
Revisiting Multiple-Instance Learning via
Embedded Instance Selection

James Foulds and Eibe Frank

Department of Computer Science, University of Waikato, New Zealand
{jf47,eibe}@cs.waikato.ac.nz

Abstract. Multiple-Instance Learning via Embedded Instance Selection
(MILES) is a recently proposed multiple-instance (MI) classification al-
gorithm that applies a single-instance base learner to a propositional-
ized version of MI data. However, the original authors consider only one
single-instance base learner for the algorithm — the 1-norm SVM. We
present an empirical study investigating the efficacy of alternative base
learners for MILES, and compare MILES to other MI algorithms. Our
results show that boosted decision stumps can in some cases provide
better classification accuracy than the 1-norm SVM as a base learner
for MILES. Although MILES provides competitive performance when
compared to other MI learners, we identify simpler propositionaliza-
tion methods that require shorter training times while retaining MILES’
strong classification performance on the datasets we tested.

1 Introduction

Multiple-instance (MI) learning is an alternative to the traditional supervised
learning model in which learning examples are represented by a bag (i.e. multiset)
of instances instead of a single feature vector. The MI framework was introduced
by Dietterich et al. [7] in the context of a drug-activity prediction problem, where
each molecule is represented by a bag of feature vectors corresponding to the
conformations (shapes) that the molecule can adopt by rotating its internal
bonds. In this problem domain the standard MI assumption applies: if and only
if at least one instance in a bag is positive (i.e. at least one conformation bonds
to the target binding site), then that bag is positive (i.e. the molecule will have
the desired drug effect).

Dietterich et al. presented algorithms that learn MI concepts for the musk
drug activity prediction problem by finding a hyper-rectangle to describe the
positive region of instance space. Since then, many other MI learning algorithms
have been proposed (see, for example, [1], [2], [10], [12], [14], [24], [25], [27], [28],
[29], [30]).

Multiple-instance Learning via Embedded Instance Selection (MILES) is a
recent MI learning approach presented by Chen et al. [6], which transforms MI
data into a propositionalized form, to which a 1-norm support vector machine
(SVM) classifier is applied. Chen et al. do not consider alternatives to the 1-
norm SVM, but they do mention briefly that other single-instance base learners

2

are possible. In this paper we view the algorithm as a meta-classifier that can
wrap around an arbitrary single-instance learner. We present an empirical study
of the performance of the MILES algorithm using a variety of single-instance
base learners on a diverse set of benchmark datasets. The goal of the study is to
compare the relative performance of different base learners for MILES, and to
compare MILES to existing MI algorithms, including other propositionalization
methods. The paper is structured as follows. In Section 2, we describe the MILES
algorithm. Section 3 details the experimental setup, the results of the experiment
are given in Section 4, and we conclude in Section 5.

2 MILES

Multiple-Instance Learning via Embedded Instance Selection (MILES) [6] is an
approach to MI learning based on the diverse density framework [14]. In contrast
to standard diverse density algorithms, it embeds bags into a single-instance
feature space. Most earlier diverse density-based methods have used the standard
MI assumption mentioned above and further assume the existence of a single
target point1. Instead, MILES uses a symmetric assumption, where multiple
target points are allowed, each of which may be related to either positive or
negative bags. Under this assumption, and using the most-likely-cause estimator
from the diverse density framework, Chen et al. define a measure specifying the
probability that a point x is a target point given a bag, regardless of the bag’s
class label:

Pr(x|Bi) ∝ s(x,Bi) = max
j

exp
(
− ‖xij − x‖2

σ2

)
, (1)

where xij are the instances in bag Bi, and σ is a predefined scaling factor.
Note that s(x,Bi) can be interpreted as a measure of similarity between a bag
and an instance, determined by the instance x and the closest instance in the
bag. MILES uses each instance in the training bags as a candidate for a target
point. The candidates are represented as features in an instance-based feature
space Fc. Each bag in the training set is mapped into Fc via the mapping

m(Bi) = [s(x1, Bi), s(x2, Bi), · · · , s(xn, Bi)]T , (2)

where xi ∈ C is an instance from the set C of all instances in all of the training
bags. When the class labels c ∈ Ω of the bags are appended, the resulting space
(Fc|Ω) is a single-instance feature space. The output of a single-instance classifier
trained on this data is used to provide bag-level class labels for future data. The
pseudocode of the MILES algorithm is provided in Algorithm 1.

