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Social networks today 



Social network analysis: an 
interdisciplinary endeavor 
• Sociologists have been 

studying social networks 
for decades! 

• First known empirical 
study of social networks: 
Jacob Moreno in 1930s 
• Moreno called them 

sociograms 

• Recent interest in social 
network analysis (SNA) 
from physics, EECS, 
statistics, and many other 
disciplines 



Social networks as graphs 

• A social network can be represented by a graph 𝐺 = 𝑉, 𝐸  
• 𝑉: vertices, nodes, or actors typically representing people 
• 𝐸: edges, links, or ties denoting relationships between nodes 
• Directed graphs used to represent asymmetric relationships 

• Graphs have no natural representation in a geometric space 
• Two identical graphs drawn differently 
• Moral: visualization provides very limited analysis ability 
• How do we model and analyze social network data? 



Matrix representation of social 
networks 
• Represent graph by 𝑛 × 𝑛 adjacency matrix or 

sociomatrix 𝐘 
• 𝑦𝑖𝑗 = 1 if there is an edge between nodes 𝑖 and 𝑗 

• 𝑦𝑖𝑗 = 0 otherwise 

 

 

 

 

 

 

• Easily extended to directed and weighted graphs 

𝐘 =

0 1 1 0 0 1
1 0 0 1 1 0
1 0 0 0 0 1
0 1 0 0 1 0
0 1 0 1 0 0
1 0 1 0 0 0

 



Exchangeability of nodes 

• Nodes are typically assumed to be (statistically) 
exchangeable by symmetry 

• Row and column permutations to adjacency matrix 
do not change graph 
• Needs to be incorporated into social network models 



Sociological principles related to 
edge formation 
• Homophily or assortative mixing 

• Tendency for individuals to bond with similar others 

• Assortative mixing by age, gender, social class, 
organizational role, node degree, etc. 

• Results in transitivity (triangles) in social networks 
• “My friend of my friend is my friend” 

• Equivalence of nodes 
• Two nodes are structurally equivalent if their relations to 

all other nodes are identical 
• Approximate equivalence recorded by similarity measure 

• Two nodes are regularly equivalent if their neighbors are 
similar (not necessarily common neighbors) 



Brief history of social network 
models 
• Early 1900s – sociology and social psychology precursors to SNA (Georg Simmel) 

 

• 1930s – Graphical depictions of social networks: sociograms (Jacob Moreno) 

 

• 1960s – Small world / 6-degrees of separation experiment (Stanley Milgram) 

 

• 1970s – Mathematical models of social networks (Erdos-Renyi-Gilbert) 

 

• 1980s – Statistical models (Holland and Leinhardt, Frank and Strauss) 

 

• 1990s –  Statistical physicists weigh in: preferential attachment, small world 
models, power-law degree distributions (Barabasi et al.) 

 

• 2000s – Today – Machine learning approaches, latent variable models 



Generative models for social 
networks 
• A generative model is one that can simulate 

new networks 

 

• Two distinct schools of thought:  
• Probability models (non-statistical) 

• Typically simple, 1-2 parameters, not learned from data 
• Can be studied analytically 

 

• Statistical models 
• More parameters, latent variables 
• Learned from data via statistical techniques 



Probability and Inference 

12 

Data generating 
process 

Observed data 

Probability 

Inference 

Figure based on one by Larry Wasserman, "All of Statistics" 

Mathematics/physics: Erdős-Rényi, preferential attachment,… 

Statistics/machine learning: ERGMs, latent variable models… 
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Probability models 
for networks 

(non-statistical) 



Erdős-Rényi model 

• There are two variants of this model 

 

• The                model is a probability distribution over 
graphs with a fixed number of edges. 
 

• It posits that all graphs on N nodes with E edges are 
equally likely 

 



Erdős-Rényi model 

 

 

• The                model posits that each edge is “on” 
with probability p 

 

• Probability of adjacency matrix 



Erdős-Rényi model 

• Adjacency matrix likelihood: 

 

 

• Number of edges is binomial. 

 

 

 

• For large N, this is well approximated by a Poisson 

 

 

 

 



Preferential attachment models 

• The Erdős-Rényi model assumes nodes typically 
have about the same degree (# edges) 

 

• Many real networks have a degree distribution 
following a power law (possibly controversial?) 

 

 

• Preferential attachment is a variant on the G(N,p) 
model to address this (Barabasi and Albert, 1999) 

 



Preferential attachment models 

• Initially, no edges, and N0 nodes. 

