial distribution of the weights is

normalized. PF MCMC-MLE can also estimate the partition function as it uses a path which

is a special case of the iteration-AIS path, although without the intermediate distributions

to smooth the transitions the estimate may not be as reliable as the suggested approach.

We describe this potential algorithm in more detail in Appendix D.
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5.5 Discussion

We have introduced ratio-AIS, a strategy for comparing topic models, and evaluated its

properties relative to previous methods on two data sets of scientific articles. Ratio-AIS was

found to have low empirical variance, and was able to detect convergence failures, making

it useful for document-level analysis. However, importance sampling can suffer from bias

with a finite number of samples, e.g. approaches such as those described in Wallach et al.

(2009b) will typically underestimate the likelihood. For ratio-AIS in particular this results

in the potential for a bias that favors a particular model when an insufficient number of

samples or temperatures is used, due to the directional nature of the approach. Such a

convergence failure of a Monte Carlo algorithm is in general very difficult to detect, but in

the proposed method the bias is frequently easily detectable by comparing the results of two

Monte Carlo runs. When applied to the evaluation of the per-iteration performance of topic

model training algorithms (iteration-AIS), the method outperforms traditional approaches

even when given an order of magnitude less computation.

Based on our results, we recommend ratio-AIS for document-level analysis, or in cases where

the topics are very similar to each other. Left-to-right is still generally preferred for corpus-

level perplexity comparisons, unless per-iteration curves are desired, in which case we rec-

ommend iteration-AIS be used. When using ratio-AIS, we recommend running the methods

in both annealing directions to gain evidence that a lack of convergence does not bias the

results.

If multiple topic models are to be compared, ratio-AIS can be straightforwardly used to

compare all models to a single baseline model (such as vanilla LDA), and the results can be

reported relative to the baseline. The comparison of multiple models gives further oppor-

tunities for convergence checking: for models a, b and c we can use ratio-AIS to compute

their relative performances a − b and b − c, then compare (a − b) + (b − c) to a ratio-AIS
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estimate of a− c. If convergence has been achieved, these results should be equal. In a more

elaborate approach, an iteration-AIS-style path between any set of models in sequence gives

an estimate of all models’ likelihoods, although this is only beneficial relative to the standard

AIS method if the models can be arranged in a sequence where each consecutive model is

similar.

More sophisticated choices of annealing paths within the ratio-AIS and iteration-AIS frame-

works have the potential to improve the performance of the methods. For example, Neal

(2001) suggests that using a geometric spacing of the temperatures can improve performance,

at least for the geometric path. If the techniques are applied to exponential family mod-

els instead of topic models, the path of Grosse et al. (2013) has been shown to be useful.

The results in Section 5.3.2, Figures 5.7 – 5.10 and Figure 5.11 suggest that asymmetric

hyper-parameters may impede mixing, which reduced the performance of all evaluation al-

gorithms. One potential strategy to mitigate this is the concatenation of several ratio-AIS

annealing paths between copies of the models with “flattened” hyper-parameters. We leave

the investigation of these more complex strategies for future work.

We have assumed in this chapter that the competing topic models have the same parametric

form, and the same number of topics. This is necessary for an AIS path to be defined

between the models, which is a limitation of the approach. It may potentially be possible to

circumvent this limitation by using a variable dimension sampling scheme such as reversible

jump MCMC.

It should be noted that although we have focused on topic models here, the ideas we have

suggested (annealing between models, and annealing along the sequence of models generated

during training) can be applied more broadly to other models. Regardless of the form of the

model, these general techniques apply whenever we are interested in ratios of the evidence,

ratios of partition functions, or the value of the partition function across training iterations.
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5.6 Summary of Contributions

In summary, the contributions of this chapter are:

• We developed an algorithm for comparing two topic models. The method, called ratio-

AIS, anneals between the two models to compute the ratio of their likelihoods, using

a Monte Carlo integration technique called annealed importance sampling (AIS).

• AIS requires as input a sequence of intermediate distributions, known as the annealing

path. We showed how to use two such annealing paths for this procedure: geometric

averages of the distribution (as suggested by Neal (2001), and a sequence of convex

combinations of the parameters.

• We identified a strategy for detecting convergence failures in the proposed method, by

performing the annealing in both directions and comparing the results.

• By applying ratio-AIS recursively to the sequence of consecutive models constructed

during the training of a topic model, we showed how to efficiently and accurately

evaluate the progress of topic model learning algorithms as they are trained, in a

technique referred to as iteration-AIS.

• The ratio-AIS method was evaluated on two corpora of scientific articles. Compared

to previous approaches, it was found that ratio-AIS had lower empirical variance and

was better able to identify the differences between very similar topics. This potentially

comes at the cost of an increased potential for a bias in favor of a particular model,

however this is frequently detectable using the strategy mentioned above.

• We also evaluated iteration-AIS on the scientific corpora, finding that it performed

better than previous approaches, which were more likely to underestimate the likeli-

hood. In some cases, iteration-AIS found a better solution even when given an order

of magnitude less computation time than its competitors.
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• In more speculative work, connections were shown between iteration-AIS and the

particle-filtered MCMC-MLE algorithm for maximum likelihood estimation, suggesting

the potential for the method to be applied in the context of learning.
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Chapter 6

Conclusions and Future Directions

The road goes ever on and on

Out from the door where it began.

Now far ahead the road has gone,

Let others follow it who can!

Let them a journey new begin,

But I at last with weary feet

Will turn towards the lighted inn,

My evening-rest and sleep to meet.

J.R.R. Tolkien, Return of the King
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This dissertation has presented several models and algorithms for the latent variable analysis

of network and text data. We conclude by summarizing the contributions of the thesis,

suggesting potential avenues for future work, and leaving some parting thoughts.

6.1 Contributions of the Thesis

In Chapter 1, we motivated latent variable modeling as a tool for taming and harnessing

digital information overload. We then described a unifying framework for latent variable

methods and used it to overview the literature.

Making the concepts introduced in the first chapter more concrete, Chapter 2 by introduced

DRIFT, a new latent variable model for social networks as they vary over time. The model

posits that social interactions are explained by a set of latent features belonging to each

individual, and that the individuals can gradually gain or lose features as time passes. As a

nonparametric Bayesian model, the number of these latent features is potentially unbounded

and can be inferred from the data. We investigated the performance of the model exper-

imentally, finding that it performed better at prediction than previous methods. We also

showed how to leverage text when building such latent feature network models, in order to

interpret the latent features. The model was applied for exploratory data analysis on Enron

email and Twitter data sets.

The theme of networks and text was continued in Chapter 3, where we developed topical

influence regression (TIR), a model designed to recover influence relationships in a citation

network of scientific articles. The model makes use of the text of the articles in conjunction

with the citation graph, positing that influential articles coerce the articles which cite them

into having similar topics to them. We evaluated TIR both quantitatively and qualitatively,
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finding that the model was able to discover meaningful influence patterns at both the node

level and the document level.

As latent variable techniques are increasingly used to analyze internet data, the scalabil-

ity of the methods becomes crucial. In Chapter 4 we introduced SCVB0, an algorithm for

learning topic models which is fast, accurate and scalable. The algorithm applies a scalable

stochastic method to the collapsed representation of LDA, which allows for simple, efficient

and accurate algorithms. We investigated its performance on several large corpora, finding

that it typically outperformed the previous stochastic algorithm at predicting held-out docu-

ments, while also converging faster. The algorithm was also found to be effective at learning

very quickly from small data sets according to human judgment, pointing to potential ap-

plications in exploratory data analysis. We further analyzed the algorithm theoretically, by

proving its convergence, showing connections to MAP estimation algorithms, and describing

an explanation for the accuracy of the approximations used.