Chen et al. used the 1-norm SVM algorithm as the base classifier, due to the
sparsity property of the algorithm — it is known to set most feature weights
to zero, which effectively performs feature selection — and the fact that the
1 This means that, roughly speaking, a bag is assumed to be positive if at least some

of its instances are close to this point.

3

Algorithm 1 MILES
D = the set of training bags; C = all instances in the bags in D
L = a single-instance base learner; σ = the scaling factor

train(D)
F = an empty set of instances
for (every bag Bi = {xij : j = 1, · · · , ni} in D) do

t = MILES transform(Bi)
t.setClassLabel(Bi.getClassLabel())
F = F ∪ {t}

L.train(F) //Can optionally perform feature selection here also

MILES transform(B), B = {xj : j = 1, · · · , n} a bag
m(B) = an empty instance of dimension |C|
for (every instance xk in C) do

d = minj ‖xj − xk‖; the kth element of m(B) is s(xk, B) = e
−d2

σ2

return m(B)

classify(B), B = {xj : j = 1, · · · , n} a test bag
t = MILES transform(B); return L.classify(t)

resulting learning problem is usually very high-dimensional. They do not consider
alternative base learners, however. We investigate the use of alternative base
learners for MILES, and compare the algorithm to other MI approaches.

3 Experiment Design

An extensive set of experiments was performed on a number of multi-instance
datasets, using a wide range of MI algorithms and single-instance base learn-
ers. The experiments were performed using the WEKA workbench [26]. Each
algorithm was evaluated on each dataset by 10 times stratified 10-fold cross-
validation. Performance was measured using classification accuracy. We tested
for significant differences between algorithms using the corrected resampled t-
test [17] with significance level α = 0.05.

WEKA implementations were used for all MI algorithms and single-instance
base learners, with the exception of MILES and the 1-norm SVM, which were im-
plemented specifically for the experiment. Default parameters were used for each
algorithm unless otherwise specified. The MI algorithms were MILES, MISMO
(SVM with the MI polynomial kernel [12]), mi-SVM [1], Citation-KNN [24],
EMDD [29], Adaboost + Optimal Ball [2], MIBoost [27] (with the WEKA REP-
Tree decision tree learner, with no automatic pruning but depth-limited to 3
levels, as the base classifier), MILR [27] (using the noisy-or model to combine
instance-level probabilities), MIWrapper [10], and SimpleMI [8].2

2 Where the algorithm was not explicitly named by the original authors, the name of
the WEKA implementation has been used instead.

4

Of particular interest are MIWrapper and SimpleMI, which, similarly to
MILES, are wrapper algorithms that apply a single-instance base learner to
a propositionalized version of the given MI data. MIWrapper performs proposi-
tionalization by applying bag-level class labels to instances, and weighting the
instances so that each bag has the same total weight. A single-instance model is
built on the resulting dataset, and bag-level predictions are made by averaging
the predicted probabilities of instances in a bag. SimpleMI performs proposi-
tionalization by averaging the attribute values of the instances in each bag,
and appending the bag’s class label to the resulting feature vector. The wrap-
per algorithms were evaluated using the following single-instance base learners:
C4.5 [20], random forests (100 trees) [5], Adaboost [11] + C4.5 (10 iterations),
Adaboost + decision stumps (1-level decision trees, 100 iterations), bagging [4]
+ C4.5 (10 iterations), 2-norm SVMs (SMO) [19] with a linear kernel and a
radial-basis function kernel, the linear 1-norm SVM, and logistic regression.