 

• For each remaining node n 
• Add n to the network 

• For i =1:m 
• Connect n to a random existing node with probability 

proportional to its degree ( + smoothing counts), 

 

 

• A Polya urn process! Rich get richer. 
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Small world models 
(Watts and Strogatz) 

 
 

• Start with nodes 
connected to K 
neighbors in a ring 
 

• Randomly rewire 
each edge with 
probability  
 

• Has low average path length (small world 
phenomenon, “6-degrees of separation”) 

19 Figure due to Arpad Horvath, https://commons.wikimedia.org/wiki/File:Watts_strogatz.svg 



20 

Statistical network models 



Exponential family random graphs 
(ERGMs) 
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Arbitrary sufficient statistics 

Covariates (gender, age, …) 
 
E.g. “how many males are friends with females” 



Exponential family random graphs 
(ERGMs) 
• Pros: 

• Powerful, flexible representation 

• Can encode complex theories, and do substantive social 
science 

• Handles covariates 

• Mature software tools available, 
e.g. ergm package for statnet 
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Exponential family random graphs 
(ERGMs) 
• Cons: 

• Usual caveats of undirected models apply 
• Computationally intensive, especially learning 

• Inference may be intractable, due to partition function 

 

• Model degeneracy can easily happen 
• “a seemingly reasonable model can actually be such a bad mis-

specification for an observed dataset as to render the observed 
data virtually impossible” 
• Goodreau (2007) 
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Triadic closure 
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If two people have a friend in common, then there is an increased likelihood 
that they will become friends themselves at some point in the future. 



Measuring triadic closure 

• Mean clustering co-efficient: 

26 

+ 



Simple ERGM for triadic closure 
leads to model degeneracy 
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Depending on parameters, we could get: 
• Graph is empty with probability close to 1 

 
• Graph is full with probability close to 1 

 
• Density, clustering distribution is bimodal, with little 

mass on desired density and triad closure 
 
MLE may not exist! 



Simple ERGM for triadic closure 
leads to model degeneracy 
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Depending on parameters, we could get: 
• Graph is empty with probability close to 1 

 
• Graph is full with probability close to 1 

 
• Density, clustering distribution is bimodal, with little 

mass on desired density and triad closure 
 
MLE may not exist! 



 

29 
Handcock, M. S., Hunter, D. R., Butts, C. T., Goodreau, S. M., & Morris, M. (2008). statnet: Software tools for the 

representation, visualization, analysis and simulation of network data. Journal of statistical software, 24(1), 1548. 



What is the problem? 
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Completes two triangles! 

If an edge completes more triangles, it becomes overwhelming likely to exist. 
This propagates to create more triangles … 



Solution 

• Change the model so that there are diminishing 
returns for completing more triangles 
• A different natural parameter for each possible number 

of triangles completed by one edge 

• Natural parameters             parameterized by a lower-
dimensional     , e.g. encoding geometrically decreasing 
weights (curved exponential family) 

 

• Moral of the story: ERGMS are powerful, but 
require care and expertise to perform well 
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Latent variable models for social 
networks 
• Model where observed variables are dependent on 

a set of unobserved or latent variables 
• Observed variables assumed to be conditionally 

independent given latent variables 

• Why latent variable models? 
• Adjacency matrix 𝐘 is invariant to row and column 

permutations 

• Aldous-Hoover theorem implies existence of a latent 
variable model of form 

 

for iid latent variables      and some function  



Latent variable models for social 
networks 
• Latent variable models allow for heterogeneity of 

nodes in social networks 
• Each node (actor) has a latent variable 𝐳𝑖 

• Probability of forming edge between two nodes is 
independent of all other node pairs given values of 
latent variables 

𝑝 𝐘 𝐙, 𝜃 =  𝑝 𝑦𝑖𝑗 𝐳𝑖 , 𝐳𝑗 , 𝜃

𝑖≠𝑗

 

• Ideally latent variables should provide an interpretable 
representation 



(Continuous) latent space model 

• Motivation: homophily or assortative mixing 
• Probability of edge between two nodes increases as 

characteristics of the nodes become more similar 

• Represent nodes in an unobserved (latent) space of 
characteristics or “social space” 

• Small distance between 2 nodes in latent space  
high probability of edge between nodes 
• Induces transitivity: observation of edges 𝑖, 𝑗  and 𝑗, 𝑘  

suggests that 𝑖 and 𝑘 are not too far apart in latent 
space  more likely to also have an edge 