When developing latent variable modeling techniques and algorithms, it is important to

evaluate their performance. Chapter 5 introduced ratio-AIS, a technique for determining

the relative predictive performance of two topic models (e.g. a new method and a baseline).

Experimental results showed that ratio-AIS has low empirical variance, unlike previous ap-

proaches, making it useful for document-level analyses. As a trade-off, the directional nature

of the algorithm gave the potential for it to have an increased directional bias in its com-

parisons if given insufficient computation. However, this was frequently detectable, unlike

for most Monte Carlo algorithms. We also showed how to make use of this technique to

efficiently evaluate the performance of topic model training algorithms, by evaluating their

predictive performance over time as they are trained, in a method called iteration-AIS. It was

found that iteration-AIS had benefits in terms of computation time, predictive performance

and variance relative to approaches which did not take advantage of the sequential nature

of the per-iteration evaluation task.
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6.2 Future Directions

The models and algorithms we have developed in this thesis each have the potential to seed

further endeavors. We will discuss some of the possibilities here.

Firstly, Chapter 2 introduced DRIFT and LFRM LDA, which model networks over time and

text-augmented networks, respectively. These ideas are somewhat orthogonal, and there is

the potential to leverage both ideas together in a single model. Scaling up DRIFT and the

LFRM to large data sets is an important future direction. Stochastic variational inference

algorithms such as those used in Chapter 4 are an obvious choice for attempting this, along

the lines of Gopalan et al. (2012).

The topical influence regression (TIR) model of Chapter 3 could readily be extended to

capture other aspects of scientific influence, such as the effects of authors and journals on

topical influence, and to exploit the context in which citations occur. From an exploratory

analysis perspective, it would be instructive to compare topical influence trajectories over

time for different papers. This could be further facilitated by explicitly modeling the dy-

namics of each article’s topical influence score. The TIR framework could potentially also be

applicable to other application domains such as modeling how interpersonal influence affects

the spread of memes via social media.

To complement TIR, it would be useful to also have systems for identifying articles which

are important for alternative reasons, such as providing methodological tools and/or demon-

strating important facts. Ultimately a suite of such tools could feed into a system such as

Google Scholar or Citeseer. We envision that this line of work will also be useful for building

visualization tools to help researchers explore scientific corpora.

The SCVB0 method could potentially be adapted to Teh et al. (2006)’s hierarchical Dirichlet

process version of LDA, leveraging the work of Sato et al. (2012). An initial attempt at this
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has been made in a NIPS workshop paper by Bleier (2013). The speed and scalability of

the method (in terms of vocabulary size and the number of topics) could likely be improved

by exploiting sparsity, using techniques such as those employed by Mimno et al. (2012).

Furthermore, the collapsed representation facilitates the use of the parallelization techniques

explored by Newman et al. (2009) and Smola & Narayanamurthy (2010). It may also be

possible to generalize the ideas of SCVB0 to models other than LDA. In this direction, the

approximate mean field framework of Asuncion (2010) is one possible starting point. A

potentially very useful application of SCVB0 is to incorporate it into an interactive software

tool for exploring the topics of document corpora in real-time.

Regarding the annealed importance sampling methods introduced in Chapter 5, these ideas

are likely to be useful for other latent variable models such as RBMs. As mentioned in

the chapter and in Appendix D, iteration-AIS may be useful in a learning context, e.g.

by improving the inference inner loop in the particle-filtered MCMC-MLE algorithm of

Asuncion et al. (2010). It may also be possible to find other AIS paths with better mixing

properties, or different trade-offs between bias and variance.

6.3 Parting Thoughts

Speaking more broadly, there will always be a need to model, interpret and predict high-

dimensional data. Latent variable modeling is here to stay. In this thesis, we have developed

latent variable models and the algorithms to fit and evaluate them, in order to find meaningful

and predictive latent representations. Further advances in model building and model fitting

will allow us to continue to find interesting and useful patterns in new kinds of data.

To make these methods easier to develop, refine, and use, probabilistic programming sys-

tems have the potential to revolutionize the field. These systems, including WinBUGS
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(Lunn et al. , 2000), JAGS1 and Stan (Stan Development Team, 2014), allow the specifi-

cation of a model in a simple programming language, and then automatically provide an

inference algorithm to fit the model. This brings the potential to broaden the audience of

these methods within adjacent fields of science by greatly reducing the level of expert machine

learning knowledge needed to build and use them. As the projects mature, and automatic

general-purpose inference algorithms become more scalable, we are likely to see a renaissance

of the field of latent variable modeling, and machine learning in general. Along these lines,

a very recent advance due to Ranganath et al. (2014) aims to make stochastic variational

methods such as those discussed in Chapter 4 more generally and easily applicable, in order

to ease the development of new models.

Complementing the special-purpose hand-designed latent variable models we have discussed,

there is another trend towards the development of general-purpose latent variable models,

such as those studied in the deep learning community. Improvements in hardware and recent

algorithmic developments such as the dropout algorithm (Hinton et al. , 2012) have led to a

number of recent successes with these methods, not to mention a string of high-profile hires

of deep learning experts by leading technology companies. As with special-purpose latent

variable models, these techniques can hope to gain even broader adoption as they mature

beyond a reliance on expert knowledge in order to achieve good performance in practice.

This dissertation has taken several small steps towards the overall goal of gaining insight

into data in an increasingly data-driven world. We anticipate that latent variable modeling

will continue to provide new ways to help us achieve this, and look forward to exciting

developments yet to come.

1http://mcmc-jags.sourceforge.net/
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Bottou, Léon. 1998. Online algorithms and stochastic approximations. In: Saad, David (ed),
Online Learning and Neural Networks. Cambridge University Press. revised, oct 2012.
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Rosner, F, Hinneburg, A, Röder, M, Nettling, M, & Both, A. 2013. Evaluating topic coher-
ence measures. In: Proceedings of the 2013 NIPS Workshop on Topic Models.

Sarkar, P., & Moore, A.W. 2005. Dynamic social network analysis using latent space models.
ACM SIGKDD Explorations Newsletter: Special Edition on Link Mining, 7(2), 31–40.

243



Sarkar, P., Siddiqi, S.M., & Gordon, G.J. 2007. A latent space approach to dynamic embed-
ding of co-occurrence data. Pages 420–427 of: Proceedings of the Eleventh International
Conference on Artificial Intelligence and Statistics.

Sato, Issei, & Nakagawa, Hiroshi. 2012. Rethinking collapsed variational Bayes inference for
LDA. Pages 999–1006 of: Langford, John, & Pineau, Joelle (eds), Proceedings of the 29th
International Conference on Machine Learning. New York, NY, USA: Omnipress.

Sato, Issei, Kurihara, Kenichi, & Nakagawa, Hiroshi. 2012. Practical collapsed variational
Bayes inference for hierarchical Dirichlet process. Pages 105–113 of: Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM.

Scott, J.G., & Baldridge, J. 2013. A recursive estimate for the predictive likelihood in a
topic model. Pages 527–535 of: Proceedings of the Sixteenth International Conference on
Artificial Intelligence and Statistics.

Scott, S.L. 2002. Bayesian hidden Markov models : Recursive computing in the 21st century.
Journal of the American Statistical Association, 97(457), 337– 351.

