

Overview

- Motivation: data science applications in privacy-sensitive domains
- Health informatics, MOOCs, social media data ...
- Many of these applications use **Bayesian models**
- We need general privacy-preserving Bayesian inference algorithms!

- We propose a general privacy-preserving framework for variational Bayes: Variational Bayes in Private Settings (VIPS)
- To evaluate VIPS, we apply it to LDA topic models
 - In our full JAIR paper, we also study Bayesian logistic regression, sigmoid belief networks

Background

• Variational Bayes

- Optimization-based approach for approximate Bayesian inference
- Make approximating distribution Q as similar as possible to target posterior distribution P
- Equivalent to maximizing the *evidence lower bound* (*ELBO*):

 $\log p(\mathcal{D}) = \log \left(\int d\boldsymbol{l} \ d\boldsymbol{m} \ p(\boldsymbol{l}, \boldsymbol{m}, \mathcal{D}) \right) = \log \left(\int d\boldsymbol{l} \ d\boldsymbol{m} \ p(\boldsymbol{l}, \boldsymbol{m}, \mathcal{D}) \frac{q(\boldsymbol{l}, \boldsymbol{m})}{q(\boldsymbol{l}, \boldsymbol{m})} \right)$ $= \log \left(\mathbb{E}_q \left[\frac{p(\boldsymbol{l}, \boldsymbol{m}, \mathcal{D})}{q(\boldsymbol{l}, \boldsymbol{m})} \right] \right) \ge \mathbb{E}_q \left[\log p(\boldsymbol{l}, \boldsymbol{m}, \mathcal{D}) - \log q(\boldsymbol{l}, \boldsymbol{m}) \right] = \mathcal{L}(q)$

• Differential Privacy

- Gold-standard privacy definition for data-driven algorithms
- Algorithm has similar behavior (outcome probabilities) if you change one data point

 $\mathcal{M}(\mathcal{D})$ is said to be (ϵ, δ) -differentially private if $P(\mathcal{M}(\mathcal{D}) \in \mathcal{S}) \le \exp(\epsilon) P(\mathcal{M}(\mathcal{D}') \in \mathcal{S}) + \delta$

Key Ideas

• Challenges

- Statistical efficiency when privatizing with latent variables
- Iterative algorithms such as VB cumulatively increase privacy cost, hence increase noise
- How to generalize beyond conjugate-exponential (CE) family models?

• Our approach: VIPS

- *Perturb expected sufficient statistics*
- Effective use of the privacy budget per iteration

- (Analytical) Moments Accountant (Abadi et al., 2016; Wang et al., 2019)
 - Refined composition analysis, increase the privacy budget per iteration • Keeps track of a special quantity, the *log-moment function*, per iteration
 - Easily composes across iterations. Use it to compute final privacy loss
- *Privacy Amplification from Subsampling* • Stochastic VB scales to large datasets
- Subsampling improves privacy guarantees

Data Augmentation for non-CE family models • Pólya-Gamma data augmentation brings a broad class of models into CE

Variational Bayes in Private Settings (VIPS)

James Foulds,^{1*} Mijung Park,^{2,3*} Kamalika Chaudhuri,⁴ Max Welling⁵ UMBC,¹ MPI-IS,² U Tübingen,³ UCSD,⁴ UvA⁵ *Equal Contribution

ong mposition	Moments Acc. (no clipping)
tion way ened vices tions sed tion tform ublic	station line french railway opened services republic closed stations country

Email: jfoulds@umbc.edu, mijung.park@tuebingen.mpg.de, kamalika@cs.ucsd.edu, m.welling@uva.nl

a is a clipping hyperparameter. We use a = 0.1, for a ten-fold reduction in sensitivity, while clipping ¾ of the documents.