(Continuous) latent space model 

• (Continuous) latent space model (LSM) proposed 
by Hoff et al. (2002) 
• Each node has a latent position 𝐳𝑖 ∈ ℝ𝑑  

• Probabilities of forming edges depend on distances 
between latent positions 

• Define pairwise affinities 𝜓𝑖𝑗 = 𝜃 − 𝐳𝑖 − 𝐳𝑗 2
 



Latent space model: generative 
process 
1. Sample node positions in 

latent space 

 

2. Compute affinities 
between all pairs of nodes 

 

3. Sample edges between all 
pairs of nodes 

 

Figure due to P. D. Hoff, Modeling homophily and stochastic equivalence in symmetric relational data, NIPS 2008 



Advantages and disadvantages of 
latent space model 
• Advantages of latent space model 

• Visual and interpretable spatial representation of 
network 

• Models homophily (assortative mixing) well via 
transitivity 

• Disadvantages of latent space model 
• 2-D latent space representation often may not offer 

enough degrees of freedom 

• Cannot model disassortative mixing (people preferring 
to associate with people with different characteristics) 



Stochastic block model (SBM) 

• First formalized by Holland et al. 
(1983) 

• Also known as multi-class Erdős-
Rényi model 

• Each node has categorical latent 
variable 𝑧𝑖 ∈ 1, … , 𝐾  denoting 
its class or group 

• Probabilities of forming edges 
depend on class memberships of 
nodes (𝐾 × 𝐾 matrix W) 
• Groups often interpreted as 

functional roles in social networks 



Stochastic equivalence and block 
models 
• Stochastic equivalence: 

generalization of structural 
equivalence 

• Group members have 
identical probabilities of 
forming edges to members 
other groups 
• Can model both assortative and 

disassortative mixing 

Figure due to P. D. Hoff, Modeling homophily and stochastic equivalence in symmetric relational data, NIPS 2008 



Stochastic equivalence 
vs community detection 

 

 

 

 

 

 

 

Original graph Blockmodel 

Figure due to Goldenberg et al. (2009) - Survey of Statistical Network Models, Foundations and Trends 

Stochastically equivalent, but 
are not densely connected 



Stochastic blockmodel 
Latent representation 

 

UCSD UCI UCLA 

Alice 1 

Bob 1 

Claire 1 

Alice Bob 

Claire 



Reordering the matrix to show the 
inferred block structure 

 

Kemp, Charles, et al. "Learning systems of concepts with an infinite relational model." AAAI. Vol. 3. 2006. 



Model structure 

Kemp, Charles, et al. "Learning systems of concepts with an infinite relational model." AAAI. Vol. 3. 2006. 

Latent groups Z 

Interaction matrix W  
 
(probability of an edge 
from block k to block k’) 



Stochastic block model 
generative process 
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Stochastic block model 
Latent representation 

 

Running Dancing Fishing 

Alice 1 

Bob 1 

Claire 1 

Alice Bob 

Claire 

Nodes assigned to only 
one latent group. 
 
Not always an appropriate 
assumption 



Mixed membership 
stochastic blockmodel (MMSB) 

 

Running Dancing Fishing 

Alice 0.4 0.4 0.2 

Bob 0.5 0.5 

Claire 0.1 0.9 

Alice Bob 

Claire 

Nodes represented by distributions 
over latent groups (roles) 

Airoldi et al., (2008) 



Mixed membership 
stochastic blockmodel (MMSB) 

Airoldi et al., (2008) 



Latent feature models 

Cycling 
Fishing 
Running 

Waltz 
Running 

Tango 
Salsa 

Alice Bob 

Claire 

Mixed membership implies a kind of “conservation of (probability) mass” constraint: 
If you like cycling more, you must like running less, to sum to one 

Miller, Griffiths, Jordan (2009) 
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Latent feature models 

Miller, Griffiths, Jordan (2009) 

Cycling 
Fishing 
Running 

Waltz 
Running 

Tango 
Salsa 

Cycling Fishing Running Tango Salsa Waltz 

Alice 

Bob 

Claire 

Z = 

Alice Bob 

Claire 
Nodes represented by 
binary vector of latent features 



Latent feature models 
• Latent Feature Relational Model LFRM 

(Miller, Griffiths, Jordan, 2009) likelihood model: 
 