Sethuraman, Jayaram. 1994. A constructive definition of Dirichlet priors. Statistica Sinica,
4, 639–650.

Shaparenko, B., & Joachims, T. 2009. Identifying the original contribution of a document
via language modeling. Pages 350–365 of: Machine Learning and Knowledge Discovery
in Databases. Springer.

Simmel, G. 1955. Conflict and the Web of Group Affiliations. The Free Press.

Smola, Alexander, & Narayanamurthy, Shravan. 2010. An architecture for parallel topic
models. Pages 703–710 of: Proceedings of the VLDB Endowment, 36th International
Conference on Very Large Data Bases, vol. 3.

Smolensky, P. 1986. Information processing in dynamical systems: foundations of harmony
theory. Pages 194–281 of: Parallel Distributed Processing: Explorations in the Microstruc-
ture of Cognition, Vol. 1. MIT Press.

Snijders, T.A.B. 2006. Statistical methods for network dynamics. Pages 281–296 of: Pro-
ceedings of the XLIII Scientific Meeting, Italian Statistical Society.

Spearman, Charles. 1904. ”General intelligence,” objectively determined and measured. The
American Journal of Psychology, 15(2), 201–292.

Spiro, Emma S., Fitzhugh, Sean, Sutton, Jeannette, & Butts, Carter T. 2011. Hazards,
Emergency Response, and Online Informal Communication (HEROIC) Project Data Set:
Emergency Management Accounts - Messages and Relationships. Electronic data file.

Stan Development Team. 2014. Stan: A C++ Library for Probability and Sampling, Version
2.2.

244



Sutskever, Ilya, & Tieleman, Tijmen. 2010. On the convergence properties of contrastive
divergence. Pages 789–795 of: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics.

Sutton, Jeannette, Spiro, Emma, Butts, Carter, Fitzhugh, Sean, Johnson, Britta, & Greczek,
Matt. 2013. Tweeting the spill: Online informal communications, social networks, and con-
versational microstructures during the Deepwater Horizon oilspill. International Journal
of Information Systems for Crisis Response and Management, 5(1), 58–76.

Teh, Yee Whye, Welling, Max, Osindero, Simon, & Hinton, Geoffrey E. 2003. Energy-based
models for sparse overcomplete representations. Journal of Machine Learning Research,
4, 1235–1260.

Teh, Yee Whye, Jordan, Michael I, Beal, Matthew J, & Blei, David M. 2006. Hierarchical
Dirichlet processes. Journal of the American Statistical Association, 101(476).

Teh, Y.W., Newman, D., & Welling, M. 2007a. A collapsed variational Bayesian infer-
ence algorithm for latent Dirichlet allocation. Pages 1353–1360 of: Advances in Neural
Information Processing Systems 19. MIT; 1998.

Teh, Y.W., Görür, D., & Ghahramani, Z. 2007b. Stick-breaking construction for the Indian
buffet process. Pages 556–563 of: Proceedings of the Eleventh International Conference
on Artificial Intelligence and Statistics.

Teufel, S., Siddharthan, A., & Tidhar, D. 2006. Automatic classification of citation function.
Pages 103–110 of: Proceedings of the 2006 Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics.

Tibshirani, Robert. 1996. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 267–288.

Tieleman, Tijmen. 2008. Training restricted Boltzmann machines using approximations
to the likelihood gradient. Pages 1064–1071 of: Proceedings of the 25th International
Conference on Machine Learning. ACM.

Tipping, Michael E, & Bishop, Christopher M. 1999. Probabilistic principal component
analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
61(3), 611–622.

Titsias, Michalis K. 2008. The infinite gamma-Poisson feature model. Pages 1513–1520 of:
Advances in Neural Information Processing Systems 20.

Van Gael, J., Teh, Y.W., & Ghahramani, Z. 2009. The infinite factorial hidden Markov
model. Pages 1697 – 1704 of: Advances in Neural Information Processing Systems 21.

Van Gael, Jurgen. 2011. Bayesian Nonparametric Hidden Markov Models. Ph.D. thesis,
University of Cambridge.

245



Wallach, Hanna M, Mimno, David M, & McCallum, Andrew. 2009a. Rethinking LDA: Why
priors matter. Pages 1973–1981 of: Advances in Neural Information Processing Systems
22.

Wallach, H.M. 2006. Topic modeling: Beyond bag-of-words. Pages 977–984 of: Proceedings
of the 23rd International Conference on Machine Learning. ACM.

Wallach, H.M., Murray, I., Salakhutdinov, R., & Mimno, D. 2009b. Evaluation methods for
topic models. Pages 1105–1112 of: Proceedings of the 26th International Conference on
Machine Learning. ACM.

Wang, C., & Blei, D. 2011. Collaborative topic modeling for recommending scientific articles.
Pages 448–456 of: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

Wang, Chong, & Blei, David M. 2009. Decoupling sparsity and smoothness in the dis-
crete hierarchical Dirichlet process. Pages 1982–1989 of: Advances in Neural Information
Processing Systems 22.

Wasserman, Stanley. 1994. Social Network Analysis: Methods and Applications. Cambridge
university press.

Wasserman, Stanley, & Pattison, Philippa. 1996. Logit models and logistic regressions for
social networks: I. An introduction to Markov graphs and p∗. Psychometrika, 61(3),
401–425.

Williamson, S., Wang, C., Heller, K., & Blei, D. 2010. The IBP compound Dirichlet process
and its application to focused topic modeling. Pages 1151–1158 of: Proceedings of the
27th International Conference on Machine Learning.

Yao, Limin, Mimno, David, & McCallum, Andrew. 2009. Efficient methods for topic
model inference on streaming document collections. Pages 937–946 of: Proceedings of the
15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
ACM.

Zhang, XianXing, & Carin, Lawrence. 2012. Joint modeling of a matrix with associated
text via latent binary features. Pages 1565–1573 of: Advances in Neural Information
Processing Systems 25.

Zhu, Xiaodan, Turney, Peter, Lemire, Daniel, & Vellino, André. 2014. Measuring academic
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Appendix A

Details of LFRM LDA

To recover latent features and their semantics, we propose to jointly model a network so-

ciomatrix Y and a collection of text documents ω comprising the communications within

that network. Within ω, it is assumed that there are edge documents ω(ij), each associated

with an edge (i, j) in the network, and node documents ω(i), each associated with a node i

in the network. The model builds upon the (finite) LFRM and latent Dirichlet allocation.

Extensions to infinite dimensional latent features and time-varying data are also possible,

but we focus on the simple case here.

A.1 Generative Model

The generative process of the model is assumed to be as follows. First, the finite LFRM

generative process is performed, generating binary vector representations in the latent N×K

matrix Z and an N ×N observed network Y, by way of Equations 2.3 – 2.10.
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Next, an LDA topic Φ(k) is generated for each of the latent features k. Text documents ω

are then generated for one or more of the edges and the nodes of Y.1 The text documents

ω(ij), ω(i) are generated via LDA with a unique Dirichlet prior α(ij), α(i) on the distribution

over topics for each document. The Dirichlet parameters are chosen such that the topics

corresponding to the latent features belonging to the actors associated with the document get

the most weight in the prior. This modeling strategy is similar to the Dirichlet-multinomial

regression (DMR) model of Mimno & McCallum (2008), except that the Dirichlet parameters

are selected based on latent features instead of observed features.

