
HyPER: A Flexible and Extensible Probabilistic Framework
for Hybrid Recommender Systems

Pigi Kouki
UC Santa Cruz

pkouki@soe.ucsc.edu

Shobeir Fakhraei
University of Maryland

shobeir@cs.umd.edu

James Foulds
UC Santa Cruz

jfoulds@ucsc.edu

Magdalini Eirinaki
San Jose State University

magdalini.eirinaki@sjsu.edu

Lise Getoor
UC Santa Cruz

getoor@soe.ucsc.edu

ABSTRACT
As the amount of recorded digital information increases,
there is a growing need for flexible recommender systems
which can incorporate richly structured data sources to im-
prove recommendations. In this paper, we show how a re-
cently introduced statistical relational learning framework
can be used to develop a generic and extensible hybrid rec-
ommender system. Our hybrid approach, HyPER (HY-
brid Probabilistic Extensible Recommender), incorporates
and reasons over a wide range of information sources. Such
sources include multiple user-user and item-item similarity
measures, content, and social information. HyPER auto-
matically learns to balance these different information sig-
nals when making predictions. We build our system using a
powerful and intuitive probabilistic programming language
called probabilistic soft logic [1], which enables efficient and
accurate prediction by formulating our custom recommender
systems with a scalable class of graphical models known as
hinge-loss Markov random fields. We experimentally evalu-
ate our approach on two popular recommendation datasets,
showing that HyPER can effectively combine multiple in-
formation types for improved performance, and can signifi-
cantly outperform existing state-of-the-art approaches.

Keywords
Hybrid recommender systems, graphical models, probabilis-
tic programming, probabilistic soft logic.

1. INTRODUCTION
Recent work on hybrid recommender systems has shown

that recommendation accuracy can be improved by combin-
ing multiple data modalities and modeling techniques within
a single model [2, 3, 4, 5, 6]. Existing hybrid recommender
systems are typically designed for a specific problem do-
main, such as movie recommendations, and are limited in
their ability to generalize to other settings or make use of
any further information. As our daily lives become increas-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
authors must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DOI: http://dx.doi.org/10.1145/2792838.2800175

ingly digitally connected, the list of data sources available
for recommendations continues to grow. There is a need for
general-purpose, extensible frameworks that can make use
of arbitrary data modalities to improve recommendation.

The challenge of custom model-building has been exten-
sively studied in the fields of probabilistic programming [7]
and statistical relational learning (SRL) [8], which provide
programming language interfaces for encoding knowledge
and specifying models. Probabilistic programs can be used
to encode graphical models for reasoning with graph-struct-
ured probabilistic dependencies. Graphical models are a
natural approach to recommendations given that the user-
item rating matrix can be interpreted as a graph, with weight-
ed edges between users and items corresponding to the re-
spective ratings [4].

In modern recommendation contexts, a bipartite user-
item graph is insufficient to represent all available informa-
tion, such as user-user and item-item similarity, content, so-
cial information, and metadata. For example, neighborhood-
based collaborative filtering techniques can be interpreted
as predicting ratings based on an extension of the user-item
graph with additional edges between pairs of similar users
or similar items (Figure 1). We need a more general repre-
sentation to reason over this richly structured information.

In this paper, we propose a general hybrid recommender
framework, called HyPER (HYbrid Probabilistic Extensible
Recommender), which leverages the flexibility of probabilis-
tic programming in order to build adaptable and extensi-
ble hybrid recommender systems which reason over complex
data. In particular, we use a modeling language called prob-
abilistic soft logic (PSL) [9]. PSL is especially well-suited
to collaborative-filtering based recommendation graphs as
it is able to fuse information from multiple sources and it
was originally designed as a flexible framework for reason-
ing and combining similarities [10]. It provides a general
declarative framework for combining entity similarities, at-
tribute similarities, and information from additional sources
including the predictions of other algorithms. The models
defined by PSL programs, called hinge-loss Markov random
fields (HL-MRFs), are amenable to efficient and scalable in-
ference, which is crucial in a recommendation context.

Our contributions include (1) a general and extensible hy-
brid recommender system with a probabilistic programming
interface, (2) a method for learning how to balance the dif-
ferent input signals in the hybrid system, and (3) exten-
sive experimental studies using several information sources
which validate the performance of the proposed framework
and highlight contribution of each source to the final pre-

99

RecSys’15, September 16–20, 2015, Vienna, Austria.
c© 2015 ACM. ISBN 978-1-4503-3692-5/15/09 ...$15.00.

http://dx.doi.org/10.1145/2792838.2800175

User Similarities Item Similarities

5

?

?

4

4 5

3

3

. . .

Ratings

. . .

2

fri
en

ds
hi

p
fri

en
ds

hi
p

us
er

-s
im

ila
rit

y 1

ite
m

-s
im

ila
rit

y 1

ite
m

-s
im

ila
rit

y 1

ite
m

-s
im

ila
rit

y 2

Additional
Information Source

Additional
Information Source

Additional
Information Source

Additional
Information Source

Existing
Recommenders

Figure 1: Example recommendation graph.

diction. To the best of our knowledge, our proposed Hy-
PER framework is the first which provides a mechanism to
extend the system by incorporating and reasoning over cur-
rently unspecified additional information types and similar-
ity measures. We evaluate our system on two rich datasets
from the local business and music recommendation domains
(Yelp and Last.fm) comparing our model to state-of-the-art
recommendation approaches. Our results show that HyPER
is able to effectively combine multiple information sources
to improve recommendations, resulting in significantly im-
proved performance over the competing methods in both
datasets.