 
 
 
 

 

 

• “If I have feature k, and you have feature l, add Wkl to the log-odds 
of the probability we interact” 

 

• Can include terms for network density, covariates, popularity,…, as 
in the p2 model 

52 
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Application 1: Facebook wall posts 

• Network of wall posts on Facebook collected by 
Viswanath et al. (2009) 
• Nodes: Facebook users 

• Edges: directed edge from 𝑖 to 𝑗 if 𝑖 posts on 𝑗’s 
Facebook wall 

• What model should we use? 
• (Continuous) latent space and latent feature models do 

not handle directed graphs in a straightforward manner 

• Wall posts might not be transitive, unlike friendships 

• Stochastic block model might not be a bad choice 
as a starting point 



Model structure 

Kemp, Charles, et al. "Learning systems of concepts with an infinite relational model." AAAI. Vol. 3. 2006. 

Latent groups Z 

Interaction matrix W  
 
(probability of an edge 
from block k to block k’) 



Fitting stochastic block model 

• A priori block model: assume that class (role) of 
each node is given by some other variable 
• Only need to estimate 𝑊𝑘𝑘′: probability that node in 

class 𝑘 connects to node in class 𝑘′ for all 𝑘, 𝑘′ 

• Likelihood given by 

 

 

 

• Maximum-likelihood estimate (MLE) given by 

Number of actual 
edges in block 𝑘, 𝑘′  

Number of possible 
edges in block 𝑘, 𝑘′  



Estimating latent classes 

• Latent classes (roles) are unknown in this data set 
• First estimate latent classes 𝐙 then use MLE for 𝐖 

• MLE over latent classes is intractable! 
• ~𝐾𝑁 possible latent class vectors 

• Spectral clustering techniques have been shown to 
accurately estimate latent classes 
• Use singular vectors of (possibly transformed) adjacency 

matrix to estimate classes 

• Many variants with differing theoretical guarantees 



Spectral clustering for directed 
SBMs 
1. Compute singular value decomposition 

𝑌 = 𝑈Σ𝑉𝑇 

2. Retain only first 𝐾 columns of 𝑈, 𝑉 and first 𝐾 
rows and columns of Σ 

3. Define coordinate-scaled singular vector matrix 
𝑍 = 𝑈Σ1/2 𝑉Σ1/2  

4. Run k-means clustering on rows of 𝑍  to return 
estimate 𝑍  of latent classes 

Scales to networks with thousands of nodes! 



Demo of SBM on Facebook wall 
post network 



Application 2: social network of 
bottlenose dolphin interactions 
• Data collected by marine biologists observing 

interactions between 62 bottlenose dolphins 
• Introduced to network science community by Lusseau 

and Newman (2004) 

• Nodes: dolphins 

• Edges: undirected relations denoting frequent 
interactions between dolphins 

• What model should we use? 
• Social interactions here are in a group setting so lots of 

transitivity may be expected 

• Interactions associated by physical proximity 

• Use latent space model to estimate latent positions 



(Continuous) latent space model 

• (Continuous) latent space model (LSM) proposed 
by Hoff et al. (2002) 
• Each node has a latent position 𝐳𝑖 ∈ ℝ𝑑  

• Probabilities of forming edges depend on distances 
between latent positions 

• Define pairwise affinities 𝜓𝑖𝑗 = 𝜃 − 𝐳𝑖 − 𝐳𝑗 2
 

𝑝 𝑌 𝑍, 𝜃

=  
𝑒𝑦𝑖𝑗𝜓𝑖𝑗

1 + 𝑒𝜓𝑖𝑗
𝑖≠𝑗

 



Estimation for latent space model 

• Maximum-likelihood estimation 
• Log-likelihood is concave in terms of pairwise distance 

matrix 𝐷 but not in latent positions 𝑍 

• First find MLE in terms of 𝐷 then use multi-dimensional 
scaling (MDS) to get initialization for 𝑍 

• Faster approach: replace 𝐷 with shortest path distances 
in graph then use MDS 

• Use non-linear optimization to find MLE for 𝑍 

• Latent space dimension often set to 2 to allow 
visualization using scatter plot 

Scales to ~1000 nodes 



Demo of latent space model on 
dolphin network 



Bayesian inference 

• As a Bayesian, all you have to do is write down your 
prior beliefs, write down your likelihood, and apply 
Bayes ‘ rule, 
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Elements of Bayesian Inference 
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Posterior 

Likelihood 

Marginal likelihood 
(a.k.a. model evidence) 

Prior 

is a normalization constant that does not depend on 
the value of θ.  It is the probability of the data under 
the model, marginalizing over all possible θ’s. 