We assume that all documents have the same total Dirichlet prior concentration α+, and that

a proportion γ of the prior weight comes from the topics of the latent features of the entities

associated with the document, with the remaining weight coming from a flat distribution

over all the topics. For documents ω(ij) on edges, the γ proportion of the prior weight is

divided beween i’s features and j’s features with proportion λ going to i’s features. This

leads to K-dimensional Dirichlet priors over the K topics with parameters

α
(ij)
k = α+

( γλ
∑

k′ zik′
zik +

γ(1− λ)
∑

k′ zjk′
zjk +

(1− γ)

K

)

(A.1)

α
(i)
k = α+

( γ
∑

k′ zik′
zik +

(1− γ)

K

)

. (A.2)

The documents are then sampled according to the LDA generative process.

θ(ij) ∼ Dirichlet(α(ij))

For each word ω
(ij)
l

Sample a topic t
(ij)
l ∼ Discrete(θ(ij))

Sample the word ω
(ij)
l ∼ Discrete(Φ

t
(ij)
l

) ,

and similarly for documents on the nodes. We call this model LFRM LDA.

1We do not model which documents are generated or their lengths, but it would be straightforward to
extend the model to include this.

249



z
(1)
ik

N ×K(1)

z
(2)
jk

M ×K(2)

yij

N ×M

wkk′

K(1)
×K(2)

ψ

θ(d)t
(d)
l

ω
(d)
l

Binary Matrix FactorizationLatent Dirichlet Allocation

Dirichlet prior on topic counts determined by latent features

Φ

D
n(d)

β

Figure A.1: Graphical model for BMF LDA.

A.1.1 Extension to Rectangular Matrices

We can extend this model to operate on rectangular N×M data matricesY, using the binary

matrix factorization (BMF) model of Meeds et al. (2007). The BMF model represents the

N “row” entities and M “column” entities by latent vectors of binary features Z
(1)
i and

Z
(2)
j of dimension N × K(1) and M × K(2), respectively. After adding effects terms as in

Miller et al. (2009) and writing the model in the framework of Section 1.2, we can write the

BMF generative process for the matrix Y as

ηij = z
(1)
i Wz

(2)⊺
j + ρi + ξj + ǫ (A.3)

E[yij] , µij = g−1(ηij) (A.4)

Pr(yij|z
(1), z

(2)
j ,W, ψ) = fθ(f)(µij) , (A.5)

where g−1 is an inverse link function, ρ, ξ and ǫ are optional effects and intercept terms,

and θ(f) contains any extra parameters relating to the likelihood such as variances. In BMF,

Z
(1)
i and Z

(2)
j are given IBP priors. The same generative process for the text, conditioned

on the network and latent features, can be used as for the square matrix case, but with

K = K(1) +K(2) topics and using instead the following Dirichlet priors:

250



α
(ij)
k = α+

( γλ
∑

k′ z̄
(1)
ik′

z̄
(1)
ik +

γ(1− λ)
∑

k′ z̄
(2)
jk′
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(2)
jk +

(1− γ)

K

)

(A.6)

α
(i)
k = α+

( γ
∑

k′ z̄
(1)
ik′

z̄
(1)
ik +

(1− γ)

K

)

(A.7)

α
(j)
k = α+

( γ
∑

k′ z̄
(2)
jk′

z̄
(2)
ik +

(1− γ)

K

)

, (A.8)

where Z̄(1) = [Z(1)|0N,K(2)], Z̄(2) = [0M,K(1)|Z(2)] are the Z matrices extended to have K

columns. These Dirichlet priors are equivalent to Equations 2.30 and 2.31 if Z(1) and Z(2)

are equal, and “row topics” are equal to their corresponding “column topics”. Thus, this

version of the model is more general than LFRM LDA, the network version described above.

We call this final model BMF LDA. The graphical model of BMF LDA is shown in Figure

A.1. To make this concrete and to demonstrate the flexibility of the framework, let us

consider three examples:

1. Y is an N ×N matrix of the non-negative integer counts of the number of emails sent

between N people within a corporation within a fixed time period, and ω(ij) is the

sequence of words of all of the emails sent from actor i to actor j. We model Y using

the LFRM (Miller et al. , 2009), with yij ∼ Poisson(exp(ziWz⊺j )).

2. Y is an N × M matrix representing the two-mode network of N users of a recom-

mendation system and M products (such as movies or restaurants), with yij being

a real-valued rating that user i gives to product j. Text document ωij corresponds

to the review that user i wrote for product j. Ratings are assumed distributed via

yij ∼ Gaussian(z
(1)
i Wz

(2)⊺
j , σg).

3. Y is an N × N binary matrix representing friendship ties in an online social media

network, and ωi is the total word counts of all microblogging status updates (e.g.
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“tweets” on the Twitter social media website) by user i. A binary friendship tie yij

between actors i and j exists with probability σ(ziWz⊺j ).

A.2 Inference

We perform inference using a Gibbs sampling Markov chain Monte Carlo technique. For the

LDA portion of the model we use the collapsed Gibbs sampling approach of Griffiths & Steyvers

(2004), integrating out Θ and Φ. The update equations are almost identical to those of Grif-

fiths and Steyvers, except that each document d now has its own unique topic prior parameter

vector α(d), which arises from the latent features of the entities associated with the document

(d indexes over both node and edge documents):

Pr(t
(d)
l = k| . . .) ∝ (n

(d)
k + α

(d)
k )

n
(ωd

l
)

k + βk
nk +

∑

k βk
, (A.9)

where the nk’s are the counts of the occurrences of topic k over all of the entries determined

by the superscript, excluding the current assignment for t
(d)
l . From the topic assignments,

we can recover estimates of Φ and Θ as in Equations 6 and 7 from (Griffiths & Steyvers,

2004). The full conditionals for the latent features z
(a)
ik are given by

Pr(z
(a)
ik = z| . . .) ∝ Pr(Y|z

(a)
ik = z,Z

(a)
¬ik,Z

¬(a),W, ψ)π
(a)
k

z
(1− π

(a)
k )1−z

∏

d

Pr(t(d)|z
(a)
ik = z,Z

(a)
¬ik,Z

¬(a), γ, λ) , (A.10)

where Pr(t(d)|z
(a)
ik = z,Z

(a)
¬ik,Z

¬(a), γ, λ) is a multivariate Polya distribution with parameter

vector α(d). This is similar to the update equation in (Meeds et al. , 2007), except that the

conditionals are now weighted by the multivariate Polya terms, that specify the effect that

each value of z
(a)
ik has on the likelihood of the current topic assignments.
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As in BMF, closed form updates for the entries of W are not available, so we resort to

Metropolis-Hastings updates, with the full conditional being

Pr(wkk′| . . .) ∝ Pr(yij|Z
(1),Z

(2)
j , wkk′,W¬kk′, ψ)Pr(wkk′|σW ) . (A.11)

We use a Gaussian proposal distribution, Gaussian(w
(new)
kk′ ;w

(old)
kk′ , σW ). Updates for addi-

tional parameters such as intercept terms and row or column effects are performed similarly.

The hyper-parameters γ, λ, and α+ for the Dirichlet priors on the topic distributions for each

document are of great importance to the model (Wallach et al. , 2009a), but it is not clear

how to choose them apriori. Instead, we follow Wallach et al. and take an empirical Bayes

approach, optimizing them in each iteration of the MCMC scheme instead of sampling or

hand-tuning them. We use gradient ascent to maximize the multivariate Polya log-likelihood

of the topic assignments with respect to [γ, λ], conditioned on the other parameters/variables.

