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Stochastic Collapsed Variational Bayesian Inference 
for Latent Dirichlet Allocation 
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Stochastic Optimization for ML 
 

• Batch algorithms 
•While (not converged) 

•Process the entire dataset 
•Update parameters 
 

• Stochastic algorithms 
•While (not converged) 

•Process a subset of the dataset 
•Estimate quantities needed for an 
update, and extrapolate 
•Update parameters 

Collapsed Variational Bayes for LDA 

 

• Maintain variational distributions for the 
topic of each token 

• Mean field assumption 

• CVB0 (Asuncion et al., 2009) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Advantages of the collapsed representation 
• Simpler, faster and fewer update 

equations 
• Better mixing for Gibbs sampling 
• Better variational bound for VB 

 

Motivation 

How to estimate CVB0 statistics? 

 

• Pick a random word (i,j) from the corpus 

 

 

 

 

 

 

• In an online algorithm, we cannot store 
the variational parameters, but we can 
update them 

 

 

 

• Keep an online average of the CVB0 
statistics 

 

 

 

 

 

The Full Algorithm 

• Optional burn-in passes per document 

• Minibatches 

• Operating on sparse counts 

 

 

SCVB0 is a Robbins Monro stochastic 
approximation algorithm for finding the 
fixed points of (a variant of) CVB0 
 
Theorem: with an appropriate sequence of 
step sizes, SCVB0 converges to a stationary 
point of the MAP, with adjusted hyper-
parameters 

Stochastic CVB0 

• We introduced stochastic CVB0 for LDA, which 
is fast, easy to implement, and accurate 
 

• Experimental results show SCVB0 is useful for 
both large-scale and small-scale analysis 
 

• Future work: Exploit sparsity, parallelization, 
 non-parametric extensions 

Large-Scale Experiments 

Experimental Results 

• Real-time or near real-time results are 
important for EDA applications 

• Topics on-demand 
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Small-Scale Experiments 