2. BACKGROUND
Recommender systems play a significant role in many ev-

eryday decision-making processes which affect the quality
of our lives, from the restaurant we have lunch at, to the
hotel for our vacation, to the music we listen to. Tradi-
tional recommender systems primarily leverage underlying
similarities between users and items in order to make pre-
dictions based on observed ratings. Content-based filtering
(CB) approaches compute these similarities by using fea-
tures extracted from content to build user profiles, which
are compared with content features of items. While content-
based approaches can recommend newly added items, they
are limited by a lack of serendipity. The recommendations
are limited to the user’s known likes and do not generally
include items out of the user’s (recorded) comfort zone [11].

Collaborative filtering (CF) techniques address this by
identifying similar users or items based on their rating pat-
terns instead of content, using methods such as neighborhood-
based approaches and matrix factorization models. How-
ever, collaborative filtering methods typically do not per-
form well in “cold-start” settings, where there are few rat-
ings for a user or an item [12]. Moreover, pure rating-based
collaborative filtering approaches cannot take advantage of
data which may be available in addition to ratings.

To address these shortcomings, hybrid recommender sys-
tems (HRSs) were introduced, combining content-based and

collaborative-filtering techniques (e.g. [2, 3, 4]). HRS tech-
niques can improve performance over content-based and col-
laborative filtering methods alone, especially in the case
where the ratings matrix is sparse [2]. However, existing
HRSs have their own limitations. First, they are problem-
and data-specific. Each HRS is typically motivated by a
specific problem domain (e.g. movie recommendations) and
the solution is fine-tuned to solve a specific problem with
datasets of specific characteristics. Hence, HRSs typically
cannot be generalized to different problem domains or input
data, or be easily expanded to incorporate knowledge from
richer datasets.

As the web has evolved into a participatory, user-driven
platform, additional information is increasingly becoming
available. Users form social networks, give verbal feedback
on items via reviews, endorse or down-vote items or other
users, form trust relationships,“check-in”at venues, and per-
form many other social actions that may potentially be lever-
aged to better understand users in order to improve recom-
mendations. A flexible and extensible hybrid recommender
system which can make use of this wealth of information is
increasingly important.

The remainder of the paper is structured as follows. In
Section 3 we introduce HyPER, a general hybrid recommen-
dation framework which is extensible and customizable using
a probabilistic programming interface. We systematically
evaluate our framework in Section 4, and place our system
in the context of related work in Section 5. Finally, we con-
clude with a discussion in Section 6.

3. PROPOSED APPROACH
We propose HyPER, a general hybrid framework that

combines multiple different sources of information and mod-
eling techniques into a single unified model. HyPER offers
the capability to extend the model by incorporating addi-
tional sources of information as they become available. Our
approach begins by viewing the recommendation task as a
bipartite graph, where users U and items I are the vertices,
and ratings are edges between users and items [4]. Using
PSL [1], a flexible statistical relational learning system with
a probabilistic programming interface, this graph is then
augmented to construct a probabilistic graphical model with
additional edges to encode similarity information, predicted
ratings, content and social information, and metadata. We
then train the graphical model to learn the relative impor-
tance of the different information sources in the hybrid sys-
tem, and make predictions for target ratings, using graphical
model learning and collective inference techniques.

Figure 1 shows an overview of our modeling approach. In
the figure, items and users are nodes, and green edges repre-
sent the ratings that users gave to items, with edge weights
corresponding to the rating values. The goal is to predict
the edge weights for unobserved edges, denoted as dashed
lines. Neighborhood-based approaches find the k most simi-
lar users or similar items, and use their ratings to make these
predictions. In our graph-based representation, we interpret
these k-nearest neighbor relationships as k edges which are
added to the graph. In Figure 1, blue edges encode user
similarities and red edges correspond to item similarities.

We can further encode additional sources of information
and outputs of other recommendation algorithms within this
graph-based representation in a similar way, i.e. in the form
of additional links or nodes. For instance, latent factor
methods identify latent representations which can be used

100

to augment the graph with weighted edges encoding predic-
tions of user-item ratings based on the latent space. The
latent representations can also be used to construct addi-
tional user-user and item-item edges by identifying similar
users and similar items in the latent space. Content infor-
mation and metadata, such as demographics and time in-
formation, can be incorporated in the graph representation
by identifying further similarity links, or by adding nodes
with attribute values, and edges to associate these values
with users and items. Furthermore, social information from
digital social media is inherently relational, and can readily
be incorporated into a graph-based representation.

Having encoded all available information in the graph, the
next step is to reason over this graph to predict unobserved
user-item rating edges. We view the prediction task as infer-
ence in a graphical model, the structure of which is defined
by our graph representation. As scalability is important
for recommendation tasks in practice, we use a hinge-loss
Markov random field (HL-MRF) formulation [9]. HL-MRFs
are highly scalable as they admit exact inference by way of
efficient parallel algorithms. In the next section we briefly re-
view HL-MRFs. We then describe our unified recommender
system modeling framework in detail in Section 3.2, and we
show how to learn the relative importance of the information
sources for our hybrid model in Section 3.3.

3.1 Hinge-loss Markov Random Fields
Hinge-loss Markov random fields (HL-MRFs) [9] are a gen-

eral class of conditional probabilistic models over continuous
random variables which admit tractable and efficient infer-
ence. The key to the tractability of these models is the use
of hinge-loss feature functions. More formally, a hinge-loss
Markov random field defines a conditional probability den-
sity function over random variables Y conditioned on X,

P (Y|X) ∝ exp
(
−

m∑
j=1

wjφj(Y,X)
)

, (1)

where φj is a hinge-loss potential function, of the form

φj(Y,X) = (max{`j(X,Y), 0})pj . (2)

Here, ` is linear function of X and Y, and pj ∈ {1, 2} op-
tionally squares the potential. The variables in X and Y
are in the unit interval [0,1]. Each φj is associated with a
weight wj which determines its importance in the model.
We learn the weights from the data, as discussed later in
Section 3.3. Note that Equation 1 is log-concave in Y, so
maximum a posteriori (MAP) inference to find the optimal
Y in HL-MRFs can be solved exactly via convex optimiza-
tion. We use the alternating direction method of multipliers
(ADMM) approach of Bach et al. [9] to perform this opti-
mization efficiently and in parallel.