The topic distribution concentration parameter α+ is optimized using an iterative procedure

that maximizes a lower bound on the multivariate Polya log-likelihood (Minka, 2000):

α+ ←
α+

∑

d

∑

km
(d)
k

(

Ψ(n
(d)
k + α+m

(d)
k )−Ψ(α+m

(d)
k )

)

∑

d

(

Ψ(n(d) + α+)−Ψ(α+))
, (A.12)

where Ψ(x) = d log Γ(x)
dx

is the digamma function, and m(d) is the mean of the Dirichlet prior

on document d. Similar strategies could be used to optimize β; in our experiments we simply

use a flat prior with a fixed value, βk = 0.1.

Finally, after each iteration we re-align topics with features, choosing the assignment that

maximizes the multivariate Polya log-likelihood of the topic counts. Let h : {1, 2, . . .K} →

{1, 2, . . .K} be a bijection from topics to features. Discarding terms of the log-likelihood

objective function that do not depend on h,
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∑

d

logPr(t(d)|h, . . .) =
∑

d

(

∑

k

log Γ(n
(d)
k + α+m

(d)
h(k))−

∑

k

log Γ(α+m
(d)
h(k))

+ log Γ(α+)− log Γ(n(d) + α+)
)

=
∑

d

∑

k

log Γ(n
(d)
k + α+m

(d)
h(k))−

∑

d

∑

k

log Γ(α+m
(d)
h(k))

+ const

=
∑

d

∑

k

log Γ(n
(d)
k + α+m

(d)
h(k))−

∑

d

∑

k

log Γ(α+m
(d)
k )

+ const

=
∑

k

∑

d

log Γ(n
(d)
k + α+m

(d)
h(k)) + const

=
∑

k

vk,h(k) + const ,

where vk,k′ ≡
∑

d log Γ(n
(d)
k + α+m

(d)
k′ ) is the value of assigning topic k to feature k′. The

task of finding the bijection h to maximize
∑

k vk,h(k) is known as the assignment problem

in the combinatorial optimization literature. We use the Hungarian algorithm (Kuhn, 1955)

to solve this.
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Appendix B

Derivation of the Unnormalized MAP

Algorithm

In this appendix we derive an EM algorithm for MAP estimation, where the parameters

are represented by unnormalized count matrices. The algorithm, which we refer to as

MAP LDA U, is due to Asuncion et al. (2009). Here, we give a more complete deriva-

tion of the algorithm than in Asuncion et al., and show that by using a certain ordering of

the EM updates, the result is an algorithm which is very similar to CVB0.
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B.1 An EM Algorithm

As a warm-up, we first consider an algorithm for MAP estimation in the usual parame-

terization of LDA. MAP estimation aims to maximize the log posterior probability of the

parameters,

logPr(Θ,Φ|w, β, α) =

D
∑

d=1

Nd
∑

i=1

log
(

K
∑

k=1

Pr(w
(d)
i , z

(d)
i |θ

(d),Φ)
)

+
D
∑

d=1

K
∑

k=1

(α− 1) log(θ
(d)
k ) +

W
∑

w=1

K
∑

k=1

(β − 1) log(Φ(k)
w ) + const.

(B.1)

This objective function cannot easily be optimized directly via, e.g., a gradient update, since

the log-likelihood term and its gradient require a sum over z inside the logarithm. Instead,

EM may be performed. A standard Jensen’s inequality argument gives the EM objective

function as described by Neal & Hinton (1998), which, when applied to the MAP estimation

problem, is a lower bound L(Θ,Φ, γ̄) on the posterior probability (cf. Bishop et al. (2006)),

logPr(Θ,Φ|X) ≥ L(Θ,Φ, γ̄) , R(Θ,Φ, γ̄)−
∑

idk

γ̄idk log γ̄idk , (B.2)

where

R(Θ,Φ; Θ(t),Φ(t)) =
∑

wk

(
∑

id:w
(d)
i =w

γ̄idk + β − 1) log Φ(k)
w

+
∑

dk

(
∑

i

γ̄idk + α− 1) log θ
(d)
k + const (B.3)
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is the expected complete data log-likelihood, plus terms arising from the prior, and the γ̄idk’s

are E-step “responsibilities”,

γ̄idk , Pr(z
(d)
i = k|Θ,Φ, w

(d)
i ) ∝ Pr(w

(d)
i |z

(d)
i = k,Θ,Φ)Pr(z

(d)
i = k|Θ,Φ) = Φ

(k)

w
(d)
i

θ
(d)
k .

(B.4)

The E-step update computes these responsibility values. After adding Lagrange terms

−
∑

k λ
Φ
k (
∑

w Φ
(k)
w − 1) and −

∑

d λ
Θ
d (
∑

k θ
(d)
k − 1) to constrain the parameter vectors to sum

to one, taking derivatives and setting to zero, we obtain the following M-step updates:

Φ(k)
w :∝

∑

id:w
(d)
i =w

γ̄idk + β − 1 θ
(d)
k :∝

∑

i

γ̄idk + α− 1 . (B.5)

B.2 An EM Algorithm with an Unnormalized Param-

eterization

It is possible to reparameterize the above EM algorithm for LDA in terms of unnormalized

counts of the EM “responsibilities” instead of Θ and Φ (Asuncion et al. , 2009), which we

refer to as the EM statistics. Their definitions are given in Equation 4.58, which we reproduce

here:

N̄Z
k ,

∑

id

γ̄idk N̄Θ
dk ,

∑

i

γ̄idk N̄Φ
wk ,

∑

id:w
(d)
i =w

γ̄idk . (B.6)

For given values of the parameters Θ̂ and Φ̂ obtained after an M-step update, we can rewrite

these parameters in terms of the EM statistics by plugging the definitions in Equation B.6

into the M-step updated values of the parameters in Equation B.5,
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Φ̂(k)
w =

N̄Φ
wk + β − 1

N̄Z
k +W (β − 1)

θ̂
(d)
k =

N̄Θ
dk + α− 1

Cd +Kα−K
. (B.7)

If we let these EM statistics vary to some other values ˆ̄NΦ, ˆ̄NΘ, ˆ̄NZ, not necessarily synchro-

nized with the counts but having entries which sum to the number of words in the corpus

C, Equation B.7 will give us back some other (suboptimal) Θ̂ and Φ̂. The EM bound will

still hold for these other suboptimal values, which we will refer to as estimated EM statis-

tics. So we can substitute Equation B.7 into the EM bound of Equation B.2 to obtain a

reparameterization in terms of the (estimated) EM statistics:

logPr(Θ,Φ|X) ≥
∑

wk

(
∑

id:w
(d)
i =w

γ̄idk + β − 1) log( ˆ̄NΦ
wk + β − 1)

+
∑

dk

(
∑

i

γ̄idk + α− 1) log( ˆ̄NΘ
dk + α− 1)

−
∑

k

(
∑

id

γ̄idk +W (β − 1)) log( ˆ̄NZ
k +W (β − 1))

−
∑

idk

γ̄idk log γ̄idk + const (B.8)

where ˆ̄NΦ, ˆ̄NΘ and ˆ̄NZ are current estimates of the EM statistics, not necessarily synchro-

nized with the γ̄’s. These variables correspond to equivalent parameter estimates Θ̂ and Φ̂,

so they should be understood as parameters rather than as statistics derived from γ̄. We

will now derive an EM algorithm which operates on this parameterization.

