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1 Introduction

Personalization has become an important part of recommendation systems for online products in-
cluding news, search, media and advertising. Real world recommender systems need to also take
into account the diversity and serendipity of the set of recommended items so as to not overwhelm
the user with too similar items and to discover user interests that were previously unknown to the
system (Szpektor et al., 2013). Recently developed methods that include diversity as a part of the
model have achieved promising results (Yue & Joachims, 2008; Kulesza & Taskar; Raman et al.,
2012).

Here, we consider a model-based approach for diverse and personalized recommendations using de-
terminantal point processes (DPPs) (Hough et al., 2006; Kulesza & Taskar, 2012). DPPs are proba-
bility models for sets of points which tend to repel each other, i.e. are diverse. They can conveniently
model both diversity and quality. However, in most personalization applications we would also like
to be able to tune this diversity/quality trade-off, as well as other aspects such as the user’s long-term
versus short-term interests and personalized versus popular/trending items, and DPPs do not provide
a simple mechanism to accomplish this.

We propose to address this by introducing models for blending the behaviors of multiple DPPs. We
consider several models, in increasing order of sophistication. For the final method, we first offer an
alternative perspective on the DPP. Using this new perspective, we generalize the DPP in a natural
way by exploiting the eigenstructure of the DPP kernels. The resulting model allows for fine-grained
control of the extent to which the behavior of the model mimics the most important properties of
each component DPP. We show how to learn the mixture parameters of the models, and demonstrate
the utility of the proposed methods on a news recommendation task.

2 Determinantal Point Processes

A point process P on a discrete set D = {x1, . . . , xM} is a probability distribution on the power
set 2D of D. Such a process is called a determinantal point process (Macchi, 1975; Hough et al.,
2006) if there is a positive semidefinite matrix K with eigenvalues less than or equal to one such
that for every subset of a set S ∼ P the inclusion probability of A is given by P(A ⊆ S) =

det(KA). Here, KA , [Kab]xa,xb∈S is the matrix K restricted to the rows and columns indexed
by elements of A. The matrix K is referred to as the marginal kernel of the DPP as it defines
the marginal probability of each subset being included in the drawn set S. We will focus on an
alternative L-ensemble construction of DPPs (Macchi, 1975; Borodin & Rains, 2005) for the ease
of representation it provides in modeling. An L-ensemble defines a point process via the atomic
probabilities of each set

PL(S) =
det(LS)

det(L+ I)
, (1)

∗This work was performed while James Foulds was under internship at Yahoo Labs.

1



Algorithm 1 Sampling from a DPP PL

1: Given: the L-ensemble kernel L
2: Compute eigenvector/value pairs {(vn, λn)} of L

3: Sample a subset V of eigenvectors, selecting vn with probability λn

λn+1

4: Construct an elementary DPP PV with marginal kernel KV =
∑

v∈V vv
⊺

5: Sample items from PV

where L is a positive semidefinite matrix, and det(L∅) , 1. L-ensembles are determinantal point
processes with marginal kernel K = L(L + I)−1. Since L is positive semidefinite, it can be factor-
ized as a Gram matrix, L = X

⊺
X. In other words, if we represent the items xa ∈ D by a column

vector Xa, Lab is the dot product of Xa and Xb. Writing each feature representation as a product
of a scalar q(xa) and a unit vector φ(xa), we can write the entries of the kernel as

Lab = q(xa)φ(xa)
⊺φ(xb)q(xb),

where q(xa) measures the quality of item a and φ(xa)
⊺φ(xb) measures the similarity between a and

b. The probability of a set S, PL(S) ∝ det(LS) =
(

∏

xa∈S q(xa)
2
)

det(φ(S)⊺φ(S)) is equal to

the squared volume of the parallelotope spanned by the column vectors Xa, xa ∈ S. The volume of
this parallelotope, and thus the probability of the set S according to the DPP, increases as the vectors
become closer to being orthogonal, i.e. more dissimilar. The volume also increases as we increase
the length of the vectors q(xa), encoding a preference for items with high quality or relevance.

