Latent Topic Networks:

A Versatile Probabilistic Programming Framework for Topic Models

James Foulds

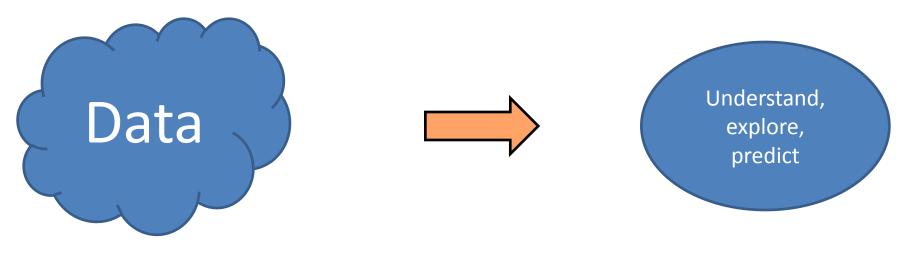
Shachi Kumar Lise Getoor

Jack Baskin School of Engineering

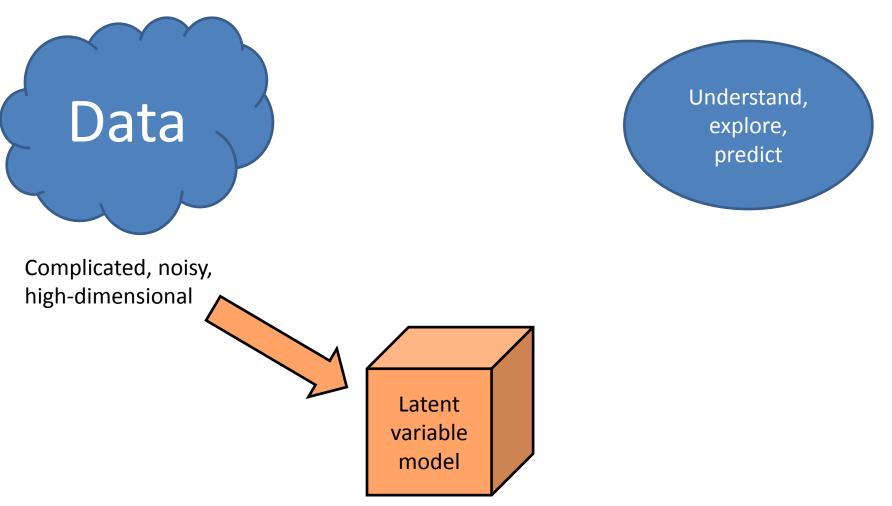
University of California, Santa Cruz

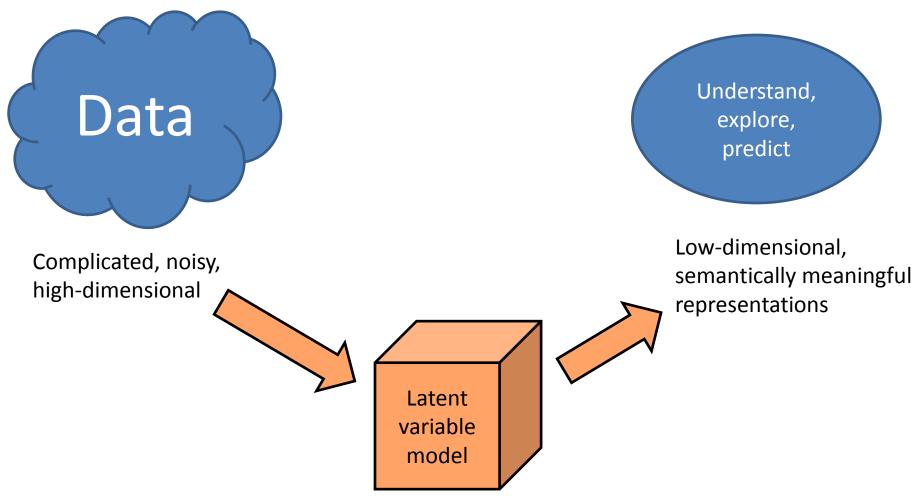
Baskin Engineering

Complicated, noisy, high-dimensional



Complicated, noisy, high-dimensional





Topic models

- Topic models are foundational building blocks for powerful latent variable models
 - Authorship (Rosen-Zvi et al., 2004)
 - Conversational Influence (Nguyen et al., 2014)
 - Knowledge base construction

(Movshovitz-Attias and Cohen, 2015)

- Machine translation (Mimno et al., 2009)
- Political analysis (Grimmer, 2010), (Gerrish and Blei, 2011, 2012)
- Recommender systems (Wang and Blei, 2011), (Diao et al., 2014)
- Scientific impact (Dietz et al. 2007), (Foulds and Smyth, 2013)
- Social network analysis (Chang et al., 2009)
- Word-sense disambiguation (Boyd-Graber et al., 2007)

- Custom latent variable topic models useful for data mining and computational social science
- The challenge is **scalability**

- Custom latent variable topic models useful for data mining and computational social science
- The challenge is scalability

- Custom latent variable topic models useful for data mining and computational social science
- The challenge is **scalability**

Sparse, stochastic, collapsed, distributed algorithms, ...

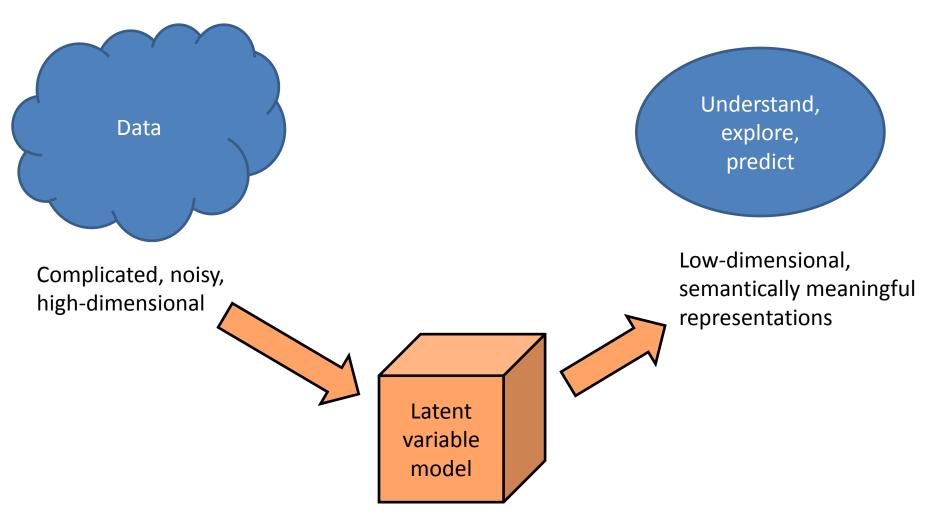
- Custom latent variable topic models useful for data mining and computational social science
- The challenge is **scalability**

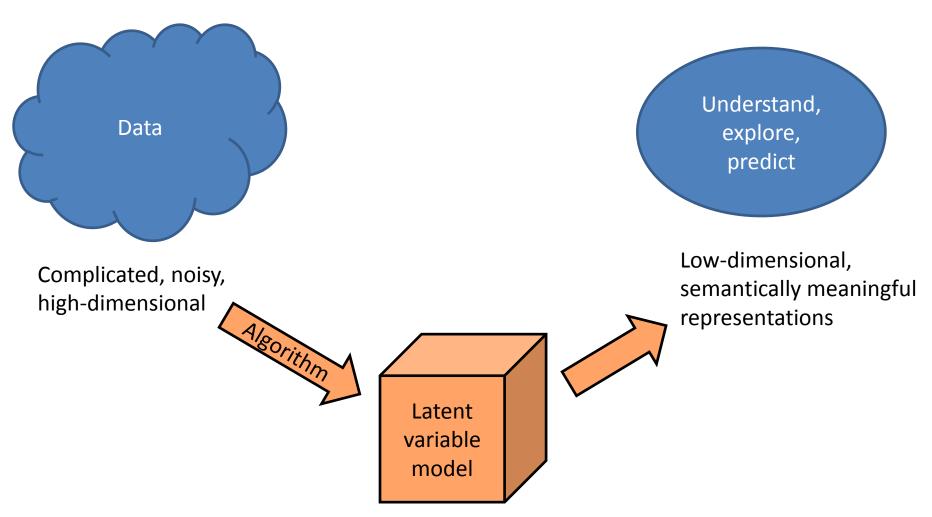
Sparse, stochastic, collapsed, distributed algorithms, ...