The datasets are described very briefly here, with the names of the datasets
(as labeled in the results tables) italicized for convenience. The musk1 and musk2
datasets are the musk data used in [7]. Each bag represents a molecule, and the
task is to predict whether the molecule emits a musky odour. Eastwest is the
train direction prediction problem from the East West Challenge ILP contest
[16]. Westeast is exactly the same problem as eastwest, except that the class
labels are reversed. This is an interesting variation because eastwest is compatible
with the standard MI assumption, while westeast is not [8].

The mutagenicity prediction problem [22] was also used in the experiments.
Three representations proposed by [21] for transforming the mutagenesis ILP
problem into a multi-instance problem were used, which were labeled muta-
atoms, muta-bonds and muta-chains. The suramin dataset [3] is another ILP-
based drug activity prediction problem, where the task is to detect suramin
analogues that can act as anti-cancer agents. The thioredoxin dataset is the
thioredoxin-fold protein identification task proposed by [23].

Two sets of image data for Content-based Image Retrieval (CBIR) tasks were
used, each containing three different image categories. These image databases
provided six different image retrieval problems — one for each image category,
with the task being to identify images belonging to the target category. The first
image database was originally provided by [1], and contains MI bags representing
photographs of elephants, foxes and tigers from the Corel dataset. The second
CBIR dataset was the GRAZ02 [18] dataset, containing images of bikes, cars
and people, with features derived from the Ohta colour space representations of
the image as in [15].

4 Experimental Results and Analysis

This section presents a comparison of base learners for MILES, and compares
the algorithm with other MI learning methods. The reader is referred to the first
author’s MSc thesis for more detailed experimental results [9].

5

Table 1. MILES: Percentage Accuracy for Non-Ensemble Base Learners

Dataset 1-Norm C4.5 Logistic SMO SMO
SVM Regression (LIN) (RBF)

musk1 83.3±11.8 84.1±11.9 84.8±11.3 86.9±10.4 89.1±10.1
musk2 91.6±8.3 82.5±12.1 • 85.8±11.0 88.4±9.7 79.5±12.5 •
eastwest 74.0±25.1 50.0±0.0 • 64.5±29.6 55.5±30.9 55.5±31.7
westeast 74.0±25.1 50.0±0.0 • 68.5±33.1 54.0±30.7 54.5±31.1

muta-atoms 74.8±14.4 80.8±8.1 83.8±7.2 80.8±8.8 83.7±9.2
muta-bonds 72.2±12.7 77.1±9.8 80.2±8.8 79.8±9.5 81.8±8.9 ◦
muta-chains 75.9±9.2 79.3±9.5 73.5±9.4 77.9±8.5 78.6±10.3

suramin 65.0±45.2 65.0±45.2 65.0±45.2 65.0±45.2 65.0±45.2

thioredoxin 88.1±5.1 84.3±7.1 87.1±3.9∗ 69.1±10.3 • 86.3±4.3

elephant 84.1±8.9 77.5±9.2 79.6±9.1 83.9±9.0 83.4±8.9
fox 63.0±9.5 56.8±11.2 63.6±8.9 64.8±9.5 64.2±9.7
tiger 80.7±8.3 69.7±9.3 • 80.0±9.2 81.5±8.4 81.7±8.9

bikes 78.4±4.2 72.5±5.7 • 72.4±4.8 • 80.1±4.9 78.7±4.9
cars 72.2±4.3 62.6±4.7 • 63.9±4.9 • 72.0±4.7 71.9±4.7
people 74.4±5.0 69.8±5.8 • 66.9±5.0 • 74.3±4.8 75.9±4.8

◦, • statistically significant improvement or degradation vs 1-norm SVM
∗ Thioredoxin result obtained using the SimpleLogistic [13] implement-

ation in WEKA, due to memory problems with Logistic.

