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Abstract

◮ Recommender systems must balance the estimated level of user interest of the recommended
items with the diversity of the content.

◮ Determinantal point processes (DPPs) are probabilistic models for selecting diverse,
high-quality sets.

◮ In a personalization context we would typically like to have more control over the recommendations
than DPPs afford. To address this, we introduce several approaches for blending the properties

of multiple DPPs.

◮ The final proposed approach, the DPP eigenmixture, exploits the eigenstructure of the DPP
kernel matrices in order to encapsulate the most important properties of several DPPs.

◮ We demonstrate the utility of the proposed methods on several recommendation tasks.

Determinantal Point Processes

◮ DPPs are distributions over subsets S of a set Y of items, which prefer diverse sets.

DPP Independent

◮ We focus on the class of DPPs most relevant for machine learning, called L-ensembles. These
models represent the items with a k × N feature matrix B.

◮ Each column Ba of B is a feature vector representing item a

◮ The DPP selects sets with probability proportional to the squared volume of the parallelotope
spanned by the feature vectors of the items.

◮ The DPP takes as input the Gram matrix of B, L = B⊺B. Here, Lab = B
⊺
aBb corresponds to

a similarity score for elements a and b. The probability function for the DPP can be written as

P(S) ∝ det(LS) .

Personalization Using the DPP

◮ We use item features A to encode diversity information (angles), and collaborative filtering
recommendation scores Yia for user i and item a to encode a personalized notion of quality
(length), e.g. Y = U⊺A, where U contains user features. This gives us an L-ensemble kernel

L
(i)
ab

= B⊺
aBb =

√

f(Yia)A
⊺
aAb

√

f(Yib) .

◮ Sets of items are recommended by drawing from the resulting DPP,

P(S) ∝ det(A:,S
⊺A:,S)

∏

a∈S

f(Yia) .

Combining Multiple DPPs for Personalization

◮ For personalization tasks, we would like more control over the behavior of the model to
◮ Control the trade-off between diversity vs quality
◮ Cater to both a user’s long term and short-term interests
◮ Generate sets that multiple users will like
◮ Provide both personalized and popular/trending items
◮ ...

◮ We could obtain this control if we could interpolate between the behaviours of multiple DPPs.

Methods for Blending DPPs

◮ Suppose we have a set of M DPP kernels {L(1), L(2), . . . , L(M)} with blending weights α, and
we would like to blend their properties into a single model. We first consider two simple methods.

Mixture of DPPs

Pα
L1:M

=
∑M

i=1P
(i)αi

1: Given: a mixture of DPPs Pα
L1:M

2: Select a DPP with probability α
3: Sample from the selected DPP

DPP with convex mixture of kernels

Lα =
∑M

i=1 L
(i)αi

1: Given: a collection of kernels and weights α
2: Compute the convex combination kernel Lα

3: Sample from the DPP with kernel Lα

Applications Beyond Simple Blending
◮ Suppose each kernel models a family member’s preferences in movies, and we would like to
recommend a set of movies that will be satisfying to the whole family. Then
◮ The mixture model will in general draw sets containing items that are desirable to only one of the users.
◮ Suppose Bob likes violent movies. His daughter Alice likes cartoons. The convex mixture will prefer violent cartoons,
which are satisfying to neither user.

A Closer Look at DPPs

◮ We will introduce a more sophisticated method for blending multiple DPPs. First, we must consider
more detailed properties of DPPs (see the paper for a more technically precise description).

◮ DPPs are mixtures of simpler, elementary DPPs,

PL ∝
∑

J⊆{1,...,N}

PVJ
∏

n∈J

λn .

◮ To draw from a DPP:
◮ Compute the eigendecomposition of the kernel matrix L =

∑

n λnvnv
⊺

n

◮ Draw a subset V of the eigenvectors proportional to the product of their eigenvalues λ
◮ Use these as features B̄ to construct a new elementary DPP with kernel L̄ = B̄⊺B̄
◮ Draw |V | items from this DPP, which is easy because the new features are orthogonal
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◮ The chosen eigenvectors are features in a latent space which defines the new DPP.

DPP Eigenmixtures

◮ Key Idea: Mix and match the eigenvectors (“eigenfeatures”) from the component kernels, to
create a latent space which blends their properties.

◮ The model is a mixture over DPPs sharing subsets of the eigenfeature latent feature
representations of the component DPPs:

s ∼ Mult(α, k)

P{L},s ∝
∑

J∈(V
(m)

sm
)

P(VJ ,k)
∏

n(m)∈J

λ
n(m) .

◮ To draw from a DPP eigenmixture:
◮ Compute eigendecompositions of L(1), L(2), . . . , L(M)

◮ Sample sm eigenvectors V (m) from each kernel m
◮ Use these as features B̄ to construct a new DPP with kernel L̄ = B̄⊺B̄
◮ Draw |V | items from this DPP. It is not in general elementary, so sample from it as for any other DPP
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◮ The squared entries v(i)2 of each eigenfeature v can be viewed as a distribution over the items.

◮ Alternatively, we can view each eigenfeature as a unit specifying relative preferences for each
item, and similarities between items. Increasing v(i)2 increases the length (implicit quality score)
of item i’s latent representation, while increasing v(i) and v(j) increases their cosine similarity.

◮ The convex mixture is equivalent to concatenating the (rescaled) features of the component kernels,
while the eigenmixture concatenates the latent features.

Personalized News Recommendation

◮ Data: Yahoo news articles, with click / skip information for 1000 Yahoo users.

◮ We trained the DPP mixtures via grid search to optimize precision, evaluated with 5-fold
cross-validation.

◮ Task: Draw sets with high precision, in terms of clicks.
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Personalized Group Movie Recommendation

◮ A group recommendation task on the MovieLens dataset – recommend movies for the entire group.

◮ 100 groups of 5 users were chosen at random

◮ Each group was given 1000 sets of movies, chosen from the 10,000 movies.

◮ Each user had a personalized component DPP. Similarity features: user ratings. Quality scores:
neighbourhood-based collaborative filtering. Uniform mixture weights α were used.
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