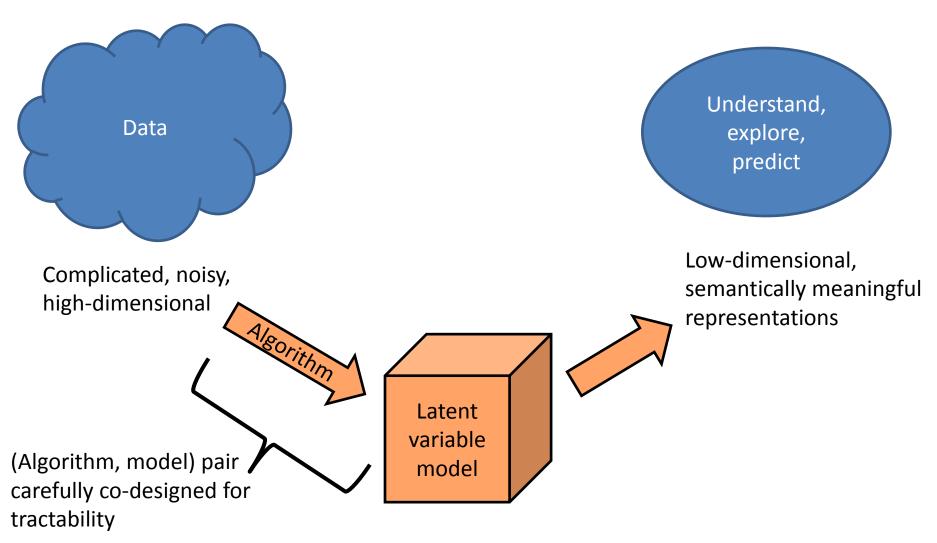


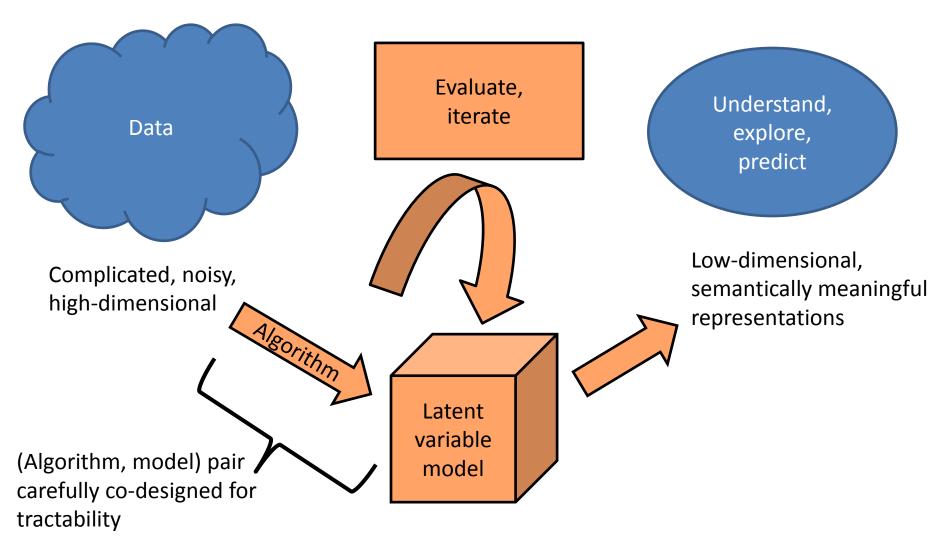
- Custom latent variable topic models useful for data mining and computational social science
- The bottleneck is human effort and expertise

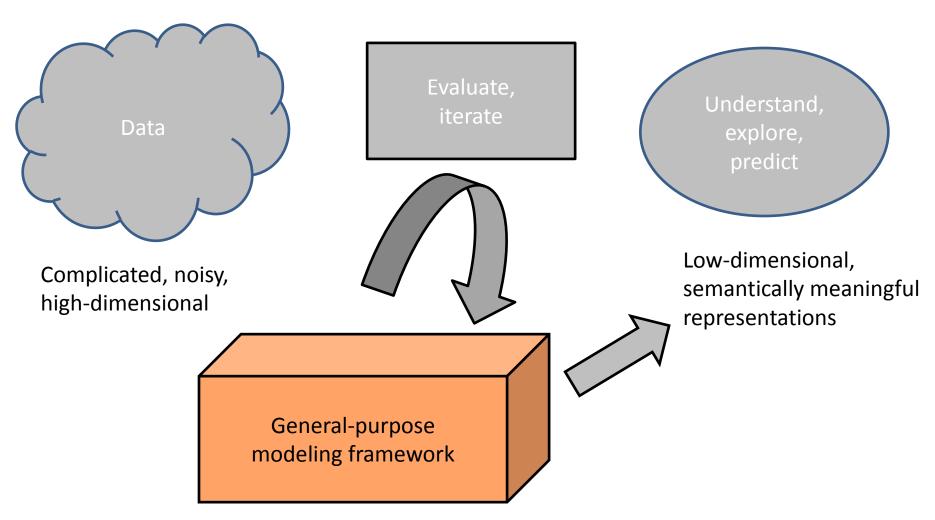
Design time >> run time











Our contribution

• We introduce latent topic networks

A versatile, general-purpose framework for specifying custom topic models

Our contribution

• We introduce latent topic networks

A versatile, general-purpose framework for specifying custom topic models

Models and domain knowledge specified using a simple logical probabilistic programming language

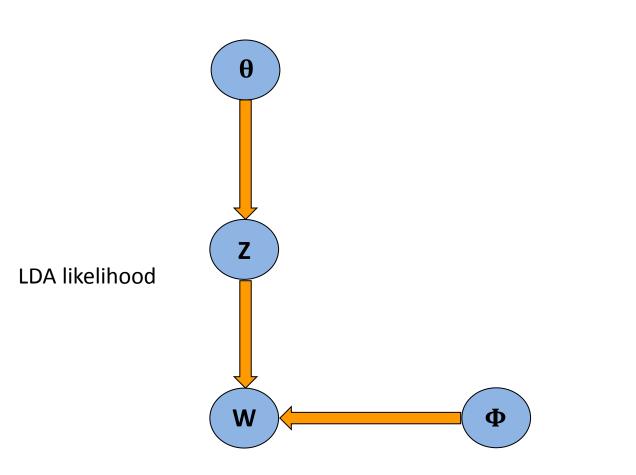
Our contribution

• We introduce latent topic networks

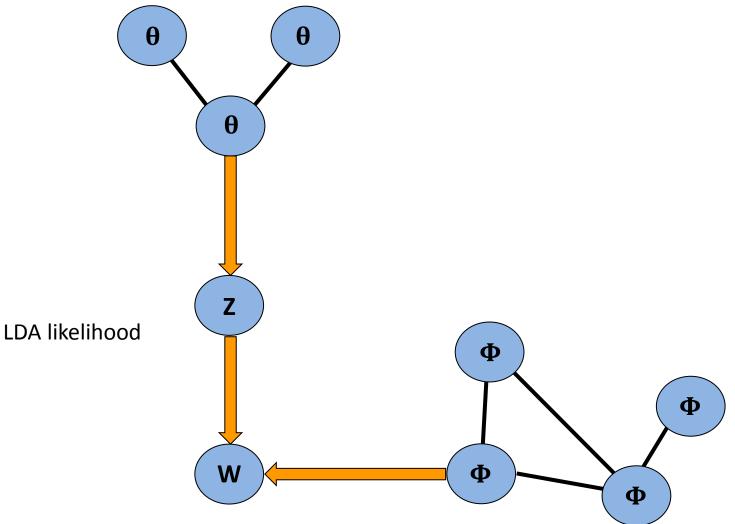
A versatile, general-purpose framework for specifying custom topic models

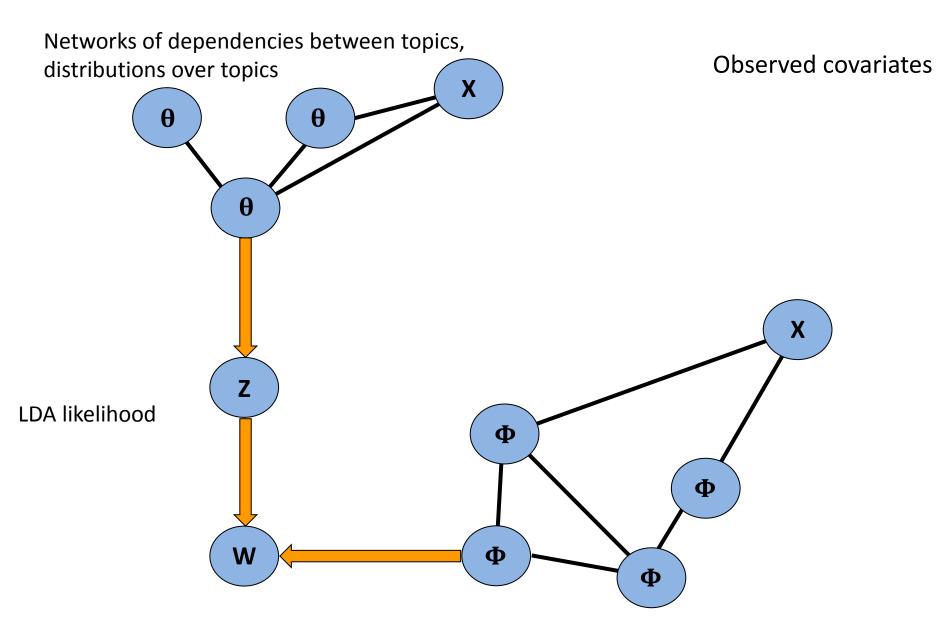
Models and domain knowledge specified using a simple logical probabilistic programming language

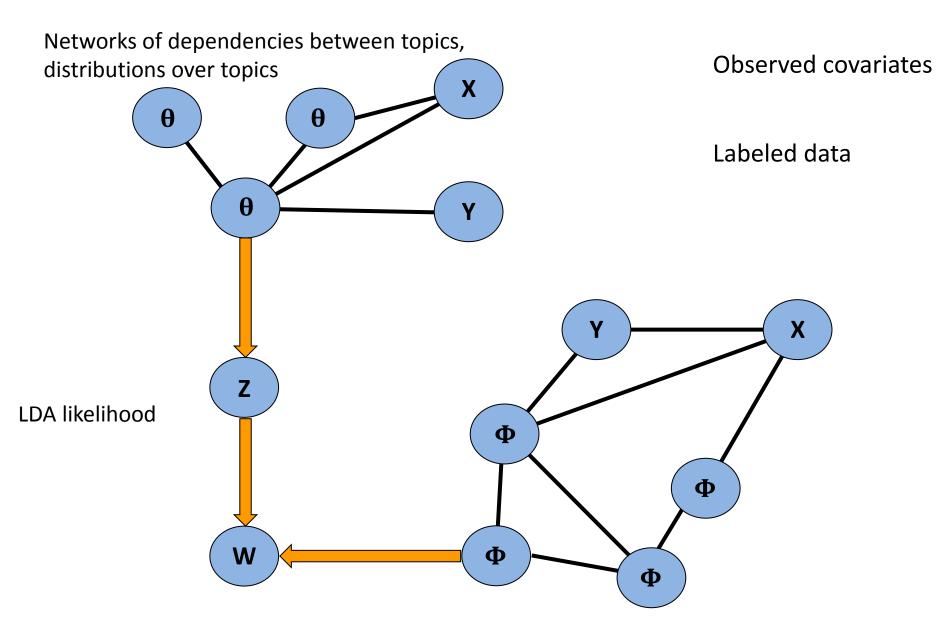
– A highly parallelizable EM training algorithm