HL-MRFs can be specified using a probabilistic program-
ming language called Probabilistic Soft Logic (PSL) [1], and
this is the language we use to specify our unified recommen-
dation framework. PSL is a declarative first-order logical
language where logical rules are composed of continuous re-
laxations of Boolean logical operators. These rules define
templates for hinge-loss potential functions, which are in-
stantiated to construct an HL-MRF model. For example,
a⇒ b corresponds to the hinge function max(a− b, 0), and
a ∧ b corresponds to max(a+ b− 1, 0). We refer the reader
to [1] for a detailed description of PSL operators.

To illustrate PSL in a movie recommendation context, the
following rule encodes that users tend to rate movies of their

preferred genres highly:

LikesGenre(U,G) ∧ IsGenre(M,G)⇒ Rating(U,M) ,

where LikesGenre(U,G) is a binary observed predicate,
IsGenre(M,G) is a continuous observed predicate in the
interval [0, 1] capturing the affinity of the movie to the genre,
and Rating(U,M) is a continuous variable to be inferred,
which encodes the star rating as a number between 0 and 1,
with higher values corresponding to higher star ratings. For
example, we could instantiate U = Jim, G = classics and
M = Casablanca. This instantiation results in a hinge-loss
potential function in the HL-MRF,

max(LikesGenre(Jim, classics)

+ IsGenre(Casablanca, classics)

−Rating(Jim,Casablanca)− 1, 0) .

3.2 Hybrid Framework
The strengths of the HyPER framework include the ability

to extensibly incorporate multiple sources of information in
a unified hybrid recommendation model, as well as learning
how to balance these signals from training data. HyPER
models are specified using a collection of PSL rules which
encode graph-structured dependency relationships between
users, items, ratings, content and social information. Ad-
ditionally, the model provides the flexibility to incorporate
prior predictions, such as mean-centering predictors and the
results of other recommendation algorithms. In what fol-
lows, we present the rules that define the HL-MRF model
for the core of the HyPER framework. We emphasize that
while this set of rules covers a breadth of input sources, the
model can be readily extended to incorporate other sources
of information such as time, implicit feedback, and social
interactions, with the introduction of new PSL rules. More-
over, additional similarity measures and recommendation al-
gorithms can straightforwardly be included with analogous
rules. HyPER builds upon the ideas of Fakhraei et al. [13],
which is an important precursor to this work.

3.2.1 User-based Collaborative Filtering
Motivated by the basic principles of the neighborhood-

based approach, we can define PSL rules of this form:

SimilarUserssim(u1, u2) ∧Rating(u1, i) ⇒ Rating(u2, i) .

This rule captures the intuition that similar users give sim-
ilar ratings to the same items. The predicate Rating(u, i)
takes a value in the interval [0, 1] and represents the nor-
malized value of the rating that a user u gave to an item
i, while SimilarUserssim(u1, u2) is binary, with value 1 iff
u1 is one of the k-nearest neighbors of u2. The similarities
can be calculated with any similarity measure sim, as we
will describe in Section 3.2.3. The above rule represents a
template for hinge functions which reduce the probability of
predicted ratings as the difference between Rating(u2, i) and
Rating(u1, i) increases, for users that are neighbors.

3.2.2 Item-based Collaborative Filtering
Similarly, we can define PSL rules to capture the intu-

ition of item-based collaborative filtering methods, namely
that similar items should have similar ratings from the same
users:

SimilarItemssim(i1, i2) ∧Rating(u, i1) ⇒ Rating(u, i2) .

101

The predicate SimilarItemssim(i1, i2) is binary, with value 1
iff i1 is one of the k-nearest neighbors of i2 (using similarity
measure sim), while Rating(u, i) represents the normalized
value of the rating of user u to item i, as discussed above.

3.2.3 Combining Collaborative Filtering Measures
By including both types of rules described in Sections

3.2.1 and 3.2.2 we can define an HL-MRF model that com-
bines user-based and item-based techniques to predict rat-
ings. There exist many measures available to compute simi-
larities between entities for user-based and item-based meth-
ods, and these different measures capture different notions of
similarity. For instance, in neighborhood-based approaches,
vector-based similarity measures are broadly used, whereas
in latent factor approaches other similarities, applicable to
the low dimensional space, are preferred. While most ex-
isting recommender systems are designed to use a single
similarity measure, HyPER allows for the simultaneous in-
corporation of multiple similarity measures, and can auto-
matically adjust the importance of each based on training
data.

In this instantiation of our HyPER framework we use the
most popular similarity measures in the neighborhood-based
recommendations literature [4]. More specifically, we apply
Pearson’s correlation and cosine similarity measures to cal-
culate similarities between users and items; for the items
we additionally apply the adjusted cosine similarity mea-
sure. To incorporate matrix-factorization collaborative fil-
tering, and inspired by Hoff et al. [14], we compute similar
users and items in the low-dimensional latent space using
two popular distance measures in that space, namely, cosine
and Euclidean. The user similarities are identified using the
following rules:

SimilarUserscosine(u1, u2) ∧Rating(u1, i) ⇒ Rating(u2, i)

SimilarUserspearson(u1, u2) ∧Rating(u1, i) ⇒ Rating(u2, i)

SimilarUserslatent
cosine

(u1, u2) ∧Rating(u1, i) ⇒ Rating(u2, i)

SimilarUsers latent
euclidean

(u1, u2) ∧Rating(u1, i) ⇒ Rating(u2, i) .