Given the number of algorithms and datasets investigated, parameter tun-
ing for all of the MI algorithms and base classifiers was infeasible. However,
with the exception of the SVMs, the classification schemes used in the experi-
ment had fairly robust parameter values already provided by the default settings
in their WEKA implementations. We set the scaling parameter for MILES to
σ2 = 8 × 105, as used by Chen et al. for musk2. As we found that the value
for the 1-norm SVM regularization parameter selected by Chen et al. for musk2
(λ = 0.45) produced poor results for MILES on many of the datasets, we per-
formed internal cross-validation to select the best λ value for each fold. We eval-
uated six candidate values of λ via two-fold cross-validation on the training data
for each fold of the ten repeats of ten-fold cross-validation, selecting the value
which produced the highest classification accuracy. Finally, a greedy search was
performed by iteratively evaluating adjacent candidates to the currently selected
value via ten-fold cross-validation (again, on the training data of the fold). This
internal cross-validation parameter search was performed using the GridSearch
algorithm in WEKA. The candidate values were powers of ten between 10−1

and 10−6. The same internal cross-validation method was also used to select the
C regularization parameter for the 2-norm SVMs, with candidate values being
powers of ten between 103 and 10−2.

6

Table 2. MILES: Percentage Accuracy for Ensemble Base Learners

Dataset 1-Norm Adaboost Random Adaboost Bagging
SVM + D. Stump Forest + C4.5 + C4.5

musk1 83.3±11.8 88.0±11.6 87.0±11.4 85.8±12.0 86.0±11.5
musk2 91.6±8.3 83.2±11.5 • 81.7±11.2 • 83.2±11.3 • 83.7±11.5 •
eastwest 74.0±25.1 81.0±24.4 80.0±24.6 50.0±0.0 • 50.5±5.0 •
westeast 74.0±25.1 81.0±24.4 80.0±24.6 50.0±0.0 • 50.5±5.0 •
muta-atoms 74.8±14.4 83.9±8.6 82.0±8.2 79.5±8.5 80.5±7.7
muta-bonds 72.2±12.7 86.3±7.4 ◦ 79.7±10.5 80.1±9.9 77.4±8.9
muta-chains 75.9±9.2 86.0±8.0 ◦ 80.4±9.2 80.8±8.1 79.8±9.1

suramin 65.0±45.2 65.0±45.2 65.0±45.2 65.0±45.2 62.0±46.1

thioredoxin 88.1±5.1 89.3±4.0 87.7±2.7 85.6±6.4 88.2±4.6

elephant 84.1±8.9 80.9±7.7 82.3±8.2 81.5±8.9 84.0±8.3
fox 63.0±9.5 61.6±10.9 64.9±10.2 59.4±11.6 61.4±10.3
tiger 80.7±8.3 80.5±8.9 78.6±9.0 75.4±9.3 75.7±8.4

bikes 78.4±4.2 78.0±5.0 79.2±4.4 78.0±4.5 77.7±5.1
cars 72.2±4.3 71.6±4.1 71.7±4.0 69.3±5.0 70.5±4.9
people 74.4±5.0 75.6±4.6 77.5±4.3 75.4±4.8 76.6±4.7

◦, • statistically significant improvement or degradation vs 1-norm SVM

4.1 Comparison of Base Learners for MILES

A major goal of the experiment was to compare different base learners for
MILES, particularly with respect to the 1-norm SVM. The results of this part
of the experiment are displayed in Tables 1 and 2.

As the results show, the 1-norm SVM was competitive against the other base
learners, with no other base learner consistently performing significantly better
than it. However, Adaboost with decision stumps had two significant wins and
only one significant loss versus the 1-norm SVM (Table 2).

The 2-norm SVMs with the linear and RBF kernels were both very compet-
itive with the 1-norm method. The 2-norm SVM with the RBF kernel had one
significant win and one significant loss versus the 1-norm SVM, while the 2-norm
SVM with the linear kernel was only significantly worse than the 1-norm SVM
on the thieoredoxin dataset (Table 1). These results indicate that the 1-norm
SVM does not have a clear advantage over its 2-norm cousin as a base learner
for MILES. In the observed experimental results, the increased sparsity of the
1-norm SVM did not translate into consistently superior classification accuracy,
despite the high dimensionality of the datasets produced by the MILES trans-
formation. However, the 1-norm SVM did outperform logistic regression, which
produces linear models that do not exhibit any sparsity (Table 1).