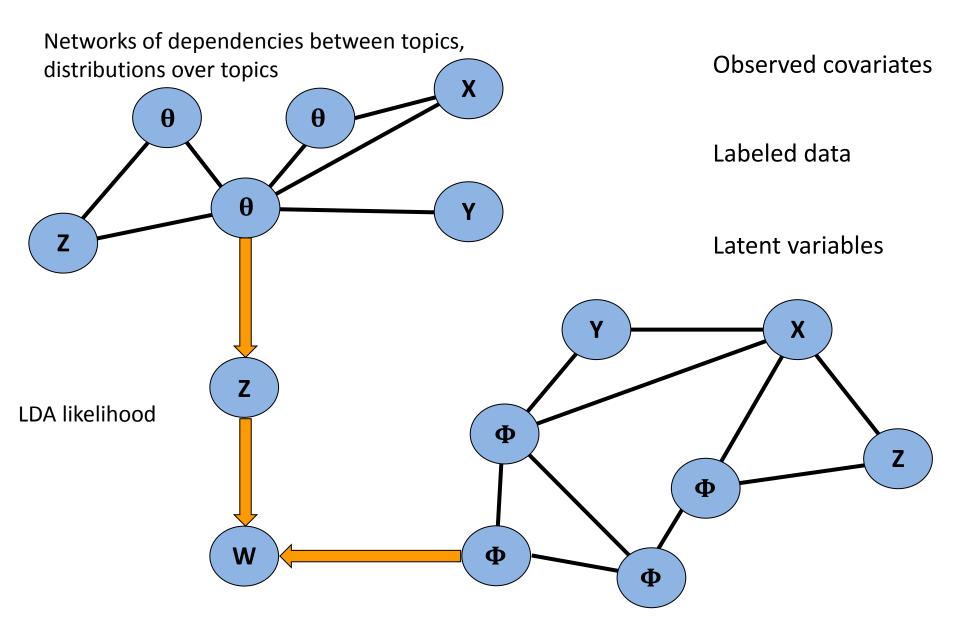


Networks of dependencies between topics, distributions over topics









Grad student

Grad student

Grad student

≈6 months

Grad student

≈6 months

Grad student

≈6 months

Topic modeling research paper

Grad student

≈6 months

1 weekend

New custom topic model

Shachi Kumar Master's student, UCSC

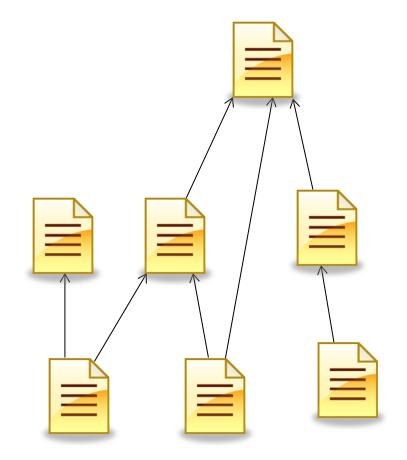
Related work

	Correlations / Dependencies	Observed Covariates	Additional Latent Variables	Constraints	Probabilistic Programming			
Systems for Encoding Domain Knowledge, Covariates, and Correlations								
CTM (Blei and Lafferty, 2007)	\checkmark	×	×	×	×			
DMR (Mimno & McCallum, 2008)	×	\checkmark	×	×	×			
Dirichlet Forests (Andzejewski et al., 2009	×	×	×	\checkmark	×			
xLDA (Wahabzada et al., 2010)	\checkmark	\checkmark	\checkmark	×	×			
SAGE (Eisenstein et al., 2011)	×	\checkmark	×	×	×			
STM (Roberts et al., 2013)	\checkmark	\checkmark	×	×	×			
Graphical Modeling and Probabilistic Programming Systems								
CTRF (Zhu & Xing, 2010)	\checkmark	\checkmark	×	×	×			
Fold.all (Andrzejewski et al., 2011)	\checkmark	\checkmark	×	×	\checkmark			
Logic LDA (Mei et al., 2014)	×	\checkmark	×	\checkmark	\checkmark			
Latent Topic Networks	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			

Related work

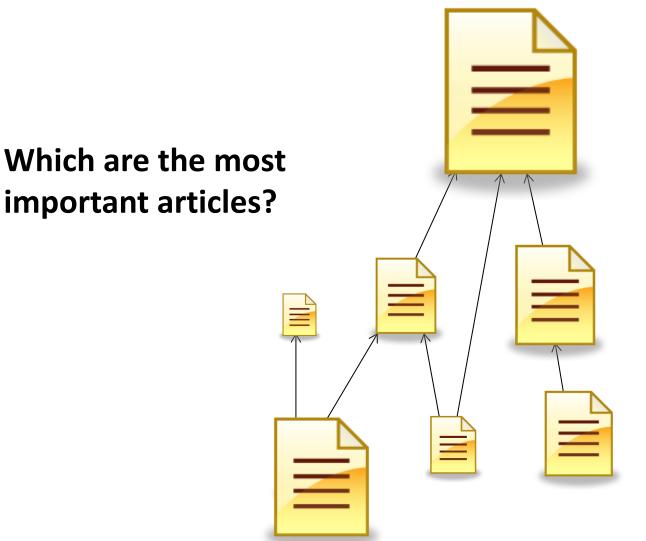
	Correlations / Dependencies	Observed Covariates	Additional Latent Variables	Constraints	Probabilistic Programming			
Systems for Encoding Domain Knowledge, Covariates, and Correlations								
CTM (Blei and Lafferty, 2007)	\checkmark	×	×	×	×			
DMR (Mimno & McCallum, 2008)	×	\checkmark	×	×	×			
Dirichlet Forests (Andzejewski et al., 2009	×	×	×	\checkmark	×			
xLDA (Wahabzada et al., 2010)	\checkmark	\checkmark	\checkmark	×	×			
SAGE (Eisenstein et al., 2011)	×	\checkmark	×	×	×			
STM (Roberts et al., 2013)	\checkmark	\checkmark	×	×	×			
Graphical Modeling and Probabilistic Programming Systems								
CTRF (Zhu & Xing, 2010)	\checkmark	\checkmark	×	×	×			
Fold.all (Andrzejewski et al., 2011)	\checkmark	\checkmark	×	×	\checkmark			
Logic LDA (Mei et al., 2014)	×	\checkmark	×	\checkmark	\checkmark			
Latent Topic Networks	✓	✓	\checkmark	✓	✓			