To derive M-step updates, we first add Lagrangian terms to enforce the constraints that each

of the estimated EM statistics sums to the number of words in the corpus C, −λΦ(
∑

wk
ˆ̄NΦ
wk−

C), −λΦ(
∑

dk
ˆ̄NΘ
dk − C), λZ(

∑

k
ˆ̄NZ
k − C). In the following, we derive the update for ˆ̄NΦ

wk;

the derivation is similar for the other parameters.
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We take derivatives of this Lagrangian with respect to each parameter and set them to zero,

∑

id:w
(d)
i =w

γ̄idk + β − 1

ˆ̄NΦ
wk + β − 1

− λΦ = 0

∑

id:w
(d)
i =w

γ̄idk + β − 1 = λΦ(
ˆ̄NΦ
wk + β − 1)

ˆ̄NΦ
wk =

∑

id:w
(d)
i =w

γ̄idk + β − 1

λΦ
− (β − 1) . (B.9)

Plugging Equation B.9 into the constraint which the Lagrangian enforces, we have

C =
∑

wk

ˆ̄NΦ
wk =

1

λΦ

∑

wk

(

∑

id:w
(d)
i =w

γ̄idk + β − 1
)

−KW (β − 1) .

Solving for the Lagrange multipliers, they turn out to be one:

λΦ =

∑

wk

∑

id:w
(d)
i =w

γ̄idk +KW (β − 1)

C +KW (β − 1)
=
C +KW (β − 1)

C +KW (β − 1)
= 1 .

Plugging this back into Equation B.9 (and similarly for the other estimated EM statistics),

we obtain M-step updates which synchronize the estimated EM statistics ˆ̄N with the current

values of the actual EM statistics N̄, following definitions in Equation 4.58 (a.k.a. Equation

B.6),

ˆ̄NΘ := N̄Θ ˆ̄NΦ := N̄Φ ˆ̄NZ := N̄Z . (B.10)

Note that after the M-step,
∑

w
ˆ̄NΦ
wk =

ˆ̄NZ
k , ∀k, and we did not need to enforce this explicitly

in the algorithm. The E-step finds the expected value of the complete-data log-likelihood,

as encoded by the responsibilities γ̄id. Plugging in the estimates of Θ and Φ from Equation

B.7 into Equation B.4 gives us the update
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γ̄idk :∝

ˆ̄NΦ

w
(d)
i k

+ β − 1

ˆ̄NZ
k +W (β − 1)

( ˆ̄NΘ
dk + α− 1) . (B.11)

Alternatively, adding Lagrange terms
∑

id λid(
∑

k γ̄idk − 1) to the bound to enforce the con-

straint that the γ̄’s sum to one, setting the derivatives to zero then solving for γ̄id also gives

us Equation B.11.

We have shown that both updating the γ̄’s (the E-step) and subsequently synchronizing the

EM statistics with the γ̄’s (the M-step) each optimizes the EM lower bound. The standard

EM algorithm alternates between complete E and M-steps, i.e. updating all of the γ̄id’s,

followed by synchronizing the EM statistics with the responsibilities. When the algorithm

has converged, we can recover parameter estimates from the estimated EM statistics using

Equation B.7.

However, the EM algorithm can be viewed as a coordinate ascent algorithm on the lower

bound objective function, and partial E andM-steps also improve this bound (Neal & Hinton,

1998). In our case, both updating a single γ̄id, and subsequently synchronizing the EM

statistics to reflect the new value (partial E and M-steps, respectively) are coordinate as-

cent updates which improve the EM lower bound in Equation B.8. So an algorithm that

iteratively performs the update in Equation B.11 for each token (a partial E-step), while

continuously keeping the EM statistics in synch with the γ̄id’s as in Equation B.6 (a partial

M-step), is equivalent to the above EM algorithm but merely performing the coordinate as-

cent updates in a different order. This algorithm is very similar to CVB0, but using Equation

B.11 (referred to as Equation 4.57 in the main body of this dissertation) instead of Equation

4.28. Such a strategy is likely to be more effective in practice than alternating full E-steps

and M-steps, as it will propagate the results of the updates sooner, allowing up-to-date EM

statistics to be used when updating each γ̄id.
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Appendix C

Lyapunov Function for SCVB0

A Lyapunov function can be understood as an “objective function” which a stochastic al-

gorithm would monotonically improve, if sufficiently small steps were taken and stochastic

noise were absent. The existence of such a function is a standard argument for the stability

and convergence of a stochastic algorithm. Theorem 2.3 of Andrieu et al. (2005) states that

convergence is assured for a Robbins-Monro SA algorithm endowed with a Lyapunov function

with certain properties, along with a boundedness condition and an appropriate sequence of

step sizes. Andreiu et al. consider an SA with state space Θ̆ for finding h(θ) = 0, where

Θ̆ is an open subset of Rn, and h : Θ̆ → R
n. They require the existence of a continuously

differentiable function w : Θ̆→ [0,∞), the Lyapunov function, where:

• (i) There exists M0 > 0 such that

L , {θ ∈ Θ̆, 〈∇w(θ), h(θ)〉 = 0} ⊂ {θ ∈ Θ̆, w(θ) < M0},

• (ii) There exists M1 ∈ (M0,∞] such that {θ ∈ Θ̆, w(θ) ≤M1} is a compact set,

• (iii) For any θ ∈ Θ̆ \ L, 〈∇w(θ), h(θ)〉 < 0,

• (iv) w(L) has an empty interior.

261



To establish convergence, a boundedness condition must also hold, namely that θ remains

within a compact set K ⊂ Θ̆.

In our case, recall that in Section 4.6 we showed that the SCVB0 updates for each of the EM

statistics c corresponds to a Robbins-Monro SA for finding the zeros of fc(X, ŝ
(t))− ŝ

(t)
c , i.e.

the fixed points of MAP LDA U for ŝc. In the overall algorithm, θ = ( ˆ̄NΘ
(:),

ˆ̄NΦ
(:),

ˆ̄NZ
(:))

⊺ ∈ R
n,

where we have concatenated the entries of the estimated EM statistics matrices so that θ is

a vector of length n, and h(θ) is the direction of the M-step update that we would take if we

were to first perform a full E-step. Finding h(θ) = 0, as the SA algorithm is designed to do,

corresponds to finding the fixed points of the MAP LDA U EM algorithm, which are at the

stationary points of the posterior distribution of the parameters, i.e. the objective function

for MAP estimation.

We will now show that the negative of the EM lower bound, augmented with Lagrange terms,

is a Lyapunov function of the overall algorithm which satisfies the above conditions. As we

found in Appendix B, if we include Lagrange constraints in the EM bound to ensure that

the EM statistics sum to C, set the gradient to zero and solve for the Lagrange multipliers,

the Lagrange multipliers turn out to equal one. Substituting this value into the Lagrangian

and dropping constant terms, we have our candidate function

−w( ˆ̄NΘ, ˆ̄NΦ, ˆ̄NZ) ,
∑

wk

[

(
∑

id:w
(d)
i =w

γ̄idk + β − 1) log( ˆ̄NΦ
wk + β − 1)− ˆ̄NΦ

wk

]

+
∑

dk

[

(
∑

i

γ̄idk + α− 1) log( ˆ̄NΘ
dk + α− 1)− ˆ̄NΘ

dk

]

−
∑

k

[

(
∑

id

γ̄idk +W (β − 1)) log( ˆ̄NZ
k +W (β − 1))− ˆ̄NZ

k

]

−
∑

idk

γ̄idk log γ̄idk , (C.1)
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where γ̄ are E-step estimates computed from the current EM statistics – note that w(θ) is

not a function of them. We want to show that conditions (i) – through (iv), along with the

boundedness condition, hold for w(θ).