2.1 Sampling from DPPs

A DPP whose marginal kernel has eigenvalues in {0, 1} is called an elementary DPP. Given
a set of orthonormal vectors V , we denote by PV an elementary DPP with marginal kernel
K

V =
∑

v∈V vnv
⊺

n. Determinantal point processes can be expressed as mixtures of elementary
DPPs (Hough et al., 2006). For a DPP PL with L-ensemble kernel matrix L eigendecomposed as

L =
∑N

n=1 λnvnv
⊺

n we have

PL(S) =
1

det(L+ I)

∑

J⊆{1,...,N}

PVJ (S)
∏

n∈J

λn , (2)

where VJ = {vj : j ∈ J} is the set of eigenvectors of L specified by the index set J .

There is an efficient algorithm for sampling from elementary DPPs, which can be exploited to
draw from arbitrary DPPs by first drawing an elementary DPP from the mixture (Algorithm 1)
(Hough et al., 2006; Tao, 2009).

2.2 A novel interpretation of elementary DPPs

Rewriting the eigendecomposition of an elementary DPP’s marginal kernel as K
V = B

⊺
B,

where the rows of B are the eigenvectors in V , PV selects exactly |V | items proportionally to
the squared volume spanned by the corresponding columns of B (c.f. Kulesza & Taskar (2012)).
We can therefore reinterpret PV as a k-DPP (a variant of a DPP which samples exactly k items
(Kulesza & Taskar, 2011)) with the implicit feature matrix B giving rise to an L-ensemble kernel
L
V = B

⊺
B = K

V . When sampling from an arbitrary L-ensemble DPP, we can interpret the
eigenvectors chosen in step 3 of Algorithm 1 as features in a new latent space in which the items
are re-represented. The sampling procedure finally selects |V | items proportionally to their squared
volume in the new latent space.

3 Methods for Blending DPPs

We consider different approaches to extending DPPs that will lead to more flexible models with a
capacity to fine tune their behavior by combining the properties of several DPPs. Suppose we have
DPPs with L-ensemble kernels {L(i)} and mixture weights {αi},

∑

αi = 1 specifying the extent
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Algorithm 2 Simple methods for combining DPPs

(a) Sampling from a mixture of DPPs

1: Given: a mixture of DPPs Pα

L1:M

2: Select a DPP with probability α

3: Sample from the selected DPP using
Algorithm 1

(b) Sampling from a DPP with a mixture of kernels

1: Given: a collection of kernels with
corresponding mixing weights

2: compute the convex combination of the
kernels

3: Sample from the DPP with the resulting
kernel using Algorithm 1

to which the model should respect each component DPP. A straightforward way to combine DPPs,
previously proposed by Kulesza & Taskar (2011), is to use a mixture model over them (Algorithm
2a). A single draw from this model will in general result in a set containing high-probability items
from only one of the DPPs.

Alternatively, we can create a new kernel by taking a convex combination of the component L-

ensemble kernels, Lα =
∑M

i=1 αiL(i), and drawing from the resulting DPP (Algorithm 2b). Convex
combinations of positive semidefinite matrices are positive semidefinite, so the resulting matrix is
a valid kernel. This approach is reminiscent of kernel learning methods, e.g. for support vector
machines (Lanckriet et al., 2004). Note that as each of the component L-ensemble kernels is a
Gram matrix, each entry of these matrices corresponds to a dot product between the feature vectors
for a pair of items. This approach interpolates their dot products, with the extent of the interpolation
depending on the weight vector α. In terms of the feature space representation, this can be thought
of as defining a new extended feature space by appending the different feature spaces of each kernel,
scaled with the square root of the corresponding mixture weight.

3.1 Determinantal Point Process Eigenmixtures

While the mixture of kernels interpolates between the properties of multiple DPPs, some applica-
tions may require more control over the distribution of items by specifying the proportion of samples
coming from each DPP. To enable this, instead of concatenating the (rescaled) features of the items
we can concatenate the latent features implied by the eigendecomposition of the kernel matrices.
The model, which we call the DPP eigenmixture, follows the mixture model representation of DPPs
(Equation 2), except that the latent features are chosen from the eigenvectors of all M component
DPPs. The number of eigenvectors sm per componentm can be specified in advance by the modeler,
or chosen from a multinomial distribution with parameter vector α. The full model is as follows:

s ∼ Mult(α, k) (3)