Example: modeling influence in citation networks

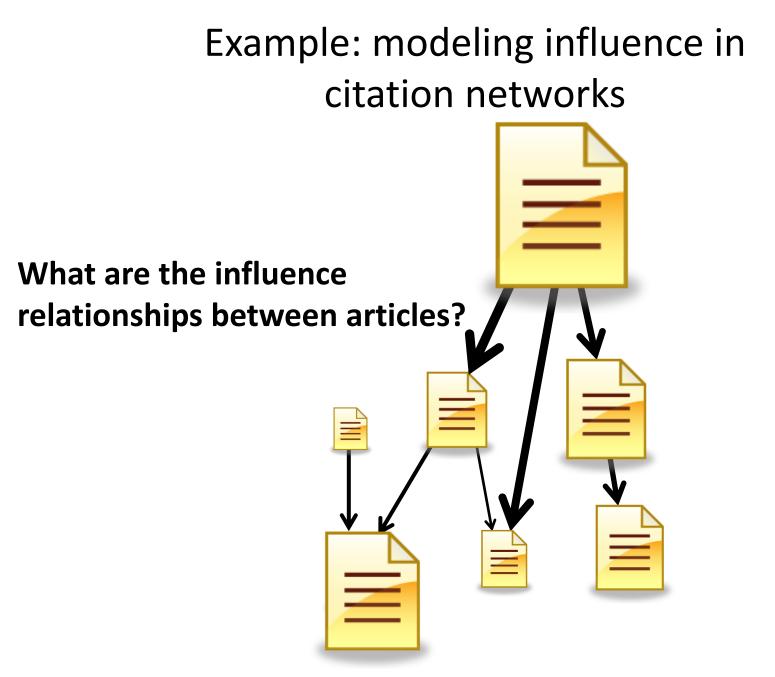


Foulds and Smyth (2013), EMNLP

Example: modeling influence in citation networks

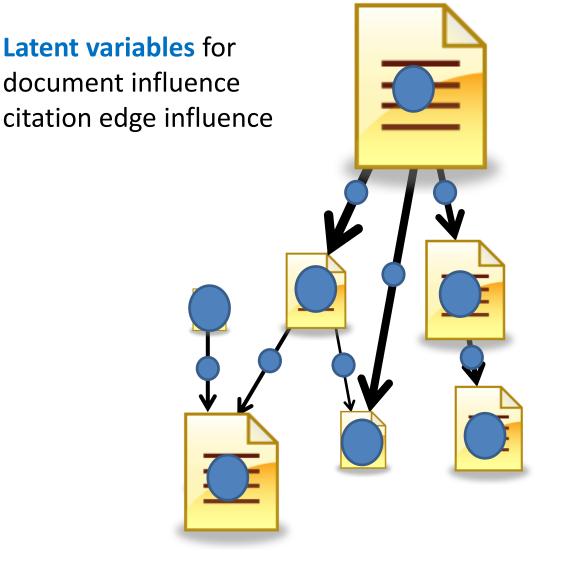


Foulds and Smyth (2013), EMNLP



Foulds and Smyth (2013), EMNLP

Topical influence regression

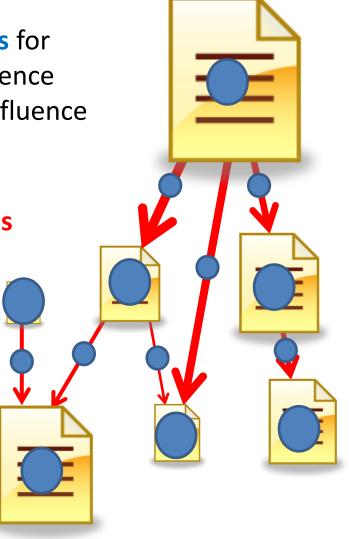


Topical influence regression

Latent variables for document influence citation edge influence

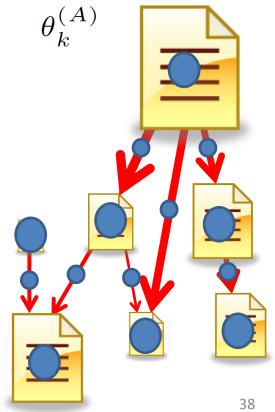
Probabilistic dependencies

along the citation graph



Encoding dependencies via logical rules

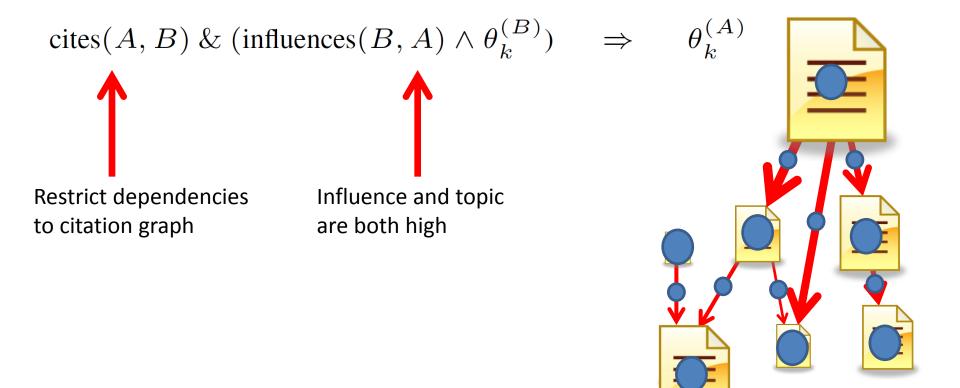
cites(A, B) & (influences(B, A) \land \theta_k^{(B)}) \Rightarrow \theta_k^{(A)}

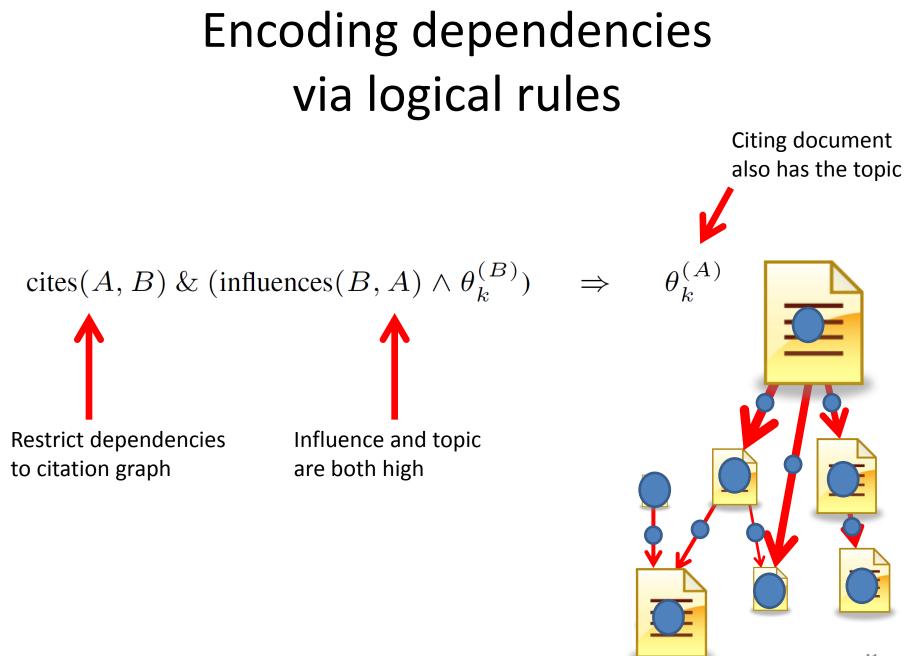


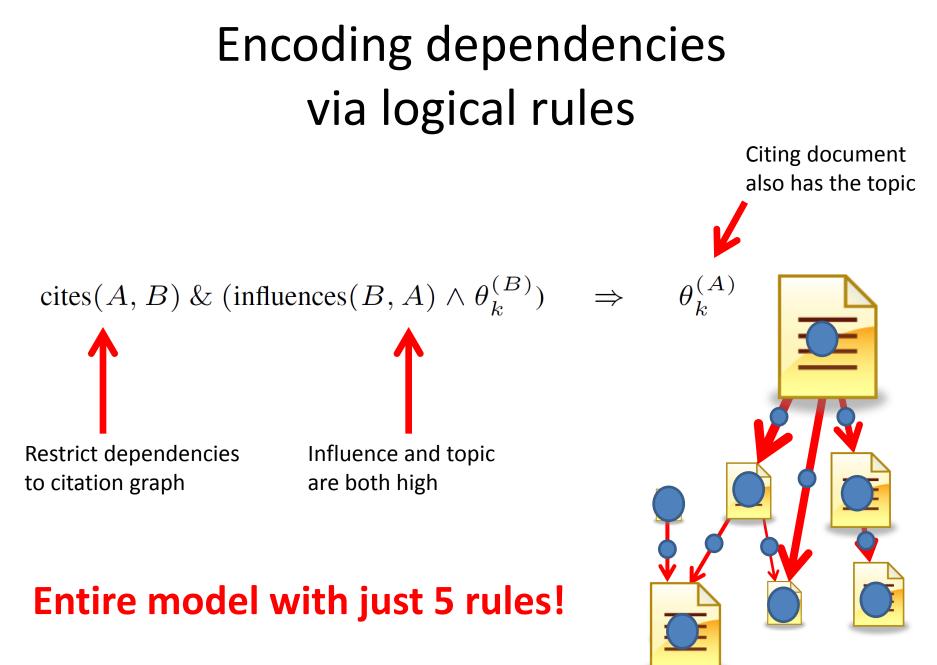
Encoding dependencies via logical rules

cites(A, B) & (influences(B, A) $\land \theta_k^{(B)}) \Rightarrow \theta_k^{(A)}$ Restrict dependencies to citation graph

Encoding dependencies via logical rules



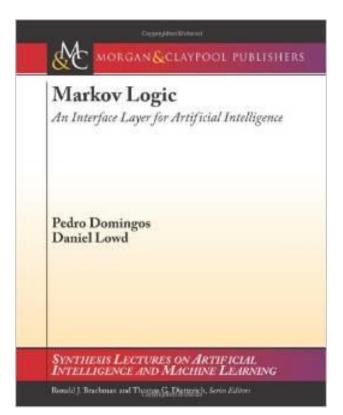




Statistical relational learning

• An "interface layer for AI."

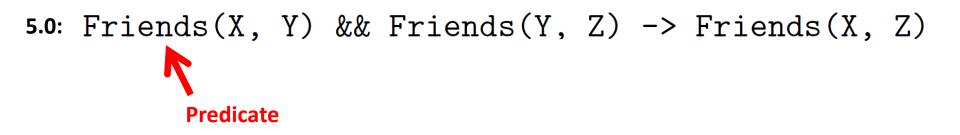
Programming languages for
specifying models and
encoding domain knowledge

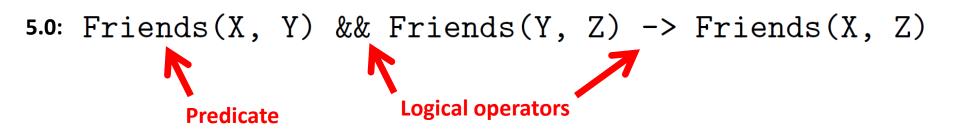


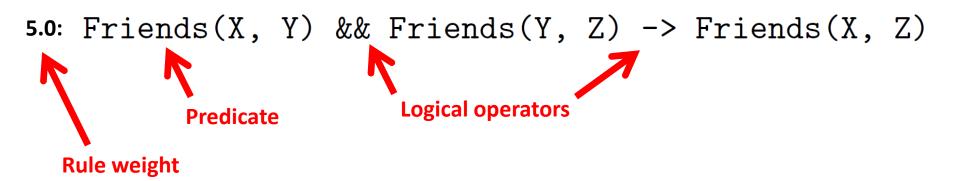
- Typically based on first-order logic

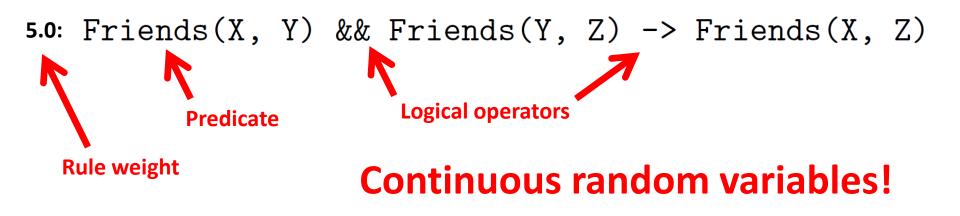
• A first-order logic-based SRL language