The full posterior distribution 
can be very useful 
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The mode (MAP estimate) is unrepresentative of the distribution 



MAP estimate can result in 
overfitting 
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Markov chain Monte Carlo 

• Goal: approximate/summarize a distribution, e.g. 
the posterior, with a set of samples 

 

• Idea: use a Markov chain to simulate the 
distribution and draw samples 
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Gibbs sampling 

• Sampling from a complicated distribution, such as a 
Bayesian posterior, can be hard. 

 

• Often, sampling one variable at a time, given all the 
others, is much easier. 

 

 

• Graphical models: 
Graph structure gives us Markov blanket 
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Gibbs sampling 

• Update variables one at a time by drawing from 
their conditional distributions 

 

 

 

 

• In each iteration, sweep through and update all of 
the variables, in any order. 
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Gibbs sampling 
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Gibbs sampling 
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Gibbs sampling 
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Gibbs sampling 
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Gibbs sampling 
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Gibbs sampling 
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Gibbs sampling 
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Gibbs sampling for SBM 



Variational inference 

• Key idea: 

 
• Approximate distribution of interest p(z) with another 

distribution q(z) 

 

• Make q(z) tractable to work with 

 

• Solve an optimization problem to make q(z) as similar to 
p(z) as possible, e.g. in KL-divergence 

79 



Variational inference 
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Variational inference 
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Variational inference 
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p 

q 
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Blows up if p is small and q isn’t. 
Under-estimates the support 

Blows up if q is small and p isn’t. 
Over-estimates the support 

Reverse KL Forwards KL 

Figures due to Kevin Murphy (2012). Machine Learning: A Probabilistic Perspective 



KL-divergence as an objective 
function for variational inference 

 

 

 
 

• Minimizing the KL is equivalent to maximizing 

84 
Fit the data well Be flat 
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KL-divergence as an objective 
function for variational inference 

 

 

 
 

• Minimizing the KL is equivalent to maximizing 
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KL-divergence as an objective 
function for variational inference 

 

 

 
 

• Minimizing the KL is equivalent to maximizing 
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Fit the data well Be flat 



Mean field variational inference 

• We still need to compute expectations over z 

• However, we have gained the option to restrict q(z) 
to make these expectations tractable. 

• The mean field approach uses a fully factorized q(z) 
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The entropy term decomposes nicely: 



Mean field algorithm 

 

• Until converged 
• For each factor i 

• Select variational parameters        such that    
 
 
 

 

 

• Each update monotonically improves the ELBO so 
the algorithm must converge       
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Deriving mean field updates 
for your model 
• Write down the mean field equation explicitly, 

 

 

• Simplify and apply the expectation. 

 

• Manipulate it until you can recognize it as a log-pdf 
of a known distribution (hopefully). 

 

• Reinstate the normalizing constant. 
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Mean field vs Gibbs sampling 

 

• Both mean field and Gibbs sampling iteratively 
update one variable given the rest 

 

 

• Mean field stores an entire distribution for each 
variable, while Gibbs sampling draws from one. 
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Pros and cons vs Gibbs sampling 

• Pros: 
• Deterministic algorithm, typically converges faster 
• Stores an analytic representation of the distribution, not just 

samples 
• Non-approximate parallel algorithms 
• Stochastic algorithms can scale to very large data sets 
• No issues with checking convergence 

 
 

• Cons: 
• Will never converge to the true distribution, 

unlike Gibbs sampling 
• Dense representation can mean more communication for parallel 

algorithms 
• Harder to derive update equations 
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Variational inference algorithm 
for MMSB (Variational EM) 
• Compute maximum likelihood estimates for interaction 

parameters Wkk’ 

• Assume fully factorized variational distribution for 
mixed membership vectors, cluster assignments 

 

• Until converged 
• For each node 

• Compute variational discrete distribution over it’s latent 
zp->q and zq->p assignments 

• Compute variational Dirichlet distribution over its mixed 
membership distribution 

• Maximum likelihood update for W 



Application of MMSB to 
Sampson’s Monastery 
• Sampson (1968) studied 

friendship relationships  
between novice monks 

 

• Identified several factions 
• Blockmodel appropriate? 