PL(Y;L(1), . . . ,L(M), s1, . . . , sm) ∝
∑

J=j(1)∪j(2)∪...∪j(M),j(m)∈(V
(m)

sm
)

Pk
L(Y;L

VJ )
∏

n(m)∈J

λn(m) ,

where
(

S
k

)

is the set of all k-combinations (i.e. sets of size k) of the set S and Pk
L(Y;L) is a k-DPP,

i.e. a DPP restricted to drawing exactly k items. The selected eigenvectors are not in general eigen-
vectors of the new kernel, so we will refer to them instead as “eigenfeatures.” The number of eigen-
features sm from each component DPP m determines the extent to which the behavior of the model
follows the behavior of that DPP. Specifically, in expectation the associated sm-dimensional sub-
space of eigenfeatures represents each item such that the sm-dimensional squared volume spanned
by any set of sm items is proportional to the volume spanned by those items’ feature vectors, as

specified by the original Gram matrix L
(m). We can sample from the model using Algorithm 3.

While a DPP is a mixture over elementary DPPs, DPP eigenmixtures are in general mixtures over
non-elementary DPPs. This means that we must resort to the full DPP sampler in the final sampling
step before we can exploit the properties of elementary DPPs to sample more efficiently. It also
means that the new kernel LV or its dual must be eigendecomposed in order to sample from it.
Fortunately, the number of features in the new space is equal to the number of items to draw k,
which is very small in most applications. This means that the dual DPP sampler of Kulesza & Taskar
(2010) may be used instead, which in this case only requires a decomposition of a k × k matrix.
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Algorithm 3 Sampling from DPP eigenmixtures

1: Given: a collection of kernels with corresponding mixture weights

2: Sample sm eigenvectors V (m) from each kernel m, s ∼ Mult(α, k), P(V (m)) ∝
∏

v∈V (m) λv

3: Concatenate all selected eigenvectors V to form a new latent representation B̄ = [v⊺

1 ; . . . ;v
⊺

|V |]

4: Compute the resulting kernel matrix L
V = B̄

⊺
B̄

5: Sample from the DPP with the new kernel
5: Y ∼ Pk

L(Y;L
V ) using Algorithm 1

Figure 1: Personalized news recommendation, blending diversity vs preference (left), short-term
and long-term interests (middle) and multiple users’ interests (right).
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4 Experimental Results / Conclusions

A particularly compelling application for the models is the recommendation of news articles on per-
sonalized news aggregation websites. We investigated the performance of the methods on the news
recommendation task for the front page of the popular media website Yahoo. In the experiments, we
considered a set of approximately 600 users who each clicked on between 3–20 articles per day be-
tween the beginning of April and the first week of May, 2013. The sets articles for which each user
clicked on, and the articles for which they skipped over without clicking, were collected during this
time period and used as candidate items for the models to choose from. The feature representations
of the articles and the user profiles were extracted using proprietary algorithms belonging to Yahoo,
based on data from April.

For each user, the mixtures were trained to optimize the metric used for evaluation, namely expected
precision on the number of clicked articles out of the generated sets of items, using a grid search on
parameter space. At each location in the grid search, and at test time, the expected precision was
estimated by simulating 1000 sets of items. The models were evaluated on the data from the first
week of May, using a 5-fold cross-validation scheme to select items for training the mixtures.

We explored the use of the models for varying several dimensions of the recommendation, namely
diversity versus estimated user preference, short-term versus long-term interests (with user profiles
trained on one week and one month of data) and multiple users per account (simulated by dividing
the active features into two separate user profiles). Precision results are shown in Figure 1. In-
terestingly, for small set sizes the diverse kernel was better than the non-diverse kernel, while the
reverse was true for larger sets. Similarly, short-term profiles were better than long-term profiles
for small set sizes only. The blended methods were able to handle this gracefully, dominating the
single DPPs throughout the curve. The convex mixture and eigenmixture performed better than the
mixture model, with the eigenmixture typically being the best with larger set sizes.

In ongoing work, we are exploring the use of the gradient-free optimization algorithm SPSA (Spall,
1987, 1998) to learn the blended models with many components . We envision that the techniques
proposed here will be useful for a wider variety of applications that can be cast as subset selection
such as extractive summarization.
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