5.0: Friends(X, Y) && Friends(Y, Z) -> Friends(X, Z)

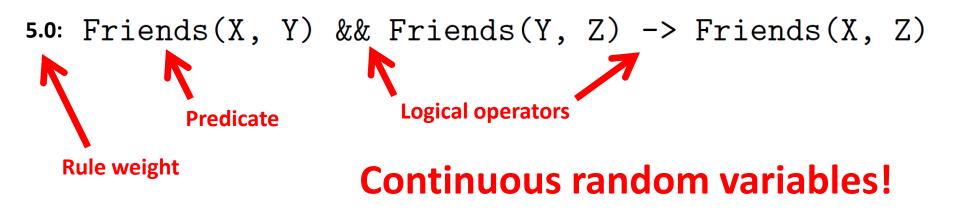




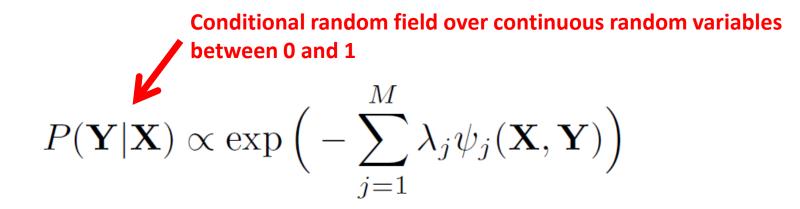


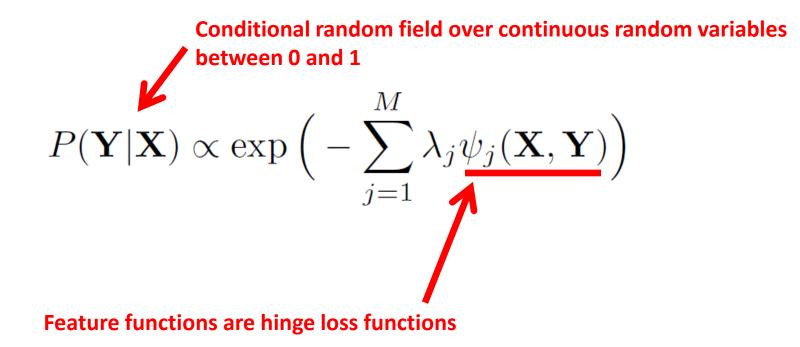


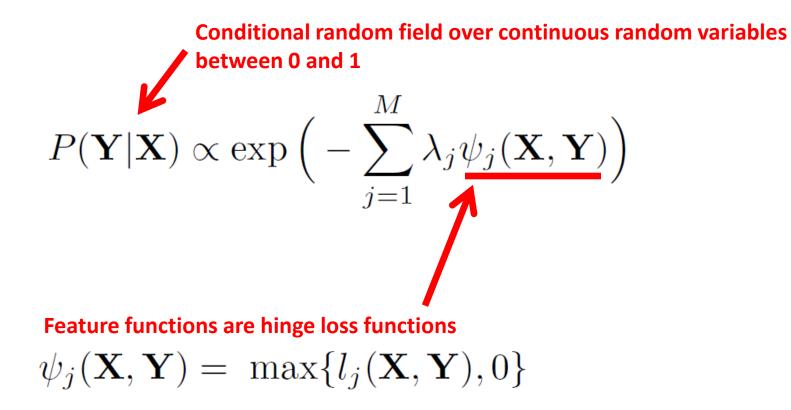
• A first-order logic-based SRL language

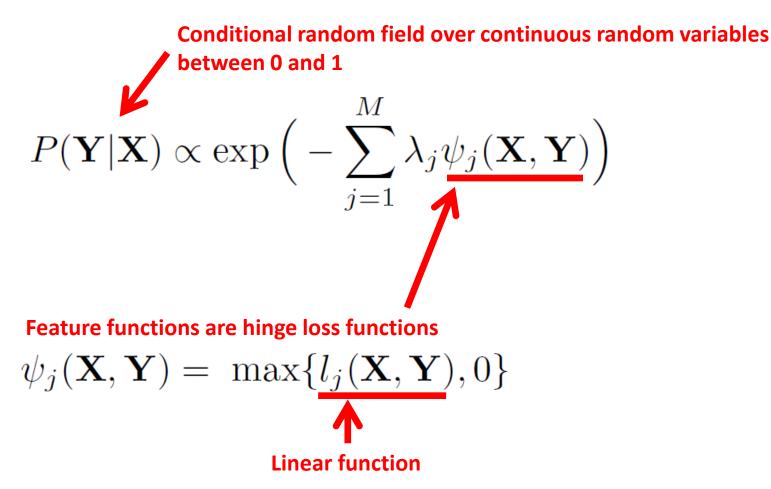


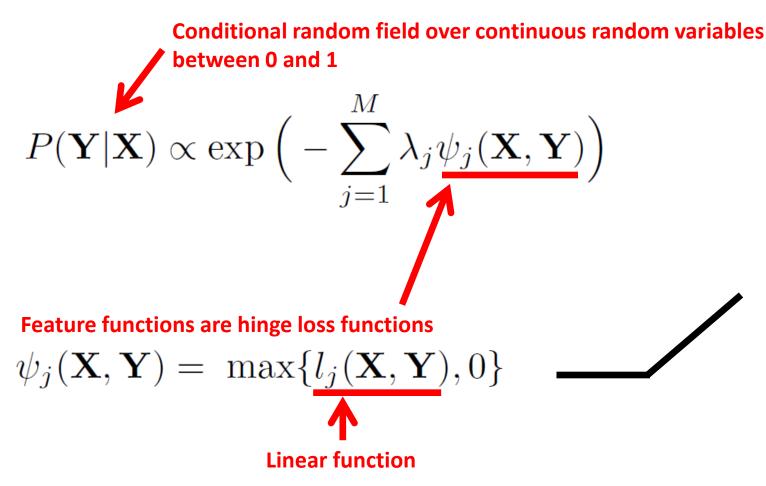
 Specifies a class of highly scalable continuous graphical models called hinge-loss MRFs

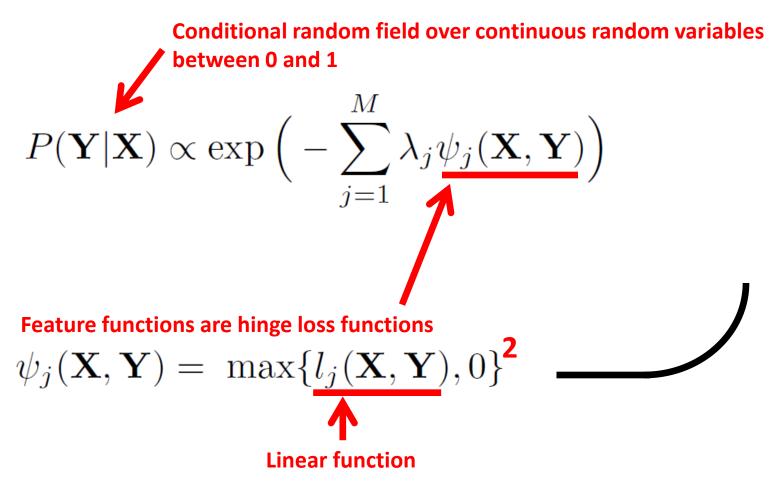


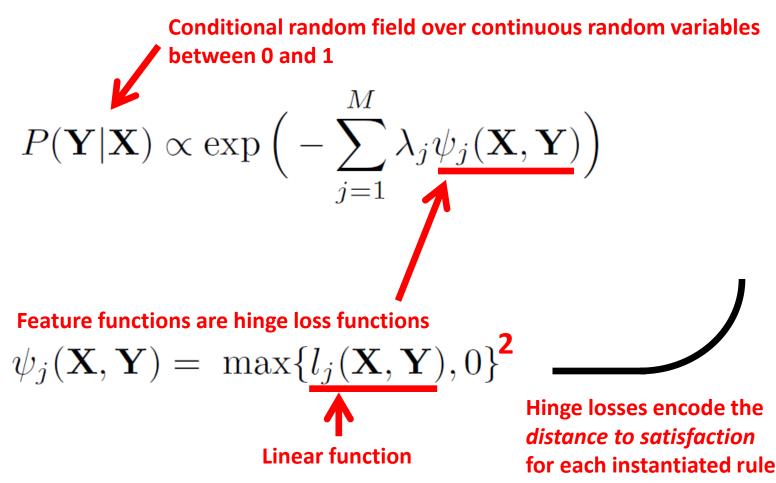












Latent Dirichlet allocation

- For each document $d, 1, \ldots, D$
 - For each word token $i, 1, \ldots, N_d$
 - Draw a latent topic assignment, $z_i^{(d)} \sim \text{Discrete}(\theta^{(d)})$
 - Draw the word token, $\omega_i^{(d)} \sim \text{Discrete}(\phi^{(z_i^{(d)})})$

Latent Dirichlet allocation

- For each document $d, 1, \ldots, D$
 - For each word token $i, 1, \ldots, N_d$
 - Draw a latent topic assignment, $z_i^{(d)} \sim \text{Discrete}(\theta^{(d)})$
 - Draw the word token, $\omega_i^{(d)} \sim \text{Discrete}(\phi^{(z_i^{(d)})})$

• **Priors:** $\theta^{(d)} \sim \text{Dirichlet}(\alpha)$ $\phi^{(k)} \sim \text{Dirichlet}(\beta)$

Latent topic networks

- For each document $d, 1, \ldots, D$
 - For each word token $i, 1, \ldots, N_d$
 - Draw a latent topic assignment, $z_i^{(d)} \sim \text{Discrete}(\theta^{(d)})$
 - Draw the word token, $\omega_i^{(d)} \sim \mathrm{Discrete}(\phi^{(z_i^{(d)})}) \ .$