 

• Conflicts occurred 
• Two monks expelled 

• Others left 

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels. 
In Advances in Neural Information Processing Systems (pp. 33-40). 



Application of MMSB to 
Sampson’s Monastery 

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels. 
In Advances in Neural Information Processing Systems (pp. 33-40). 

Estimated 
blockmodel 



Application of MMSB to 
Sampson’s Monastery 

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels. 
In Advances in Neural Information Processing Systems (pp. 33-40). 

Estimated 
blockmodel 

Least coherent 



Application of MMSB to 
Sampson’s Monastery 

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels. 
In Advances in Neural Information Processing Systems (pp. 33-40). 

Estimated Mixed 
membership 
vectors 
 
(posterior mean) 
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In Advances in Neural Information Processing Systems (pp. 33-40). 

Estimated Mixed 
membership 
vectors 
 
(posterior mean) 

Expelled 



Application of MMSB to 
Sampson’s Monastery 

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels. 
In Advances in Neural Information Processing Systems (pp. 33-40). 

Estimated Mixed 
membership 
vectors 
 
(posterior mean) 

Wavering not captured 



Application of MMSB to 
Sampson’s Monastery 

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels. 
In Advances in Neural Information Processing Systems (pp. 33-40). 

Original network 
(whom do you like?) 

Summary of network (use π‘s) 



Application of MMSB to 
Sampson’s Monastery 

Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2009). Mixed membership stochastic blockmodels. 
In Advances in Neural Information Processing Systems (pp. 33-40). 

Original network 
(whom do you like?) 

Denoise network (use z’s) 



Scaling up Bayesian inference to 
large networks 
• Two key strategies: parallel/distributed, and stochastic 

algorithms 

• Parallel/distributed algorithms 
• Compute VB  or MCMC updates in parallel 
• Communication overhead may be lower for MCMC 
• Not well understood for MCMC, but works in practice 

 

• Stochastic algorithms 
• Stochastic variational inference 

• estimate updates based on subsamples. MMSB: Gopalan et al. (2012) 
• A related subsampling trick for MCMC in latent space models (Raftery et 

al., 2012) 
• Other general stochastic MCMC algorithms: 

• Stochastic gradient Langevin dynamics (Welling and Teh, 2011), Austerity MCMC 
(Korattika et al., 2014) 



Evaluation of 
unsupervised models 

 

• Quantitative evaluation 
• Measurable, quantifiable performance metrics 

 

 

• Qualitative evaluation 
• Exploratory data analysis (EDA) using the model 

• Human evaluation, user studies,… 
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Evaluation of 
unsupervised models 

 

• Intrinsic evaluation 
• Measure inherently good properties of the model 

• Fit to the data (e.g. link prediction), interpretability,… 

 

• Extrinsic evaluation 
• Study usefulness of model for external tasks 

• Classification, retrieval, part of speech tagging,… 
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Extrinsic evaluation: 
What will you use your model for? 
• If you have a downstream task in mind, you should 

probably evaluate based on it! 

 

• Even if you don’t, you could contrive one for 
evaluation purposes 

 

• E.g. use latent representations for: 
• Classification, regression, retrieval, ranking… 
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Posterior predictive checks 

• Sampling data from the posterior predictive distribution 
allows us to “look into the mind of the model” – G. Hinton 
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“This use of the word mind is not intended to be metaphorical. We believe that a mental 
state is the state of a hypothetical, external world in which a high-level internal 
representation would constitute veridical perception. That hypothetical world is what the 
figure shows.” Geoff Hinton et al. (2006),  A Fast Learning Algorithm for Deep Belief Nets. 



Posterior predictive checks 

• Does data drawn from the model differ from the 
observed data, in ways that we care about? 

 

• PPC: 
• Define a discrepancy function (a.k.a. test statistic) T(X). 

• Like a test statistic for a p-value.  How extreme is my data set? 