Analogous rules are introduced to identify similar items, but
are omitted due to space limitations. As noted earlier, this
initial set of similarity measures can be readily expanded by
adding the corresponding rules, in the same form as above.

3.2.4 Mean-Centering Priors
Each individual user considered in a recommender system

has her own biases in rating items (e.g. some users tend to
be stricter than others). Moreover, each item’s rating is in-
fluenced by its overall quality and popularity (e.g. a popular
blockbuster may get higher ratings on average than a low-
budget movie). To address such biases, a recommender sys-
tem needs to incorporate a normalization mechanism, both
per user, and per item. Using mean-centering normalization
for neighborhood-based approaches, or including intercept
terms in probabilistic latent factor models, addresses this
issue and generally improves performance [4]. In our Hy-
PER framework we encode this intuition with rules that
encourage the ratings to be close to the average, per-user
and per-item:

AverageUserRating(u) ⇒ Rating(u, i)

¬AverageUserRating(u) ⇒ ¬Rating(u, i)

AverageItemRating(i) ⇒ Rating(u, i)

¬AverageItemRating(i) ⇒ ¬Rating(u, i) .

The predicate AverageUserRating(u) represents the average
of the ratings over the set of items that user u provided in
the training set. Similarly, AverageUserRating(i) represents
the average of the user ratings an item i has received. The
pair of PSL rules per-user and per-item corresponds to a
“V-shaped” function centered at the average rating, which
penalizes the predicted rating for being different in either
direction from this average.

In order to capture cases where we have no information
about a user or an item, we use a general prior rating cen-
tered at the average value of all of the ratings in the system
(i.e. the average over all items rated by all users). We en-
code this prior with the following rules:

PriorRating ⇒ Rating(u, i)

¬PriorRating ⇒¬Rating(u, i) .

The real-valued predicate PriorRating represents the aver-
age of all of the ratings.

3.2.5 Using Additional Sources of Information
Incorporating other sources of information pertaining to

the items, the users, and the respective ratings to our frame-
work is straightforward. In the present instantiation of our
framework, we use the content of the items to find similar
items:

SimilarItemsContent(i1, i2) ∧ Rating(u, i1) ⇒ Rating(u, i2) .

In this rule, the predicate SimilarItemsContent(i1, i2) rep-
resents items that have similar content-based features (e.g.
in the movie recommendation domain such features are the
genre, actor, director, etc.), instead of similar ratings.

The HyPER framework can also incorporate social infor-
mation, when this is available. For instance, in the present
instantiation of the system, we leverage social network friend-
ship links as follows:

Friends(u1, u2) ∧ Rating(u1, i) ⇒ Rating(u2, i) .

Note that our framework is flexible and can incorporate
many other sources of information that are available. For in-
stance, we can leverage demographic information by comput-
ing similarity neighborhood relationships in demographic
feature space and employing the rule:

SimilarUsersDemo(u1, u2) ∧ Rating(u1, i) ⇒ Rating(u2, i) .

3.2.6 Leveraging Existing Recommendation Algorithms
Every recommendation algorithm has strengths and weak-

nesses which may depend on data-specific factors such as the
degree of sparsity or the shape of the data matrix. This im-
poses a big limitation in the recommendation process, as
choosing one algorithm as the core of a recommender sys-
tem limits its strength to a particular set of domains. In this
work, our motivation is to provide a flexible framework that
can be used as-is to generate accurate recommendations for
any domain and data regime. Therefore, instead of selecting
a single recommendation algorithm, we propose to incorpo-
rate the predictions from different methods into our unified
model. These predictions are further augmented with any
other available information, using the rules discussed above.
For example, the predictions from matrix factorization (op-
timizing regularized squared error via stochastic gradient
descent) (MF), Bayesian probabilistic matrix factorization

102

(BPMF) [15], and item-based collaborative filtering can be
incorporated in the model via the following rules:

RatingMF (u, i) ⇒ Rating(u, i)

¬RatingMF (u, i) ⇒¬Rating(u, i)

RatingBPMF (u, i) ⇒ Rating(u, i)

¬RatingBPMF (u, i) ⇒¬Rating(u, i)

Rating item
based

(u, i) ⇒ Rating(u, i)

¬Rating item
based

(u, i) ⇒¬Rating(u, i) .

Additional algorithms can be easily incorporated in a sim-
ilar manner.

3.3 Balancing the Information Sources
An important task of any hybrid recommender system is

to trade off and balance the different information sources ac-
cording to their informativeness for predicting ratings. Each
of the first-order rules introduced above corresponds to a dif-
ferent information source in our hybrid model, and is asso-
ciated with a non-negative weight wj in Equation 1. These
weights determine the relative importance of the informa-
tion sources, corresponding to the extent to which the corre-
sponding hinge function φj alters the probability of the data
under Equation 1, with higher weight wj corresponding to
a greater importance of information source j. For each rule
we learn a weight using Bach et al. [9]’s approximate maxi-
mum likelihood weight learning algorithm for templated HL-
MRFs. The algorithm approximates a gradient step in the
conditional likelihood,

∂logP (Y|X)

∂wj
= Ew[φj(Y,X)]− φj(Y,X) , (3)

by replacing the intractable expectation with the MAP solu-
tion based on w, which can be rapidly solved using ADMM.