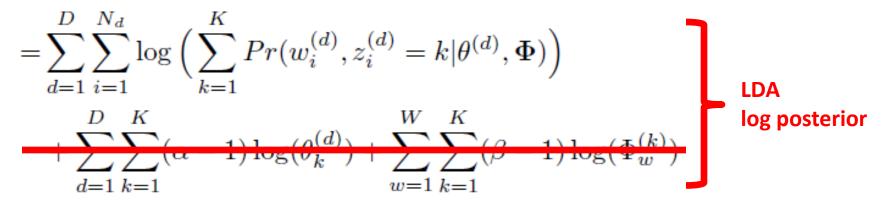
• Priors: Hinge-loss MRFs

$$P(\mathbf{Y}|\mathbf{X}) \propto \exp\left(-\sum_{j=1}^{M} \lambda_{j} \psi_{j}(\mathbf{X}, \mathbf{Y})\right)$$
$$\psi_{j}(\mathbf{X}, \mathbf{Y}) = [\max\{l_{j}(\mathbf{X}, \mathbf{Y}), 0\}]^{\rho_{j}}$$

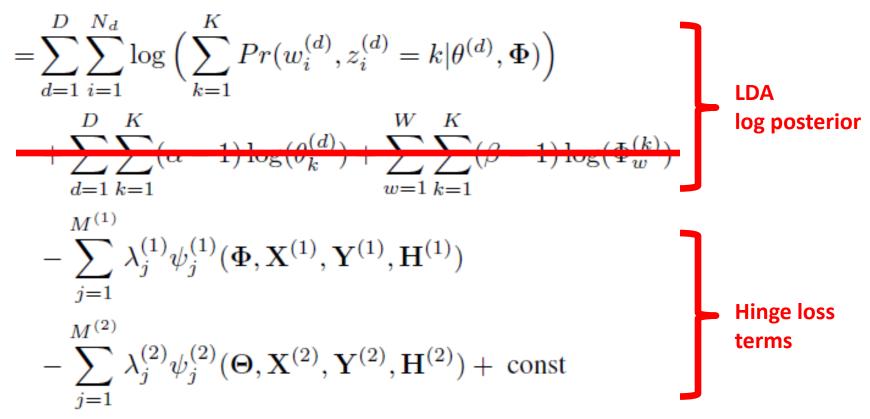
 $\log Pr(\boldsymbol{\Theta}, \boldsymbol{\Phi}, \mathbf{Y}^{(1)}, \mathbf{Y}^{(2)}, \mathbf{H}^{(1)}, \mathbf{H}^{(2)} | w, \beta, \alpha, \mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \lambda)$

$$\begin{split} &= \sum_{d=1}^{D} \sum_{i=1}^{N_d} \log \left(\sum_{k=1}^{K} \Pr(w_i^{(d)}, z_i^{(d)} = k | \theta^{(d)}, \Phi) \right) \\ &+ \sum_{d=1}^{D} \sum_{k=1}^{K} (\alpha - 1) \log(\theta_k^{(d)}) + \sum_{w=1}^{W} \sum_{k=1}^{K} (\beta - 1) \log(\Phi_w^{(k)}) \end{split}$$
 LDA log posterior

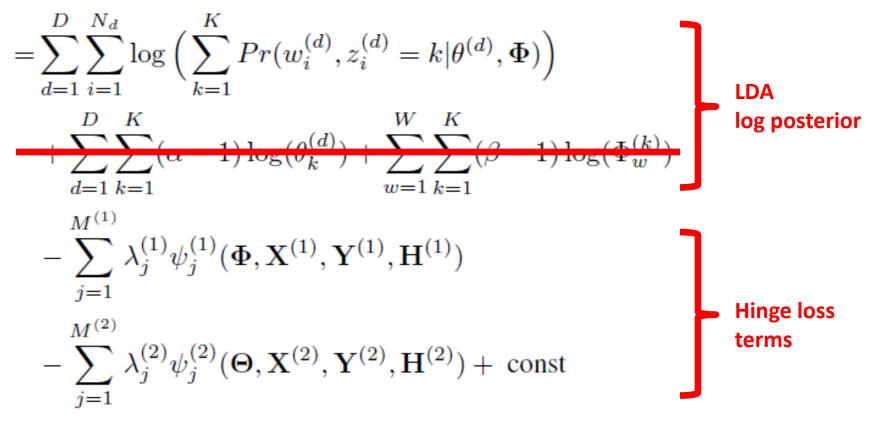
 $\log Pr(\boldsymbol{\Theta}, \boldsymbol{\Phi}, \mathbf{Y}^{(1)}, \mathbf{Y}^{(2)}, \mathbf{H}^{(1)}, \mathbf{H}^{(2)} | w, \beta, \alpha, \mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \lambda)$



 $\log Pr(\boldsymbol{\Theta}, \boldsymbol{\Phi}, \mathbf{Y}^{(1)}, \mathbf{Y}^{(2)}, \mathbf{H}^{(1)}, \mathbf{H}^{(2)} | w, \beta, \alpha, \mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \lambda)$



 $\log Pr(\boldsymbol{\Theta}, \boldsymbol{\Phi}, \mathbf{Y}^{(1)}, \mathbf{Y}^{(2)}, \mathbf{H}^{(1)}, \mathbf{H}^{(2)} | w, \beta, \alpha, \mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \lambda)$



Tractability from convexity, instead of conjugacy!

 $\log Pr(\boldsymbol{\Theta}, \boldsymbol{\Phi}, \mathbf{Y}^{(1)}, \mathbf{Y}^{(2)}, \mathbf{H}^{(1)}, \mathbf{H}^{(2)} | w, \beta, \alpha, \mathbf{X}^{(1)}, \mathbf{X}^{(2)}, \lambda)$

$$\begin{split} &= \sum_{d=1}^{D} \sum_{i=1}^{N_d} \log \Big(\sum_{k=1}^{K} Pr(w_i^{(d)}, z_i^{(d)} = k | \theta^{(d)}, \Phi) \Big) \\ &+ \sum_{d=1}^{D} \sum_{k=1}^{K} (\alpha - 1) \log(\theta_k^{(d)}) + \sum_{w=1}^{W} \sum_{k=1}^{K} (\beta - 1) \log(\Phi_w^{(k)}) \\ &- \sum_{j=1}^{M^{(1)}} \lambda_j^{(1)} \psi_j^{(1)}(\Phi, \mathbf{X}^{(1)}, \mathbf{Y}^{(1)}, \mathbf{H}^{(1)}) \\ &- \sum_{j=1}^{M^{(2)}} \lambda_j^{(2)} \psi_j^{(2)}(\Theta, \mathbf{X}^{(2)}, \mathbf{Y}^{(2)}, \mathbf{H}^{(2)}) + \text{ const} \end{split}$$

Tractability from convexity, instead of conjugacy!

- Expectation Maximization
 - E-step: the same as for LDA

 $\gamma_{idk} \propto P(w_i^{(d)} | z_i^{(d)} = k, \Theta^{(t)}, \Phi^{(t)}) P(z_i^{(d)} = k | \Theta^{(t)}, \Phi^{(t)})$ $= \phi_{w_i^{(d)}}^{(k,t)} \theta_k^{(d,t)}.$

- Expectation Maximization
 - E-step: the same as for LDA $\gamma_{idk} \propto P(w_i^{(d)}|z_i^{(d)} = k, \Theta^{(t)}, \Phi^{(t)})P(z_i^{(d)} = k|\Theta^{(t)}, \Phi^{(t)})$

$$= \phi_{w_i^{(d)}}^{(k,t)} \theta_k^{(d,t)} \ .$$

- M-step: LDA EM lower bound

$$\sum_{wk} \left(\sum_{id:w_i^{(d)}=w} \gamma_{idk} + \beta - 1 \right) \log \phi_w^{(k)} + \sum_{dk} \left(\sum_i \gamma_{idk} + \alpha - 1 \right) \log \theta_k^{(d)} - \sum_{idk} \gamma_{idk} \log \gamma_{idk}$$

- Expectation Maximization
 - E-step: the same as for LDA
 $$\begin{split} \gamma_{idk} \propto P(w_i^{(d)} | z_i^{(d)} = k, \mathbf{\Theta}^{(t)}, \mathbf{\Phi}^{(t)}) P(z_i^{(d)} = k | \mathbf{\Theta}^{(t)}, \mathbf{\Phi}^{(t)}) \\ &= \phi_{w_i^{(d)}}^{(k,t)} \theta_k^{(d,t)}. \end{split}$$

- M-step: LDA EM lower bound minus hinge loss terms

$$\sum_{wk} \left(\sum_{id:w_i^{(d)}=w} \gamma_{idk} + \beta - 1 \right) \log \phi_w^{(k)} + \sum_{dk} \left(\sum_i \gamma_{idk} + \alpha - 1 \right) \log \theta_k^{(d)} - \sum_{idk} \gamma_{idk} \log \gamma_{idk}$$

$$-\sum_{j=1}^{M^{(1)}} \lambda_j^{(1)} \psi_j^{(1)}(\boldsymbol{\Phi}, \mathbf{X}^{(1)}, \mathbf{Y}^{(1)}, \mathbf{H}^{(1)}) - \sum_{j=1}^{M^{(2)}} \lambda_j^{(2)} \psi_j^{(2)}(\boldsymbol{\Theta}, \mathbf{X}^{(2)}, \mathbf{Y}^{(2)}, \mathbf{H}^{(2)})$$

- Expectation Maximization
 - E-step: the same as for LDA
 $$\begin{split} \gamma_{idk} \propto P(w_i^{(d)} | z_i^{(d)} = k, \mathbf{\Theta}^{(t)}, \mathbf{\Phi}^{(t)}) P(z_i^{(d)} = k | \mathbf{\Theta}^{(t)}, \mathbf{\Phi}^{(t)}) \\ &= \phi_{w_i^{(d)}}^{(k,t)} \theta_k^{(d,t)}. \end{split}$$