 

• Simulate new data X(rep) from the posterior predictive 
• Use MCMC to sample parameters from posterior, then simulate data 

 

• Compute T(X(rep)) and T(X), compare. Repeat, to estimate: 
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Outline 

• Mathematical representations of social networks 
and generative models 
• Introduction to generative approach 

• Connections to sociological principles 

• Fitting generative social network models to data 
• Example application scenarios 

• Model selection and evaluation 

• Recent developments in generative social network 
models 
• Dynamic social network models 



Dynamic social network 

• Relations between people may change over time 

• Need to generalize social network models to 
account for dynamics 

Dynamic social network 
(Nordlie, 1958; Newcomb, 1961) 



Dynamic Relational Infinite 
Feature Model (DRIFT) 

J. R. Foulds, A. Asuncion, C. DuBois, C. T. Butts, P. Smyth. 
A dynamic relational infinite feature model for longitudinal social networks.  AISTATS 2011 

• Models networks as they over time, by way of 
changing latent features 
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Dynamic Relational Infinite 
Feature Model (DRIFT) 
• Models networks as they over time, by way of 

changing latent features 

 

 

 
 
 
 
 
 
 
 
 
 
 

• HMM dynamics for each actor/feature (factorial HMM) 
J. R. Foulds, A. Asuncion, C. DuBois, C. T. Butts, P. Smyth. 

A dynamic relational infinite feature model for longitudinal social networks.  AISTATS 2011 



Bayesian Inference for DRIFT 

• Markov chain Monte Carlo inference 
• Blocked Gibbs sampler 

• Forward filtering, backward sampling to jointly sample 
each actor's feature chains 

• “Slice sampling” trick with the stick-breaking 
construction of the IBP to adaptively truncate the 
number of features but still perform exact inference 

• Metropolis-Hastings updates for W's 

 

J. R. Foulds, A. Asuncion, C. DuBois, C. T. Butts, P. Smyth. 
A dynamic relational infinite feature model for longitudinal social networks.  AISTATS 2011 



Synthetic Data: Inference on Z’s 

 

J. R. Foulds, A. Asuncion, C. DuBois, C. T. Butts, P. Smyth. 
A dynamic relational infinite feature model for longitudinal social networks.  AISTATS 2011 



Synthetic Data: Predicting the Future 

 

J. R. Foulds, A. Asuncion, C. DuBois, C. T. Butts, P. Smyth. 
A dynamic relational infinite feature model for longitudinal social networks.  AISTATS 2011 



Enron Email Data: Predicting the Future 

 

J. R. Foulds, A. Asuncion, C. DuBois, C. T. Butts, P. Smyth. 
A dynamic relational infinite feature model for longitudinal social networks.  AISTATS 2011 



Enron Email Data: Predicting the Future 

 

J. R. Foulds, A. Asuncion, C. DuBois, C. T. Butts, P. Smyth. 
A dynamic relational infinite feature model for longitudinal social networks.  AISTATS 2011 



Enron Email Data: Missing Data 
Imputation 

J. R. Foulds, A. Asuncion, C. DuBois, C. T. Butts, P. Smyth. 
A dynamic relational infinite feature model for longitudinal social networks.  AISTATS 2011 



Enron Email Data: Edge 
Probability Over Time 

J. R. Foulds, A. Asuncion, C. DuBois, C. T. Butts, P. Smyth. 
A dynamic relational infinite feature model for longitudinal social networks.  AISTATS 2011 



Quantitative Results 

J. R. Foulds, A. Asuncion, C. DuBois, C. T. Butts, P. Smyth. 
A dynamic relational infinite feature model for longitudinal social networks.  AISTATS 2011 



Hidden Markov dynamic network 
models 

• Most work on dynamic network modeling 
assumes hidden Markov structure 
– Latent variables and/or parameters follow Markov 

dynamics 

– Graph snapshot at each time generated using static 
network model, e.g. stochastic block model or latent 
feature model as in DRIFT 

 

 

 

– Has been used to extend SBMs to dynamic models 
(Yang et al., 2011; Xu and Hero, 2014) 

 



Beyond hidden Markov networks 

• Hidden Markov structure is tractable but not very 
realistic assumption in social interaction networks 
– Interaction between two people does not influence future 

interactions 

• Proposed model: Allow current graph to depend on 
current parameters and previous graph 
 
 
 
 

• Proposed inference procedure does not require MCMC 
– Scales to ~ 1000 nodes 



Stochastic block transition model 

• Generate graph at initial time step using SBM 
• Place Markov model on Π𝑡|0, Π𝑡|1 

 

• Main idea: parameterize each block 
𝑘, 𝑘′  with two probabilities 
– Probability of forming new edge 