Regarding boundedness, we select the compact set K to be the non-negative hemisphere of

the closed L∞ ball with radius C, K = {θ ∈ R
n|∀jθj ≥ 0, ‖θ‖∞ ≤ C}. The state θ is always

within the L∞ ball because each of the EM statistics matrices are constrained to sum to

C (or Cd), which is enforced because the updates take the form of convex combinations of

matrices which satisfy the constraint. It is worth noting that when the hyper-parameters

satisfy α − 1 > 0 and β − 1 > 0 (which we assume as we are performing MAP estimation

rather than maximum likelihood estimation), θ is furthermore always within the interior of

the ball, because every γ̄idk is non-zero, so every entry of the EM statistics count matrices

is non-zero and less than C. Andreiu et al. require K ⊂ Θ̆ for some larger open set Θ̆.

We can choose Θ̆ to be a slightly larger set of finite radius, say Θ̆ = {θ ∈ R
n|∀jθj ≥

−min(α − 1, β − 1)/2, ‖θ‖∞ < C + 1}, noting that the objective function is defined over

slightly negative values greater than −min(α − 1, β − 1) as the values inside the logarithm

will be positive. The algorithm will never reach such values by the argument above, but we

needed to show that the set K is strictly a subset of an open set Θ̆ to satisfy the requirements

of Andrieu et al. (2005).

We now consider the requirements for w(θ). Condition (iv) holds by Sard’s theorem. The key

conditions are (i) and (iii), which involve the directional derivative of w(θ) at θ along h(θ),

〈∇w(θ), h(θ)〉. This is the instantaneous change in w(θ) in the direction of the EM update.1

Note that a step with a step-size multiplier of one in the direction h(θ) is guaranteed by

the monotonicity of EM to improve the (Lagrangian of the) lower bound, and thereby lower

w(θ). However, for (iii), we have to check that an infinitesimal step in that direction also

improves this function.

1The directional derivative of w at θ along v is defined to be limλ→0
w(θ+λv)−w(θ)

λ
. If w is differentiable

at θ, the directional derivative equals 〈∇w(θ), v〉.
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Suppose θ ∈ Θ̆\L. If h(θ) = 0 this would contradict the assumption, so we are not at a fixed

point of EM. Fixing γ̄ to E-step-updated values based on θ, we know from the derivation

of the M-step update, and from the concavity of the bound, that the Lagrangian of the

EM lower bound has a unique maximum at the M-step updated value, located at θ + h(θ).

Since this maximum is unique and there are no other stationary points, each point in the

direction h(θ) of the maximum has an increasingly large value of the Lagrangian of the EM

bound, holding γ̄ fixed. These values computed with γ̄ fixed to its current value are a lower

bound on the Lagrangian −w(θ) at those points: w(θ) is computed using E-step updated

γ̄’s which must strictly improve the EM lower bound relative to the current (or any other)

γ̄. More formally, let wγ̄θ(θ
′) be the negative of the Lagrangian at θ′ with γ̄ equal to the

E-step updated values based on EM statistics θ. Then, making use of the concavity of the

bound with γ̄ fixed, for λ where 0 < λ ≤ 1,

−w
(

θλ + (θ + h(θ))(1− λ)
)

> −wγ̄θ

(

θλ+ (θ + h(θ))(1− λ)
)

≥ −wγ̄θ

(

θ
)

λ+−wγ̄θ

(

θ + h(θ)
)

(1− λ)

> −wγ̄θ

(

θ
)

= −w
(

θ
)

. (C.2)

So every point on the line segment between θ and θ+ h(θ) has a strictly higher value of the

Lagrangian −w(θ) than at θ, i.e. w(θ + λh(θ)) − w(θ) < 0, ∀λ ∈ (0, 1]. Together with the

assumption that θ /∈ L, this implies that 〈∇w(θ), h(θ)〉 = limλ→0
w(θ+λh(θ))−w(θ)

λ
< 0, and

(iii) holds.

To show (i), suppose θ ∈ L, i.e. the directional derivative 〈∇w(θ), h(θ)〉 = 0. If θ is not

a fixed point of the EM algorithm, then the directional derivative is negative by the above

argument and we have a contradiction. So θ is a fixed point of MAP LDA U, and due to

the properties of EM, is a stationary point of the MAP objective function. It follows that

w(θ) < M0 for any −M0 which is lower than the worst stationary point of the MAP. There
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always exists such a strictly lower −M0, as the Lagrangian can always be decreased by

violating the constraints, e.g. multiplying the estimated EM statistics by a positive constant

can arbitrarily decrease the bound, so we have that (i) holds. The set Θ̆ has finite radius,

so we can pick M1 > M0, where {θ ∈ Θ̆, w(θ) ≤M1} is a compact set, and (ii) holds.

Having shown that the necessary conditions hold, Theorem 2.3 of Andrieu et al. (2005)

now gives us that with an appropriate sequence of step sizes, in the limit as the number of

iterations approaches infinity the distance from L is zero.
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Appendix D

AIS-SG for Fast Learning in

Undirected Graphical Models

It is difficult to perform maximum likelihood estimation for undirected graphical models

such as restricted Boltzmann machines, due to an intractable sum in the gradient of the

log-likelihood corresponding to sampling from the model’s distribution. Consequently, a

standard way to train such models is with contrastive divergence (CD) (Hinton, 2002), an

approximate algorithm which works well in practice but whose convergence properties are

not well understood. For example, it is known that the CD update does not correspond to

the gradient of any function (Sutskever & Tieleman, 2010).

In this appendix, we propose a method for efficiently performing stochastic gradient ascent,

using the iteration-AIS annealing path to compute ever-improving approximations to the

gradient. The algorithm is similar to a variant of CD called persistent constrastive diver-

gence (Tieleman, 2008), but has the advantage of importance weighting to correctly sample

from the model distribution. It begins with the particle-filtered MCMC-MLE algorithm of
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Asuncion et al. (2010), but extends it to use AIS annealing paths to improve the inference

step of that algorithm.

Before describing the proposed method, we first provide some background on particle-filtered

MCMC-MLE.

D.1 Particle-Filtered MCMC-MLE

Suppose we have a model in exponential family form,

Pr(x|θ) =
exp(θ⊺x)

Z(θ)
(D.1)

where Z(θ) =
∑

x′ exp(θ⊺x′) is the partition function, and x is a vector of sufficient statistics.

Let us further assume that Z(θ) cannot easily be computed. For example, Pr(x|θ) may be

an undirected graphical model. We would like to be able to learn the parameters θ based on

a data set X via maximum likelihood estimation. After normalizing by the number of data

points N (a constant), we can write the log-likelihood as

logPr(X|θ) ∝
1

N

N
∑

i=1

θ⊺x(i) − logZ(θ) (D.2)

To maximize the log-likelihood, let us compute the gradient with respect to θ,

d logPr(X|θ)

dθ
=

1

N

N
∑

i=1

x(i) −
1

Z(θ)

(

∑

x′

exp(θ⊺x′)x′
)

(D.3)

=
1

N

N
∑

i=1

x(i) −
∑

x′

Pr(x′|θ)x′ (D.4)

= ED(x)[x]− EPr(x|θ)[x] , (D.5)
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where D(x) is the data distribution, i.e. mixture of delta functions at each of the data points

with uniform mixture weights. Interestingly, the gradient turns out to be the difference be-

tween the expectation of the data under the observed data distribution, and the expected

value of what Hinton (2002) refers to as “fantasy data” under the model’s distribution at θ.