- M-step: LDA EM lower bound minus hinge loss terms

$$\sum_{wk} \left(\sum_{id:w_i^{(d)}=w} \gamma_{idk} + \beta - 1 \right) \log \phi_w^{(k)} + \sum_{dk} \left(\sum_i \gamma_{idk} + \alpha - 1 \right) \log \theta_k^{(d)} - \sum_{idk} \gamma_{idk} \log \gamma_{idk}$$
$$- \sum_{j=1}^{M^{(1)}} \lambda_j^{(1)} \psi_j^{(1)}(\mathbf{\Phi}, \mathbf{X}^{(1)}, \mathbf{Y}^{(1)}, \mathbf{H}^{(1)}) - \sum_{j=1}^{M^{(2)}} \lambda_j^{(2)} \psi_j^{(2)}(\mathbf{\Theta}, \mathbf{X}^{(2)}, \mathbf{Y}^{(2)}, \mathbf{H}^{(2)})$$

Convex optimization! Solve in parallel using consensus ADMM

Weight learning

• Optimize pseudo-likelihood approximation:

 $P^{*}(\Theta, \mathbf{Y}^{(2)}, \mathbf{H}^{(2)} | \mathbf{X}^{(2)}, \alpha) = \prod_{V \in \{\Theta, \mathbf{Y}^{(2)}, \mathbf{H}^{(2)}\}} P(V | B(V))$

Weight learning

• Optimize pseudo-likelihood approximation:

 $P^{*}(\Theta, \mathbf{Y}^{(2)}, \mathbf{H}^{(2)} | \mathbf{X}^{(2)}, \alpha) = \prod_{V \in \{\Theta, \mathbf{Y}^{(2)}, \mathbf{H}^{(2)}\}} P(V | B(V))$

• Gradient:

$$\frac{d}{d\lambda_q^{(2)}}\log P^*(\boldsymbol{\Theta}, \mathbf{Y}^{(2)}, \mathbf{H}^{(2)} | \mathbf{X}^{(2)}, \alpha)$$
(13)

Weight learning

• Optimize pseudo-likelihood approximation:

$$P^{*}(\Theta, \mathbf{Y}^{(2)}, \mathbf{H}^{(2)} | \mathbf{X}^{(2)}, \alpha) = \prod_{V \in \{\Theta, \mathbf{Y}^{(2)}, \mathbf{H}^{(2)}\}} P(V | B(V))$$

• Gradient:

$$\frac{d}{d\lambda_q^{(2)}} \log P^*(\Theta, \mathbf{Y}^{(2)}, \mathbf{H}^{(2)} | \mathbf{X}^{(2)}, \alpha)$$
(13)
= $\sum_{V \in \{\Theta, \mathbf{Y}^{(2)}, \mathbf{H}^{(2)}\}} \left(E_{P(V|B(V))} [\psi_q^{(2)}(\cdot)] - \psi_q^{(2)}(\cdot) \right)$

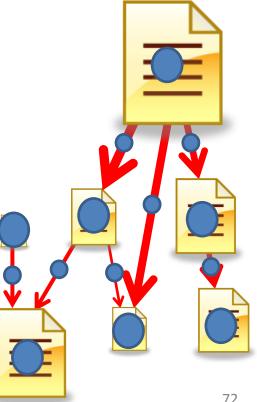
• Importance sample from the implied Dirichlet prior

Case study: Exploring influence in citation networks

Influence relationships on citation edges $\operatorname{cites}(A,B) \& (\operatorname{influences}(B,A) \land \theta_k^{(B)}) \quad \Rightarrow \quad$ $\theta_k^{(A)}$ cites(A, B) & $(\theta_k^{(A)} \land \theta_k^{(B)}) \Rightarrow$ influences(B, A)

Document-level and edge-level influence

 $\operatorname{cites}(A, B)$ & influential(B) \Rightarrow influences(B, A) $\operatorname{cites}(A, B)$ & $\operatorname{influences}(B, A) \implies \operatorname{influential}(B)$ \neg influential(A)



Case study: Exploring influence in citation networks

Influence relationships on citation edges $\operatorname{cites}(A, B) \& (\operatorname{influences}(B, A) \land \theta_k^{(B)}) \implies \theta_k^{(A)}$ $\operatorname{cites}(A, B) \& (\theta_k^{(A)} \land \theta_k^{(B)}) \implies \operatorname{influences}(B, A)$

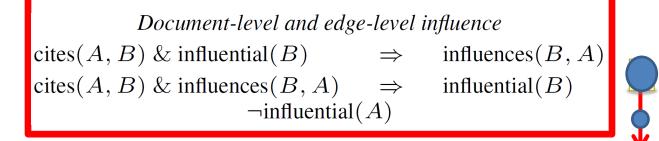
Document-level and edge-level influence

cites(A, B) & influential $(B) \Rightarrow$ cites(A, B) & influences $(B, A) \Rightarrow$ \neg influential(A)

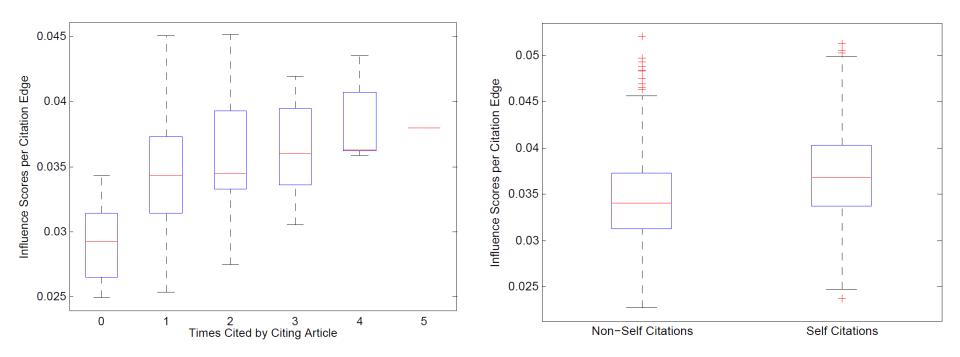
 $\begin{array}{ll} \Rightarrow & \text{influences}(B, A) \\ A) & \Rightarrow & \text{influential}(B) \end{array}$

Case study: Exploring influence in citation networks

Influence relationships on citation edges cites(A, B) & (influences(B, A) \land \theta_k^{(B)}) \Rightarrow \theta_k^{(A)} cites(A, B) & $(\theta_k^{(A)} \land \theta_k^{(B)}) \Rightarrow$ influences(B, A)

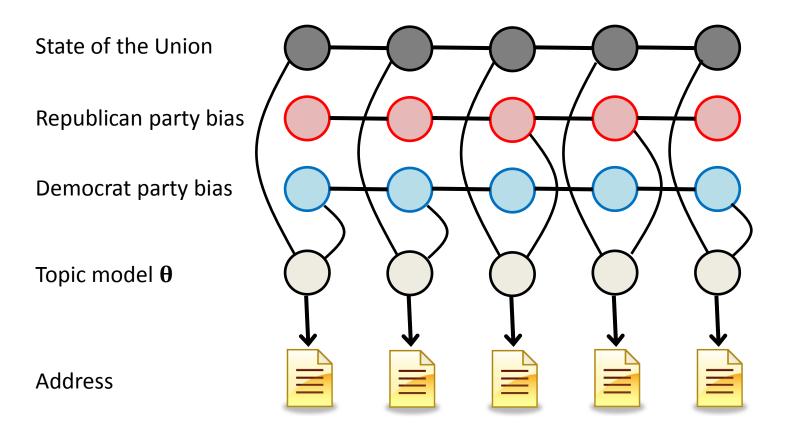


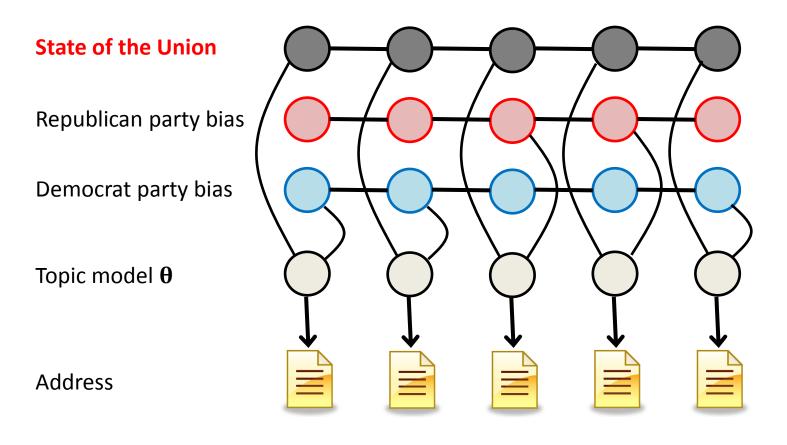
Case study: Exploring influence in citation networks