𝜋
𝑘𝑘′
𝑡|0

= Pr 𝑌𝑖𝑗
𝑡

= 1|𝑌𝑖𝑗
𝑡−1

= 0  

– Probability of existing edge re-
occurring 

𝜋
𝑘𝑘′
𝑡|1

= Pr 𝑌𝑖𝑗
𝑡

= 1|𝑌𝑖𝑗
𝑡−1

= 1  



Application to Facebook wall posts 

• Fit dynamic SBMs to network of Facebook wall posts 
– ~ 700 nodes, 9 time steps, 5 classes 

• How accurately do hidden Markov SBM and SBTM 
replicate edge durations in observed network? 
– Simulate networks from both models using estimated 

parameters 
 
 
 
 
 
 

– Hidden Markov SBM cannot replicate long-lasting edges in 
sparse blocks 



Behaviors of different classes 

• SBTM retains interpretability of SBM at each time step 
 
 
 
 
 

 

• Q: Do different classes behave differently in how they form edges? 
 
 
 
 
 
 

• A: Only for probability of existing edges re-occurring 
• New insight revealed by having separate probabilities in SBTM 

 



Information diffusion in 
text-based cascades 

t=0 t=3.5 

t=1 

t=2 

t=1.5 

- Temporal information 

- Content information 

- Network is latent 
X. He, T. Rekatsinas, J. R. Foulds, L. Getoor, and Y. Liu. HawkesTopic: A joint model for network inference and topic modeling 

from text-based cascades. ICML 2015. 



HawkesTopic model 
for text-based cascades 
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     Mutual exciting nature:  A posting event can trigger future events 

     Content cascades:  The content of a document should be similar 
      to the document that triggers its publication 

X. He, T. Rekatsinas, J. R. Foulds, L. Getoor, and Y. Liu. HawkesTopic: A joint model for network inference and topic modeling 
from text-based cascades. ICML 2015. 



Modeling posting times 

Mutually exciting nature captured via 
Multivariate Hawkes Process (MHP) [Liniger 09]. 

 

For MHP, intensity process 𝜆𝑣(𝑡) takes the form: 
 

 

 

𝜆𝑣 𝑡 =          𝜇𝑣     +     𝐴𝑣𝑒,𝑣𝑓Δ(𝑡 − 𝑡𝑒)𝑒:𝑡𝑒<𝑡   

𝐴𝑢,𝑤: influence strength from 𝑢 to 𝑣 
𝑓Δ(⋅): probability density function of the delay distribution 

Base intensity Influence from previous events  + Rate = 



Clustered Poisson process 
interpretation 

X. He, T. Rekatsinas, J. R. Foulds, L. Getoor, and Y. Liu. HawkesTopic: A joint model for network inference and topic modeling 
from text-based cascades. ICML 2015. 



Generating documents 

X. He, T. Rekatsinas, J. R. Foulds, L. Getoor, and Y. Liu. HawkesTopic: A joint model for network inference and topic modeling 
from text-based cascades. ICML 2015. 



Experiments for HawkesTopic 

X. He, T. Rekatsinas, J. R. Foulds, L. Getoor, and Y. Liu. HawkesTopic: A joint model for network inference and topic modeling 
from text-based cascades. ICML 2015. 



Results: EventRegistry 

X. He, T. Rekatsinas, J. R. Foulds, L. Getoor, and Y. Liu. HawkesTopic: A joint model for network inference and topic modeling 
from text-based cascades. ICML 2015. 



Results: EventRegistry 

X. He, T. Rekatsinas, J. R. Foulds, L. Getoor, and Y. Liu. HawkesTopic: A joint model for network inference and topic modeling 
from text-based cascades. ICML 2015. 



Results: ArXiv 

X. He, T. Rekatsinas, J. R. Foulds, L. Getoor, and Y. Liu. HawkesTopic: A joint model for network inference and topic modeling 
from text-based cascades. ICML 2015. 



Results: ArXiv 

X. He, T. Rekatsinas, J. R. Foulds, L. Getoor, and Y. Liu. HawkesTopic: A joint model for network inference and topic modeling 
from text-based cascades. ICML 2015. 



Summary 

• Generative models provide a powerful mechanism for 
modeling social networks 

• Latent variable models offer flexible yet interpretable 
models motivated by sociological principles 
• Latent space model 

• Stochastic block model 

• Mixed-membership stochastic block model 

• Latent feature model 

• Many recent advancements in generative models for 
social networks 
• Dynamic networks, cascades, joint modeling with text 



Thank you! 



The giant component 

• Depending on the quantity                 , 
a “giant” connected component may emerge  
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