3.4 Scaling to Large Datasets
Due to the hinge-loss formulation, inference and learning

are relatively scalable via ADMM, which can be performed
in parallel. The UMD/UCSC implementation of PSL uses
a single-machine multi-threaded ADMM algorithm, and we
use this implementation for our experiments on datasets
with around 100,000 ratings. For deployment in industrial
applications with millions of users, items, and ratings, the
main bottleneck for scalability is memory to store the ground
model. This can be addressed simply in the current imple-
mentation of PSL by dividing the graph into densely con-
nected subgraphs, e.g. a subgraph per city, that are inferred
independently and in parallel on different machines. Al-
ternatively, a fully distributed implementation of ADMM
would straightforwardly facilitate the scaling of HyPER to
the big data setting via model parallelism.

4. EXPERIMENTAL VALIDATION
In this section we evaluate our HyPER framework with

comparison to state-of-the-art recommender algorithms. We
report experimental results on two popular datasets for both
the complete hybrid model and for each individual compo-
nent of our hybrid models.1

1Code is available at https://github.com/pkouki/recsys2015

Table 1: Dataset Description

Dataset Yelp Last.fm

No. of users 34,454 1,892
No. of items 3,605 17,632
No. of ratings 99,049 92,834
Content 514 business 9,719 artist tags

categories
Social 81,512 12,717

friendships friendships
Sparsity 99.92% 99.72%

4.1 Datasets and Evaluation Metrics
For our experimental evaluation we used the Yelp aca-

demic dataset and the Last.fm dataset.23 Our goal with
Yelp is to recommend local businesses to users by predicting
the missing ratings of businesses based on previous ratings.
For our experiments, we used all businesses, users, and rat-
ings from Scottsdale, Arizona, one of the largest cities in the
dataset. Since we employ user and item similarities as well
as social information, it makes sense to focus those relation-
ships within the subgroup of the businesses of one physical
location. Additionally, we used the categories of each busi-
ness as content information and the explicit user friendships
provided as social information. Yelp users give ratings from
1 to 5 stars, which we linearly scaled into the [0,1] range
that PSL operates over for the purposes of our model.

For the Last.fm dataset our goal is to recommend artists
to users. As Last.fm does not provide explicit user-artist rat-
ings we leverage the number of times a user has listened to an
artist to construct implicit ratings. We use a simple model-
based approach, where the repeated-listen counts for each
user across artists are modeled with a negative-binomial dis-
tribution. We used this distribution as it is appropriate for
count data where the sample variance is greater than the
sample mean, which is typically the case for Last.fm. For
each user, we fit a negative binomial to their counts via
maximum likelihood estimation, and we calculate the user’s
implicit rating for an artist as the cumulative distribution
function (CDF) of the distribution, evaluated at the artist’s
count. This corresponds to the proportion of hypothetical
artists that a user would listen to less than the given artist,
under the model. The Last.fm dataset also includes tags on
artists that we use for content-based information, as well as
user friendship data that we use for social recommendation.

We deliberately selected two datasets with a similar total
number of ratings but a different ratio of users to items.
Different recommendation methods may perform better with
more users than items or vice versa, and hybrid systems
must account for this. We provide the summary statistics
of the two datasets in Table 1.

To learn the appropriate balance between information
sources for HyPER, i.e. to learn the weights of each rule in
the model, we train using the approximate maximum like-
lihood method described in Section 3.3, with 20% of the
training folds treated as the prediction target variables Y.
During testing, we performed MAP inference to make pre-
dictions using ADMM. We report the root mean squared
error (RMSE) and the mean absolute error (MAE). We com-
pute these metrics by performing 5-fold cross-validation and
reporting the average cross-validated error.

2https://www.yelp.com/academic dataset
3http://grouplens.org/datasets/hetrec-2011/

103

https://github.com/pkouki/recsys2015
https://www.yelp.com/academic_dataset
http://grouplens.org/datasets/hetrec-2011/

Table 2: Overall Performance of Different Recommender Systems on Yelp and Last.fm.

Yelp Last.fm

Model RMSE (SD) MAE (SD) RMSE (SD) MAE (SD)

B
a
se

m
o
d
e
ls Item-based 1.216 (0.004) 0.932 (0.001) 1.408 (0.010) 1.096 (0.008)

MF 1.251 (0.006) 0.944 (0.005) 1.178 (0.003) 0.939 (0.003)

BPMF 1.191 (0.003) 0.954 (0.003) 1.008 (0.005) 0.839 (0.004)

H
y
b
r
id

m
o
d
e
ls Naive hybrid (averaged predictions) 1.179 (0.003) 0.925 (0.002) 1.067 (0.004) 0.857 (0.004)

BPMF-SRIC 1.191 (0.004) 0.957 (0.004) 1.015 (0.004) 0.842 (0.004)

HyPER 1.173 (0.003) 0.917 (0.002) 1.001 (0.004) 0.833 (0.004)

4.2 Experimental Results
We report overall results with comparison to a selection

of competing algorithms in Table 2, and show more detailed
results for the individual components of our hybrid models
in Table 3. The following sections discuss these results.

4.2.1 Overall Performance Comparison
We study the performance of HyPER in comparison to

several state-of-the-art models. We considered the following
baselines:

• Item-based: The method in Equation 4.16 from [4],
using Pearson’s correlation with a mean-centering cor-
rection, as implemented in Graphlab.4

• Matrix factorization (MF): MF optimizing for reg-
ularized squared error using stochastic gradient de-
scent [12], as implemented in Graphlab.

• Bayesian probabilistic matrix factorization
(BPMF): The Bayesian variant of probabilistic ma-
trix factorization, trained using Gibbs sampling [15].

• Naive hybrid: A simple hybrid approach where the
predictions of the above models are averaged.

• BPMF with social relations and items’ content
(BPMF-SRIC): A hybrid model that extends BPMF
with social and content information [5].