The eastwest and westeast datasets were problematic for many MILES base
learners, with half of the schemes performing little or no better than chance on
these problems, although several schemes achieved accuracies of around 80%.
Note that the results were similar or identical for both datasets, regardless of

7

the base learner. This is as expected, given that MILES is designed to use a
symmetric MI assumption.

MILES’ performance was consistent on the suramin problem. All base learn-
ing schemes achieved an accuracy of 65.0% on this dataset, except for bagging
with C4.5, where an accuracy value of 62.0% was observed (Table 2). The small
size of the dataset at least partially explains the consistency between schemes
— it contains only 11 bags, albeit with many instances in each of those bags.

Random forests and Adaboost.M1 with decison stumps were the standout en-
semble base learners for MILES (see Table 2). These classifiers only performed
significantly worse than the 1-norm SVM on musk2. Furthermore, boosted deci-
sion stumps had the highest accuracy for any MILES base learner tried in the
experiments on the eastwest / westeast datasets, all three mutagenesis datasets,
thieoredoxin, and also matched the performance of the other base learners on
suramin. Two of these results were significantly superior to the 1-norm SVM.
Boosted decision stumps had slightly lower accuracies than the 1-norm SVM on
five of the six image datasets, but these differences were not statistically signifi-
cant. It should also be noted that parameter tuning with cross-validation was not
necessary to achieve good results using Adaboost with decision stumps, unlike
for the 1-norm SVM.

Although single C4.5 trees perform poorly (see Table 1), the results also show
that boosted and bagged C4.5 trees perform well. However, boosted and bagged
C4.5 performed no better than chance on eastwest and westeast and consequently
suffered signficant losses against the 1-norm SVM on those datasets.

The strong performance of Adaboost.M1 with decision stumps is interesting,
given the relationship between this model and the SVM model recommended
by Chen et al (2006). Like support vector machines, the hypothesis learnt by
Adaboost.M1 is a weighted linear threshold. When decision stumps are used,
each weak learner corresponds to an attribute (i.e. the attribute that the decision
stump splits on), and the weights for the weak learners perform a similar function
to the attribute weights learnt by a linear SVM. As in SVMs, the solution is
sparse because only a subset of the attributes is selected into the ensemble.

4.2 Comparison of MILES to Other Wrapper Algorithms

In this section we compare MILES to the two other wrapper algorithms — Sim-
pleMI and MIWrapper — with respect to classification accuracy and training
time, using Adaboost with decision stumps (100 stumps) as the base learner.
Table 3 shows the classification accuracy and training time results for the algo-
rithms.

The results show that in most cases all three propositionalization schemes
give similar classification performance. There were no significant differences be-
tween MILES and SimpleMI for classification accuracy using this base learner.
MILES was superior to MIWrapper on the mutagenesis datasets, but MIWrap-
per had significantly higher accuracy on the people dataset.

The results also show that there are substantial differences in training time.
SimpleMI always had the shortest training time of the three methods for all

8

Table 3. Comparison of Wrapper Algorithms using Adaboost with Decision Stump
Base Learner (100 Stumps)

Percentage Accuracy Training time (CPU Seconds)
Dataset MILES SimpleMI MIWrapper MILES SimpleMI MIWrapper

musk1 88.0±11.6 83.2±12.3 84.7±10.7 4.3±0.3 3.0±0.1 ◦ 4.7±0.2 •
musk2 83.2±11.5 78.7±11.9 79.7±10.6 284.7±41.5 3.5±0.0 ◦ 151.8±19.0 ◦
eastwest 81.0±24.4 80.0±31.8 69.0±26.4 0.2±0.1 0.0±0.0 ◦ 0.2±0.0
westeast 81.0±24.4 81.5±31.5 69.0±26.4 0.2±0.1 0.0±0.0 ◦ 0.2±0.0