We cannot compute this directly as the right hand term is intractable. If we could simulate

from Pr(x|θ) we could perform a stochastic gradient update. However, this is still typically

very difficult to do. MCMC algorithms can be used to sample from it, but they need to

burn-in first, which is very expensive to perform for every gradient update. The contrastive

divergence algorithm of Hinton (2002) avoids this problem by drawing from the data dis-

tribution D(x) and taking just a single MCMC step (or perhaps a small number of steps).

This will lead to an incorrect estimate of the gradient, but in practice the algorithm can

work well as the direction of the approximate gradient is good enough to be useful. How-

ever, since the CD update is approximate, it does not exactly optimize its stated objective

function (a difference between two KL-divergences), and in fact it is not the gradient of any

function. We would prefer to have an algorithm with the efficiency of CD which optimizes

the likelihood or another reasonable objective function.

Alternatively, the particle-filtered (PF) MCMC-MLE algorithm of Asuncion et al. (2010)

achieves an estimate of the gradient by using importance samples of the model distribution,

drawn via a particle filter. The algorithm defines a sequence of distributions from the model

with parameters θ1, θ2, . . ., where θj is the model at iteration j of the learning algorithm. It

maintains a set of particles (samples) {x(s)}, which it updates by performing MCMC steps

at each iteration j. These particles are used to find a Monte Carlo estimate of Equation D.5,

with which a stochastic gradient update of θ is made. The algorithm iterates this procedure

until convergence.1

1The full algorithm of Asuncion et al. also uses a resampling step, where the particles are resampled by
drawing with replacement according to their current distribution (i.e. a mixture of delta functions at each
sample, weighted by their importance weights). This step, as well as the MCMC updates (“rejuvination”)
are only performed if the effective sample size is small enough.
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D.2 AIS-SG

We propose to modify PF MCMC-MLE to leverage annealed importance sampling. This

is accomplished by changing the algorithm to use the iteration-AIS path to estimate the

intractable expectations in Equation D.5. The key difference from PF MCMC-MLE is that

AIS provides a sequence of intermediate distributions between the models at θj−1 and θj ,

which give the algorithm a better chance of reaching θj . The intermediate distributions may

also improve the importance weights, which are updated at each intermediate distribution.

To initialize the SG algorithm (referred to as Annealed Importance Sampled Stochastic Gra-

dient (AIS-SG), the samples {x(s)} are first drawn from some initial distribution θ0, which

is chosen to be normalized. In each iteration j, the samples are annealed towards the current

model distribution θj using AIS with some path containing Tj temperatures (e.g. convex

combinations of the parameters of the previous and current distributions). This gives im-

portance weighted samples of Pr(x|θj), which can be used to form a Monte Carlo estimate

of the gradient in Equation D.5,

∆AIS−SG =
1

B

∑

b

xb −

S
∑

s=1

ωsx
(s)
/

S
∑

s=1

ωs , (D.6)

where {xb} is a minibatch of data points drawn from the observed data distribution (which

could potentially be a single data point, or the entire data set). Since the annealing path

is an iteration-AIS path, the importance weights can be computed recursively by Equation

5.36. We can then take a stochastic gradient update,

θj = θj−1 + ρj∆AIS−SG . (D.7)

The algorithm is detailed in Algorithm 9. Note that the models at each iteration are expected

to be reasonably similar to each other, making them sensible candidates to anneal between.
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With sufficiently many intermediate distributions, the importance samples are expected to

improve as the algorithm proceeds.

Note the relationship that AIS-SG has to persistent constrastive divergence (Tieleman, 2008).

It is essentially the same algorithm, but with importance weights. Persistent contrastive di-

vergence was heuristically motivated – we can now justify that algorithm as approximately

performing AIS-SG. Note that when AIS is run for long enough the variance of the impor-

tance weights decreases, in which case AIS-SG will become progressively more similar to

persistent CD.

Also note that if the initial distribution is normalizable, we also obtain for free an estimate of

the partition function at each iteration, since for AIS we have that S−1
∑S

s=1w
(s) converges

to the ratio of partition functions of the final and initial distributions (Equation 5.16):

Z(θj) ≈

∑S
s=1 ωs

S
. (D.8)

D.3 Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) are a key motivating example for the work presented

in this appendix. For completeness, we describe these models here, as well as the standard

contrastive divergence training procedure. An RBM (Smolensky, 1986; Hinton, 2002) is a

Markov random field defining a probability distribution over binary vectors V ∈ {0, 1}d

and H ∈ {0, 1}m, where V are observed data and H are hidden (latent), with probability

distribution

Pr(V,H) =
1

Z(θ)
exp(−E(V,H)) , (D.9)

E(V,H) = −V ⊺WH − a⊺V − b⊺H , (D.10)
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Algorithm 9 AIS-SG

θ0 := a normalized distribution which we can sample from

For each importance sample s

x(s) ∼ Pr(x|θ0)

log ω[s] = 0

for each iteration j = 1, 2, . . .

//Stochastically estimate the “positive gradient”

For each minibatch data point b

xb ∼ D(x)

//Stochastically estimate the “negative gradient”

For each importance sample s

(x(s), log ω[s]) := iteration-AIS(x(s), log ω[s], θj−1, θj , Tj)

∆AIS−SG = 1
B

∑

b xb −
∑S

s=1 exp(log ω[s])x
(s)
/

∑S

s=1 exp(log ω[s])

θj+1 = θj + ρj+1∆AIS−SG

Output:

θj An estimate of the MLE

logSumExp(log ω)− log(S) An estimate of the log partition function logZ(θj)

and where the partition function Z(θ) is

Z(θ) =
∑

V

∑

H

exp(−W (V,H)). (D.11)

To train an RBM via maximum likelihood with gradient descent, from Equation D.5 the

gradient updates are

dL

da
= ED(V,H)[V ]− EPr(V,H)[V ] (D.12)

dL

db
= ED(V,H)[H ]− EPr(V,H)[H ] (D.13)

dL

dW
= ED(V,H)[V H

⊺]−EPr(V,H)[V H
⊺] (D.14)
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where D(V,H) = D(V )Pr(H|V ) and D(V ) is the observed data distribution, i.e. a mixture

of delta functions at each of the data points with uniform mixture weights. The left-hand

expectations are simple to estimate via sampling, since D(V ) is trivial to sample from and

the H ’s are conditionally independent given V . The right hand expectations, over Pr(V,H),

are difficult to approximate, leading to the use of alternative approximate methods such as

the contrastive divergence (CD) algorithm (Hinton, 2002), which takes “gradient-like” steps

∆a
CD = ED(V,H)[V ]− ER(V,H)[V ] (D.15)

∆b
CD = ED(V,H)[H ]− ER(V,H)[H ] (D.16)

∆W
CD = ED(V,H)[V H

⊺]−ER(V,H)[V H
⊺] , (D.17)

where R(V,H) is the distribution obtained by a single Gibbs update invariant to Pr(V,H)

on H and then V , starting from the observed V . In practice, the algorithm makes stochastic

estimates of these updates, replacing the expectations with estimates based on one or more

samples.
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