The performance of our model is statistically significantly
better than the baselines at α = 0.05 for both datasets and
evaluation metrics when using paired t-test. We denote with
bold the numbers that are statistically significantly better.
These results confirm our initial intuition that by incorpo-
rating a wide variety of information sources and balancing
them appropriately, the HyPER framework manages to per-
form very well with rich and diverse datasets. We explore
HyPER components in more detail in the following section.

4.2.2 Performance per Information Type
For each type of information, we further evaluated our

approach by building simple HyPER models with each rule
individually, and comparing these to combined hybrid sub-
models comprising all of the corresponding rules of that
type. Each sub-model also included the corresponding mean-
centering rules (e.g. the user-average rating rule for the
user-based models). To balance the effect of each rule, we
performed weight learning within each training fold to learn
rule weights. We report the results in Table 3. The re-
sults show that for each information type, the HyPER model

4http://www.dato.com

which combines all of the corresponding components per-
forms significantly better than each component, considered
in isolation. We denote with bold the cases where the per-
formance of each HyPER model is statistically significantly
better than all the individual models in the same category at
α = 0.05 using paired t-test. The final HyPER model shown
in the last line, which combines all of the available informa-
tion into a single hybrid model, also performs statistically
significantly better than all sub-models and baselines.

Mean-Centering Priors: We created simple HyPER
models using only the average rating of each user, or the
average rating of each item, or the average overall rating,
as well as a combined model. In the case of Yelp, the
item-average model had a lower error compared to the user
average rule, while the opposite was true for Last.fm (Ta-
ble 3(a)). This may be because the ratio of users to items
is different in the two datasets. The combined model per-
formed better than the individual models in both datasets.

Neighborhood-Based Collaborative Filtering: We
constructed individual models based on the similarities de-
scribed in Section 3.2.1. The number of neighbors is typ-
ically set to between 20 and 50 in the literature [4], and
so we used 50 neighbors for users/item in all experiments.
We also employed a mean-centered approach by providing
each of these models with the corresponding average-rating
mean-centering rules (e.g. the average user-rating rule for
user-based collaborative filtering). As in the previous exper-
iment, user-based techniques perform poorly on Yelp, but
have better performance on Last.fm (Tables 3(b) and 3(c)).
The opposite is true for the item-based techniques, which
perform poorly on Last.fm, but better on Yelp. The perfor-
mance varied between the different similarity measures, with
distances computed in the latent space usually performing
the best individually. Again, the HyPER combination of all
similarity measures improves performance.

Additional Sources of Information: We constructed
individual and hybrid models using friendship information,
as well as content similarity between items based on the busi-
ness category and the tags of artists for Yelp and Last.fm re-
spectively. We used Jaccard similarity for both datasets. In
each sub-model we also provided additional rules for mean
centering using both average user and item ratings. Con-
tent and friendship information help performance in both
datasets, and the model that combines both content and so-
cial information matched and often improved on the best
individual models’ performance (Table 3(d)).

Leveraging Existing Algorithms: As discussed in sec-
tion 3.2.6, our framework is able to combine predictions from
a number of different models. In Table 3(e) we show the per-
formance of three baseline recommenders, and in the fourth
line we present the results of a HyPER ensemble which com-

104

http://www.dato.com

Table 3: Performance of HyPER sub-models on Yelp and Last.fm.

Yelp Last.fm

Model RMSE (SD) MAE (SD) RMSE (SD) MAE (SD)

(a
)

M
e
a
n
-

c
e
n
te

r
in

g User average rating 2.313 (0.008) 1.656 (0.008) 1.043 (0.004) 0.873 (0.004)

Item average rating 1.215 (0.003) 0.932 (0.001) 1.399 (0.009) 1.092 (0.008)

Overall average rating 1.280 (0.005) 1.030 (0.004) 1.792 (0.004) 1.464 (0.004)

HyPER (all mean-centering rules) 1.199 (0.003) 0.952 (0.002) 1.032 (0.004) 0.861 (0.004)

(b
)

U
se

r
-

b
a
se

d

Similar users (Pearson) 2.313 (0.008) 1.656 (0.008) 1.043 (0.004) 0.874 (0.004)

Similar users (cosine) 2.313 (0.008) 1.657 (0.008) 1.043 (0.004) 0.873 (0.004)

Similar users (latent, cosine) 2.227 (0.007) 1.597 (0.007) 1.025 (0.004) 0.862 (0.004)

Similar users (latent, Euclidean) 2.226 (0.009) 1.596 (0.008) 1.025 (0.004) 0.863 (0.004)

HyPER (all user-based rules) 2.194 (0.008) 1.573 (0.008) 1.025 (0.004) 0.861 (0.004)

(c
)

It
e
m

-

b
a
se

d

Similar items (Pearson) 1.213 (0.004) 0.931 (0.002) 1.397 (0.008) 1.098 (0.006)

Similar items (cosine) 1.211 (0.003) 0.928 (0.001) 1.396 (0.008) 1.100 (0.007)

Similar items (adjusted cosine) 1.210 (0.004) 0.924 (0.002) 1.405 (0.008) 1.092 (0.007)

Similar items (latent, cosine) 1.212 (0.003) 0.923 (0.001) 1.379 (0.009) 1.080 (0.008)

Similar items (latent, Euclidean) 1.212 (0.003) 0.931 (0.001) 1.379 (0.008) 1.081 (0.008)

HyPER (all item-based rules) 1.208 (0.004) 0.923 (0.002) 1.362 (0.007) 1.070 (0.006)

(d
)

C
o
n
te

n
t

&
S
o
c
ia
l Similar items (content) 1.200 (0.003) 0.939 (0.002) 1.029 (0.004) 0.867 (0.004)