muta-atoms 83.9±8.6 80.3±8.4 66.5±2.3 • 17.9±0.2 0.1±0.0 ◦ 0.7±0.0 ◦
muta-bonds 86.3±7.4 85.8±7.7 73.2±8.4 • 53.5±0.6 0.2±0.0 ◦ 3.1±0.1 ◦
muta-chains 86.0±8.0 81.2±8.8 74.0±7.7 • 88.1±0.8 0.2±0.0 ◦ 10.2±0.2 ◦
suramin 65.0±45.2 53.0±48.1 65.0±45.2 3.7±0.3 0.0±0.0 ◦ 1.7±0.1 ◦
thioredoxin 89.3±4.0 86.2±5.3 87.1±2.4 624.2±6.7 0.1±0.0 ◦ 32.2±0.4 ◦
elephant 80.9±7.7 86.5±8.1 85.5±7.3 36.5±0.4 3.7±0.1 ◦ 15.8±0.2 ◦
fox 61.6±10.9 67.0±10.5 65.7±9.6 34.0±0.4 3.3±0.9 ◦ 14.7±0.1 ◦
tiger 80.5±8.9 82.5±8.7 81.8±8.5 30.4±0.4 1.8±0.3 ◦ 13.7±0.1 ◦
bikes 78.0±5.0 80.3±4.9 79.2±4.6 451.2±1.3 12.3±0.2 ◦ 66.3±0.3 ◦
cars 71.6±4.1 74.4±4.4 71.3±4.8 524.7±0.5 5.2±0.0 ◦ 73.4±0.3 ◦
people 75.6±4.6 79.0±4.8 79.5±4.3 ◦ 385.1±0.4 4.5±0.0 ◦ 58.7±0.2 ◦

◦, • statistically significant improvement or degradation vs MILES

datasets, almost always followed by MIWrapper, with MILES being the slowest
of the wrapper algorithms on all datasets except musk1. This is unsurprising,
given that the SimpleMI method only generates one instance for each training
bag, without increasing the dimensionality of the feature space. Although MILES
also generates one instance per training bag, the dimensionality of the feature
space is almost always much higher, as the number of attributes is equal to the
total number of instances in the training bags. In contrast, MIWrapper generates
one instance for every instance in every bag, leaving the dimensionality of the
feature space unchanged.

4.3 Overall Comparison of Classification Accuracy

The classification accuracy of the best variants of the three wrapper schemes
MILES, MIWrapper, and SimpleMI, as well as the accuracy of the best of the
other MI algorithms listed in Section 3 are shown in Table 4. Interestingly, the
best results for each type of scheme were seldom more than a few percentage
points different from each other. Notable exceptions to this are the eastwest
/ westeast datasets, where the best MILES classifier was around ten percent-
age points ahead of the best MIWrapper classifier and the best non-wrapper
scheme, and SimpleMI was fourteen percentage points ahead of the best MILES
scheme. On the suramin dataset, MIWrapper with the linear SVM base learner
achieved an accuracy of 95%, which was 30-40 percentage points ahead of all
other schemes. However, this result was not statistically superior to the ma-
jority of the other schemes, possibly due to the small size of the dataset (11

9

Table 4. The Best Result For Each Type of Scheme

Dataset Best % Best % Best % Best Other %
MILES MIWrapper SimpleMI MI Learners

musk1 SMO 89.1 Random 87.3 SMO 86.2 EMDD 85.2
(RBF) Forest (RBF)

musk2 1-Norm 91.6 SMO 83.0 SMO 83.8 EMDD 84.7
SVM (RBF) (RBF)

eastwest Adaboost 81.0 Adaboost 69.0 C4.5 95.0 Adaboost 71.5
+ D.Stump + D. Stump + Opt.Ball

westeast Adaboost 81.0 Adaboost 69.0 C4.5 95.0 MISMO 70.0
+ D.Stump + D. Stump

muta-atom Adaboost 83.9 Random 81.9 Random 80.9 MIBOOST 77.8
+ D. Stump Forest Forest + REPTree

muta-bond Adaboost 86.3 Random 83.1 Random* 85.8 MIBOOST 84.4
+ D. Stump Forest Forest + REPTree

muta-chains Adaboost 86.0 Bagging 85.3 Random 83.5 MIBOOST 82.3
+ D. Stump + C4.5 Forest + REPTree