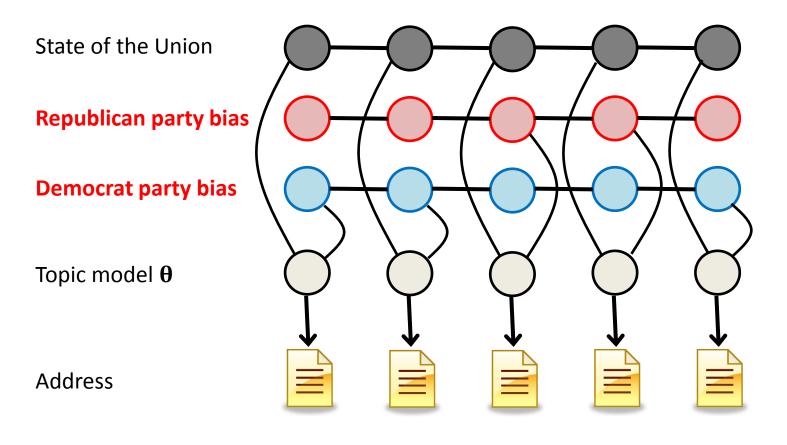


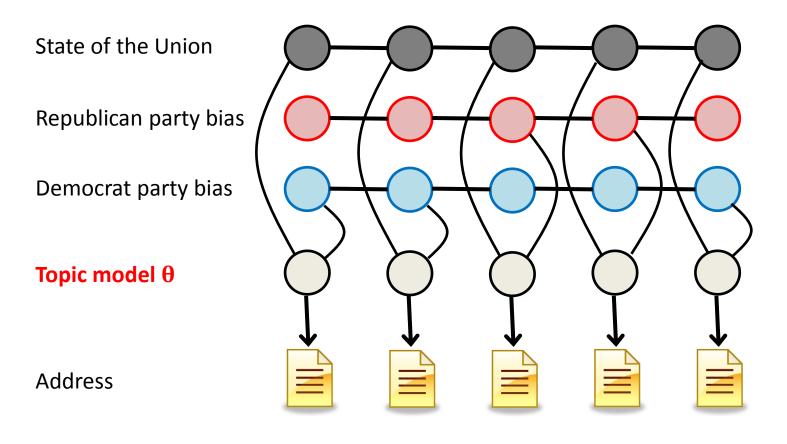
- The US President updates Congress on the state of the Union, roughly annually
- Do these addresses depict the true, underlying state of the Union?
- Are they biased by political agendas?

$$\begin{array}{rcl} \operatorname{SOTU}(Y1,k) \And \operatorname{precedes}(Y1,Y2) &\Rightarrow & \operatorname{SOTU}(Y2,k) \\ \operatorname{SOTU}(Y2,k) \And \operatorname{precedes}(Y1,Y2) &\Rightarrow & \operatorname{SOTU}(Y1,k) \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$



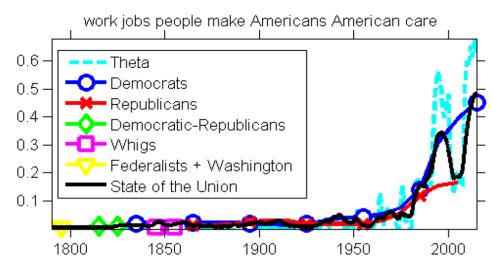


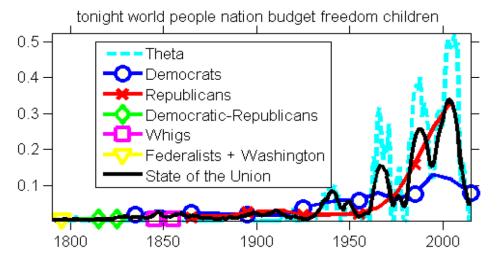




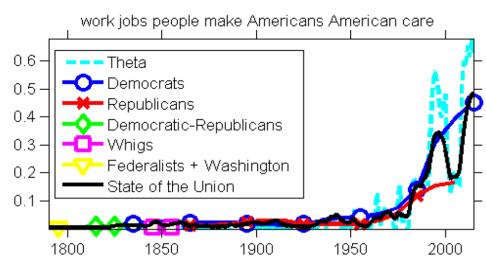


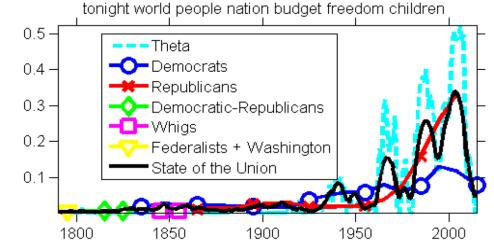
Democrat topic





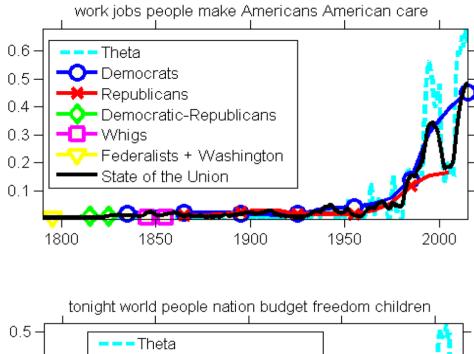
Democrat topic



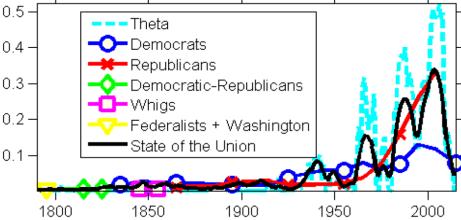


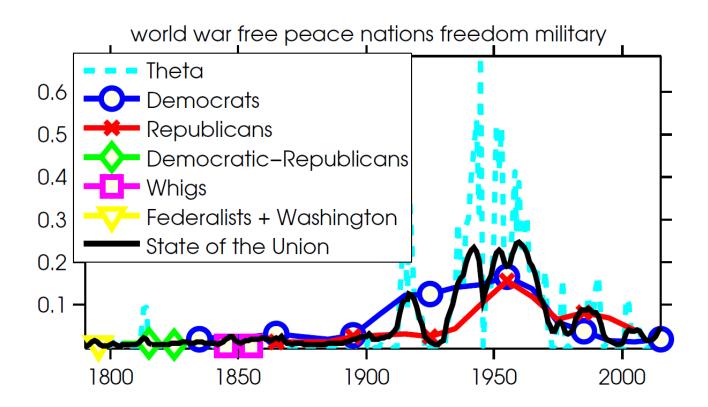
Republican topic

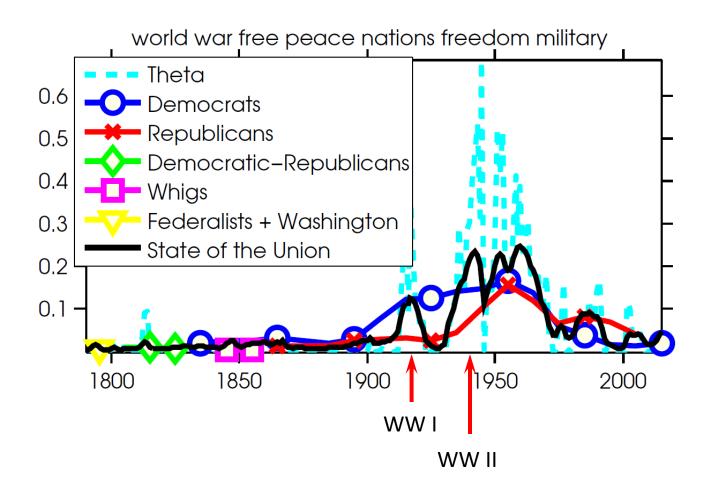
Democrat topic

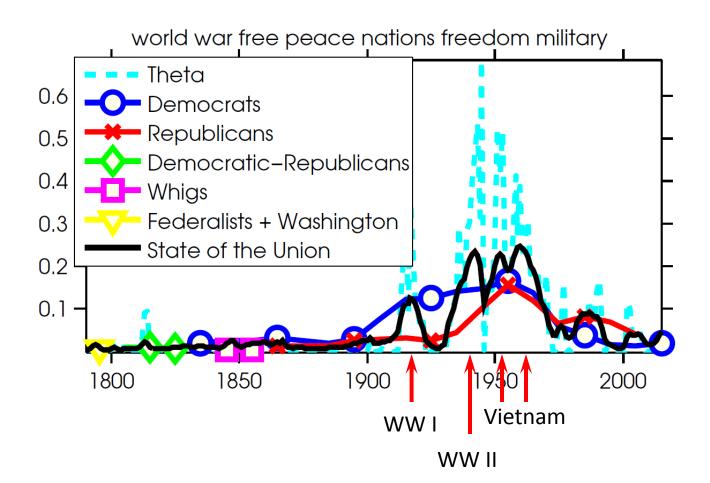


Republican topic









	Document Completion Perplexity	Fully Held-Out Perplexity
Latent topic networks	2.33 x 10 ³	2.43 x 10 ³
LDA topic model	2.36 x 10 ³	2.59 x 10 ³
Dynamic topic model	2.43 x 10 ³	2.55 x 10 ³

• We introduce **latent topic networks**, a versatile general-purpose framework for building and inferring custom topic models.

- We introduce **latent topic networks**, a versatile general-purpose framework for building and inferring custom topic models.
- Our experimental results show that models specified in our framework with just a few lines of code in a logical language, can be competitive with state of the art special purpose models.

- We introduce **latent topic networks**, a versatile general-purpose framework for building and inferring custom topic models.
- Our experimental results show that models specified in our framework with just a few lines of code in a logical language, can be competitive with state of the art special purpose models.
- Future directions
 - Using our framework to answer substantive questions in social science.
 - New language primitives, non-parametric Bayesian models, algorithmic advances ...

Thanks to my collaborators at UC Santa Cruz

Lise Getoor

• Shachi Kumar

- We introduce **latent topic networks**, a versatile general-purpose framework for building and inferring custom topic models.
- Our experimental results show that models specified in our framework with just a few lines of code in a logical language, can be competitive with state of the art special purpose models.
- Future directions
 - Using our framework to answer substantive questions in social science.
 - New language primitives, algorithmic advances ...

Code: coming soon at psl.cs.umd.edu !

- We introduce **latent topic networks**, a versatile general-purpose framework for building and inferring custom topic models.
- Our experimental results show that models specified in our framework with just a few lines of code in a logical language, can be competitive with state of the art special purpose models.
- Future directions
 - Using our framework to answer substantive questions in social science.
 - New language primitives, algorithmic advances ...

Code: coming soon at psl.cs.umd.edu !

Thank you for your attention ⁹⁴