Friends 1.199 (0.003) 0.932 (0.002) 1.013 (0.004) 0.853 (0.004)

HyPER (content + social rules) 1.195 (0.003) 0.927 (0.002) 1.013 (0.004) 0.857 (0.004)

(e
)

B
a
se

m
o
d
e
ls

Item-based 1.216 (0.004) 0.932 (0.001) 1.408 (0.010) 1.096 (0.008)

MF 1.251 (0.006) 0.944 (0.005) 1.178 (0.003) 0.939 (0.003)

BPMF 1.191 (0.003) 0.954 (0.003) 1.008 (0.005) 0.839 (0.004)

HyPER (baseline rules) 1.179 (0.003) 0.926 (0.002) 1.005 (0.005) 0.836 (0.004)

HyPER (all rules) 1.173 (0.003) 0.917 (0.002) 1.001 (0.004) 0.833 (0.004)

bines the results of those recommenders, without any addi-
tional rules. The combined model performed better than
the individual baselines.

Relative Importance of Information Sources: When
performing weight learning (Section 3.3), the learned weights
of the rules are indicative of the relative importance of the
signals. For Last.fm, average user ratings had a high rule
weight while average item ratings did not, while the re-
verse was true for Yelp, suggesting a difference in the im-
portance of user judiciousness versus item popularity be-
tween the data sets. Item similarities had a high weight for
Last.fm, while MF predictions had a high weight for Yelp.
Negated rules, which decrease predicted ratings, were typi-
cally weighted lower than their non-negated counterparts. In
general, the rules for BPMF predictions had high weights.

5. RELATED WORK
There is a large body of work on recommender systems;

see Ricci et al. [16] for an overview. We focus our related
work discussion on hybrid recommender systems, and partic-
ularly systems that can incorporate multi-relational and het-
erogeneous data as well as graphical modeling approaches.
In Burke [17]’s taxonomy of hybrid recommender systems
our work falls into the “feature augmentation” category.

Hybrid systems typically combine two or more approaches
in order to provide better recommendations, usually content-
based and collaborative filtering approaches [18, 19] or vari-
ations of collaborative filtering approaches [20]. Gunawar-
dana and Meek [18] present a domain-agnostic hybrid ap-
proach for using content to improve item-item modeling.
After the Netflix Prize competition, ensemble methods [21]
have gained popularity. Factorization Machines [22] are a

general matrix factorization method that can be applied
to design hybrid factorization models. Recently, as user-
generated content has become available, researchers have
studied how to leverage information such as social relation-
ships [5, 6], reviews [23, 24], tags [25], and feedback [26]
to improve recommendations. Incorporating additional in-
formation for users and/or items is especially beneficial in
cold-start settings [27]. Dooms [28] argues that a flexible
recommendation system that automatically generates good
hybrid models would be very valuable as information sources
increase. Our model provides such flexibility, allowing for
the combination of as many information sources as are avail-
able. Fakhraei et al. [13] use PSL to reason over multiple
similarity measures for predicting drug-target interactions.
Our approach extends this model in several important ways
for the recommender systems domain.

Chen at al. [29] learn the strength of ties between users
based on multi-relational network information. The learned
network is combined with item-based collaborative filtering
to improve recommendation results. Burke et al. [30, 31]
integrate different dimensions of data about users in a het-
erogenous network by using metapaths to create multiple
two-dimensional projections representing relationships be-
tween entities (e.g. users-tags) and then linearly combining
these projections. Also using metapaths, Yu et al. [32] pro-
pose a global and a personalized recommendation model. In
their approach, implicit feedback is incorporated into meta-
paths and latent features for users and items are generated
using matrix factorization.

De Campos et al. [3] propose a probabilistic graphical
modeling recommendation approach using Bayesian networks.
Their approach combines individual predictions from content-

105

based and user-based collaborative filtering components.
Hoxha and Rettinger [33] also discuss a probabilistic graph-
ical modeling representation, using Markov Logic Networks
(MLNs) [34] to combine content with collaborative filtering.
Both MLNs and HL-MRFs operate on undirected graphical
models using a first-order logic as their template language,
while Bayesian networks are directed. We chose HL-MRFs
because they can represent ordered data such as ratings, and
due to their scalability with parallel convex optimization for
inference. Speed and scalability is of paramount importance
in recommender systems and in particular when we run the
prediction task collectively over multiple types of input data
with a variety of similarity measures.

6. CONCLUSION
In this paper we presented HyPER, a new hybrid rec-

ommender system which is flexible, problem-agnostic, and
is easily extensible via a probabilistic programming inter-
face. HyPER uses a hinge-loss MRF formulation, allowing
scalable and accurate inference. Our comprehensive experi-
ments demonstrate that HyPER can learn to appropriately
balance many information sources, resulting in improved
performance over previous state-of-the-art approaches on
two benchmark datasets.

Acknowledgements
We would like to thank Ben London and Alex Ntoulas for in-
sightful discussions. We thank Juntao Liu for sharing the code
of their approach [5], George Karypis, Christian Desrosiers, Chris
Meek, Asela Gunawardana, and Robin Burke for their help. This
work was partially supported by NSF grant IIS1218488 and by
the IARPA via DoI/NBC contract D12PC00337. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright annota-
tion thereon. Disclaimer: The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements, ei-
ther expressed or implied, of NSF, IARPA, DoI/NBC, or the U.S.
Government.

7. REFERENCES
[1] S.H. Bach, M. Broecheler, B. Huang, and L. Getoor.

Hinge-loss markov random fields and probabilistic soft
logic. ArXiv:1505.04406 [cs.LG], 2015.