suramin 1-Norm* 65.0 SMO 95.0 SMO 74.0 Citation* 65.0
SVM (LIN) (LIN) KNN

thioredoxin Adaboost 89.3 Adaboost 88.0 Logistic 87.6 Adaboost 90.3
+ D. Stump + C4.5 Regression + Opt.Ball

elephant 1-Norm 84.1 Random 87.1 Random 87.3 MIBOOST 82.8
SVM Forest Forest + REPTree

fox Random 64.9 Adaboost* 65.7 Adaboost 67.0 MIBOOST 66.3
Forest + D. Stump +D.Stump + REPTree

tiger SMO 81.7 Random 84.3 Random 82.9 MIBOOST 82.2
(RBF) Forest Forest + REPTree

bikes SMO 80.1 SMO 83.2 1-Norm 84.3 mi-SVM 83.5
(LIN) (RBF) SVM

cars 1-Norm 72.2 Random 74.8 Random 76.5 Adaboost 72.2
SVM Forest Forest + Opt.Ball

people Random 77.5 Random 82.6 Random 81.5 MIBOOST 78.9
Forest Forest Forest + REPTree

∗ Scheme was best-equal with one or more other schemes.

bags). There was also a difference of around eight percentage points between the
best MILES classifier and the best SimpleMI and MIWrapper classifiers on the
musk2 dataset. Note that the σ value for MILES used in these experiments was
selected by [6] based on tuning experiments on a subset of the musk2 dataset,
so the results for MILES on that dataset may be optimistic.

As mentioned previously, Adaboost with decision stumps was the dominant
base learner for MILES, being the best (or best-equal) scheme for six of the
fifteen datasets. MIBoost was the strongest overall method of the other MI al-
gorithms, and the random forests algorithm was the best overall base learner for
MIWrapper and SimpleMI.

10

5 Conclusions

The goals of the study were to compare base learners for MILES, and to com-
pare MILES to other state-of-the-art MI algorithms. The results indicate that
the 1-norm SVM is not generally superior to the standard 2-norm SVM as a
base learner for MILES, despite the sparsity property that was thought to be
important for the high-dimensional feature space created by the MILES transfor-
mation [6]. Moreover, although the 1-norm SVM was a competitive base learner
for MILES in the experiment, Adaboost with decision stumps exhibited higher
classification accuracy for some problem domains and did not require parameter
tuning.

The results also show that when appropriate base learners are used, MILES
is competitive in classification performance with any MI algorithm we consid-
ered. However, the simpler MIWrapper and SimpleMI methods almost always
perform just as well as MILES, despite being significantly superior in terms of
CPU training time. To achieve good classification accuracy in a wide variety of
cases, random forests can be recommended as a base learner for MIWrapper and
SimpleMI.

Perhaps the most interesting result of the experiments is the effectiveness
of the extremely simple propositionalization methods SimpleMI and MIWrap-
per in comparison to MILES. The results also confirm their good performance
when compared to more sophisticated dedicated MI algorithms (see also [8]).
It appears to be an open problem to find MI algorithms that are superior to
these simple propositionalization techniques on benchmark datasets, or to find
problems where dedicated MI algorithms are more effective than propositional-
ization.

In future work, it would be interesting to compare MILES, SimpleMI and MI-
Wrapper to other multi-instance propositionalization methods such as TLC [25],
and the recent CCE [30] and BARTMIP [28] algorithms. In particular, BART-
MIP is an algorithm that is closely related to MILES, where propositionalization
is performed based on distances from bags, rather than distances from points as
in the latter algorithm, so a thorough comparison of those two algorithms would
be particularly insightful.

Acknowledgement

We would like to thank Michael Mayo for providing us with the multi-instance
version of the GRAZ02 dataset.

References

1. S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for
multiple-instance learning. In NIPS, pages 577—584, 2002.

2. P. Auer and R. Ortner. A boosting approach to multiple instance learning. In
ECML, pages 63–74, 2004.

11

3. P. S. Braddock, D. E. Hu, T. P. Fan, I.J. Stratford, A. L. Harris, and R. Bicknell.
A structure-activity analysis of antagonism of the growth factor and angiogenic
activity of basic fibroblast growth factor by suramin and related polyanions. Br.
J. Cancer, 69(5):890–898, 1994.

4. L. Breiman. Bagging predictors. ML, 24(2):123–140, 1996.
5. L. Breiman. Random forests. ML, 45(1):5–32, 2001.
6. Y. Chen, J. Bi, and J. Z. Wang. MILES: Multiple-instance learning via embedded

instance selection. IEEE PAMI, 28(12):1931–1947, 2006.
7. T. G. Dietterich, R. H. Lathrop, and T. Lozano-Perez. Solving the multiple instance

problem with axis-parallel rectangles. AI, 89(1-2):31–71, 1997.
8. L. Dong. A comparison of multi-instance learning algorithms. Master’s thesis,

University of Waikato, 2006.
9. J. Foulds. Learning instance weights in multi-instance learning. Master’s thesis,

University of Waikato, 2008.
10. E. Frank and X. Xu. Applying propositional learning algorithms to multi-instance

data. Technical report, Dept. of Computer Science, University of Waikato, 2003.
11. Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In

ICML, pages 148–156, 1996.
12. T. Gärtner, P. A. Flach, A. Kowalczyk, and A. J. Smola. Multi-instance kernels.

In ICML, pages 179–186, 2002.
13. N. Landwehr, M. Hall, and E. Frank. Logistic model trees. In ECML, pages

241–252, 2003.
14. O. Maron and T. Lozano-Pérez. A framework for multiple-instance learning. In

NIPS, 1997.
15. M. Mayo. Effective classifiers for detecting objects. In CIRAS, 2007.
16. D. Michie, S. Muggleton, D. Page, and A. Srinivasan. A new East-West challenge.

Technical report, Oxford University Computing Laboratory, 1994.
17. C. Nadeau and Y. Bengio. Inference for the Generalization Error. ML, 52(3):239–

281, 2003.
18. A. Opelt, A. Pinz, M. Fussenegger, and P. Auer. Generic object recognition with

boosting. IEEE PAMI, 28(3):416–431, 2006.
19. J. Platt. Fast training of support vector machines using sequential minimal op-

timization. Advances in kernel methods: support vector learning, pages 185–208,
1999.

20. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
21. P. Reutemann. Development of a propositionalization toolbox. Master’s thesis,

Albert Ludwigs University of Freiburg, 2004.
22. A. Srinivasan, S. Muggleton, R. D. King, and M. J. E. Sternberg. Mutagenesis:

ILP experiments in a non-determinate biological domain. In ILP, pages 217–232,
1994.

23. C. Wang, S. D. Scott, J. Zhang, Q. Tao, D. Fomenko, and V. Gladyshev. A study in
modeling low-conservation protein superfamilies. Technical report, Dept. of Comp.
Sci., University of Nebraska-Lincoln, 2004.

24. J. Wang and J.-D. Zucker. Solving the multiple-instance problem: A lazy learning
approach. In ICML, pages 1119–1125, 2000.

25. N. Weidmann, E. Frank, and B. Pfahringer. A two-level learning method for
generalized multi-instance problems. In ECML 2003, pages 468–479, 2003.

26. I. H. Witten and E. Frank. Data Mining: Practical machine learning tools and
techniques (2nd Edition). Morgan Kaufmann, 2005.

27. X. Xu and E. Frank. Logistic regression and boosting for labeled bags of instances.
In PAKDD, pages 272–281, 2004.

12

28. M.-L. Zhang and Z.-H. Zhou. Multi-instance clustering with applications to multi-
instance prediction. Applied Intelligence, in press.

29. Q. Zhang and S. Goldman. EM-DD: An improved multiple-instance learning tech-
nique. In NIPS, pages 1073–1080, 2001.

30. Z.-H. Zhou and M.-L. Zhang. Solving multi-instance problems with classifier en-
semble based on constructive clustering. KAIS, 11(2):155–170, 2007.