[2] G. Adomavicius and A. Tuzhilin. Toward the next
generation of recommender systems: A survey of the
state-of-the-art and possible extensions. Transactions on
Knowledge and Data Engineering, 17(6), 2005.

[3] L. de Campos, J. Fernández-Luna, J. Huete, and
M. Rueda-Morales. Combining content-based and
collaborative recommendations: A hybrid approach based
on Bayesian networks. International Journal of
Approximate Reasoning, 51(7), 2010.

[4] C. Desrosiers and G. Karypis. A comprehensive survey of
neighborhood-based recommendation methods. In
Recommender Systems Handbook. Springer, 2011.

[5] J. Liu, C. Wu, and W. Liu. Bayesian probabilistic matrix
factorization with social relations and item contents for
recommendation. Decision Support Systems, 55(3), 2013.

[6] H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King.
Recommender systems with social regularization. In
WSDM, 2011.

[7] N. Goodman, V. Mansinghka, D.M. Roy, K. Bonawitz, and
J. Tenenbaum. Church: a language for generative models
with non-parametric memoization and approximate
inference. In UAI, 2008.

[8] L. Getoor and B. Taskar. Introduction to statistical
relational learning. MIT press, 2007.

[9] S. H. Bach, B. Huang, B. London, and L. Getoor.
Hinge-loss Markov random fields: Convex inference for
structured prediction. In UAI, 2013.

[10] M. Broecheler, L. Mihalkova, and L. Getoor. Probabilistic
similarity logic. In UAI, 2010.

[11] P. Lops, M. Gemmis, and G. Semeraro. Content-based
recommender systems: State of the art and trends. In
Recommender Systems Handbook. Springer, 2011.

[12] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. IEEE Computer,
42(8), 2009.

[13] S. Fakhraei, B. Huang, L. Raschid, and L. Getoor.
Network-based drug-target interaction prediction with
probabilistic soft logic. Transactions on Computational
Biology and Bioinformatics, 11(5), 2014.

[14] P. D. Hoff, A. E. Raftery, and M. S. Handcock. Latent
space approaches to social network analysis. Journal of the
American Statistical Association, 97, 2001.

[15] R. Salakhutdinov and A. Mnih. Bayesian probabilistic
matrix factorization using Markov chain Monte Carlo. In
ICML, 2008.

[16] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor.
Recommender Systems Handbook. Springer, 2011.

[17] R. Burke. Hybrid web recommender systems. In The
Adaptive Web. Springer, 2007.

[18] A. Gunawardana and C. Meek. A unified approach to
building hybrid recommender systems. In RecSys, 2009.

[19] P. Forbes and M. Zhu. Content-boosted matrix
factorization for recommender systems: Experiments with
recipe recommendation. In RecSys, 2011.

[20] Y. Koren. Factorization meets the neighborhood: A
multifaceted collaborative filtering model. In KDD, 2008.

[21] M. Jahrer, A. Töscher, and R. Legenstein. Combining
predictions for accurate recommender systems. In KDD,
2010.

[22] S. Rendle. Factorization machines with libFM. ACM
Transactions on Intelligent Systems and Technology, 3(3),
2012.

[23] J. McAuley and J. Leskovec. Hidden factors and hidden
topics: Understanding rating dimensions with review text.
In RecSys, 2013.

[24] G. Ling, M. R. Lyu, and I. King. Ratings meet reviews, a
combined approach to recommend. In RecSys, 2014.

[25] I. Guy, N. Zwerdling, I. Ronen, D. Carmel, and E. Uziel.
Social media recommendation based on people and tags. In
SIGIR, 2010.

[26] S. Sedhain, S. Sanner, D. Braziunas, L. Xie, and
J. Christensen. Social collaborative filtering for cold-start
recommendations. In RecSys, 2014.

[27] Z. Gantner, L. Drumond, C. Freudenthaler, S. Rendle, and
L. Schmidt-Thieme. Learning attribute-to-feature mappings
for cold-start recommendations. In ICDM, 2010.

[28] S. Dooms. Dynamic generation of personalized hybrid
recommender systems. In RecSys, 2013.

[29] J. Chen, G. Chen, H. Zhang, J. Huang, and G. Zhao. Social
recommendation based on multi-relational analysis. In
WI-IAT, 2012.

[30] R. Burke, F. Vahedian, and B. Mobasher. Hybrid
recommendation in heterogeneous networks. In User
Modeling, Adaptation, and Personalization. Springer, 2014.

[31] J. Gemmell, T. S., B. Mobasher, and R. Burke. Resource
recommendation in social annotation systems: A
linear-weighted hybrid approach. Journal of Computer and
System Sciences, 78(4), 2012.

[32] X. Yu, X. Ren, Y. Sun, Q. Gu, B. Sturt, U. Khandelwal,
B. Norick, and J. Han. Personalized entity
recommendation: A heterogeneous information network
approach. In WSDM, 2014.

[33] J. Hoxha and A. Rettinger. First-order probabilistic model
for hybrid recommendations. In ICMLA, 2013.

[34] M. Richardson and P. Domingos. Markov logic networks.
Machine Learning, 62(1-2), 2006.

106

	Introduction
	background
	Proposed Approach
	Hinge-loss Markov Random Fields
	Hybrid Framework
	User-based Collaborative Filtering
	Item-based Collaborative Filtering
	Combining Collaborative Filtering Measures
	Mean-Centering Priors
	Using Additional Sources of Information
	Leveraging Existing Recommendation Algorithms

	Balancing the Information Sources
	Scaling to Large Datasets

	Experimental Validation
	Datasets and Evaluation Metrics
	Experimental Results
	Overall Performance Comparison
	Performance per Information Type

	Related Work
	conclusion
	References

